

Truck Architecture and Hydrogen Storage

CNHi

Turin Oct 28th 2020

Contains confidential proprietary and trade secrets information of CNH Industrial. Any use of this work without express written consent is strictly prohibited.

STE

NEW HOLLAND

List of Contents

Decarbonization Workshop

- C02 regulation
- Vehicle architecture evolution for Hydrogen Fuel Cell Heavy Duty Vehicle
- Hydrogen Storage options Impact on vehicle architecture
- Hydrogen Fuel Cell HCV enabling factor in an ecosystem

Co2 emission target 2025 and 2030

Long Haul mission relevance

					201	8 MHCV sales in EU			
					Unr	egulated 22% 384 k 78% units 78%	Regulated		
Ve g	ehicle roup	Axle configuration	Chassis	GV₩	Included in CO ₂ Regulation		Cabin type	Engine power	Subgroup
	0	4x2 4x2	Rigid	>3.5, <7.5	Not included*	_	All	<170 kW	4-UD
	1		Rigid (or tractor)	7.5 - 10			Day cab	≥ 170 kW	
	2		Rigid (or tractor)	>10, 12			Sleeper cab	≥ 170 kW and < 265 kW	4-RD
			Rigid (of tractor)	-12, 10			Sleeper cab	≥ 265kW	4-LH
	4		Rigid	>16			Day cab	All	5 80
	5		Tractor	>16			Sleeper cab	< 265 kW	5-KU
	6	4x4	Rigid	7.5 - 16	Not included*		Sleeper cab	≥ 265kW	5-LH
	/ 0		Treater	>10			Day cab		9-RD
	8		Tractor	>10			Sleeper cab	- All -	9-LH
	9	6x2	Rigid	All			Day cab	- All -	10-RD
	10		Tractor	All			Sleeper cab		10-LH
	11	6x4	Rigid	All	Not included*				
	12		Tractor	All					
	13	6x6 8x2	Rigid	All			The subgroup div	/ISION IS MADE A	ccordingly to th
	14		Tractor	All			For each subgrou	in a typical and	ual mileade ar
	15		Rigid	All		-	payload is define	d	raar miedye ar
	16	8x4	Rigid	All			Using these values a MPW (Mileage and pavlo		
	17	8x6, 8x8	Rigid	All			weighting) factor	each subgroup	

- gly to the ed on
- eage and
- d payload ibgroup

Vehicle architecture

An evolution challenge

- 1. Artic chassis frame architecture as starting poi
- 2. Electrification components
- 3. To be added
 - 1. Fuel cell module
 - 2. Batteries
 - 3. Hydrogen storage
 - 4. Eaxle
- 4. Thermal management

Hydrogen Storage

Available options

Ask systems

Max storage pressure	350 bar	700 bar	300 bar	4 to 6
Volumetric Density (including BoPs)*	16 g H2/L of Tank	27 g H2/L of Tank	40 g H2/L of Tank	36 g H2/L of Tank
Maturity (status Aug 2020)*	Very Mature	Very Mature	Prototype	Mature for other applications (Aerospace)
Cost Estimation 2025	reference	+10% €/kg H2	-	-35% €/kg H2

*Internal elaboration from various sources

Hydrogen Refueling Station

Truck - Station interface

Vehicle architecture

Vehicle geometry challenge

Hydrogen HDV for long haul mission will require an extra volume

Challenges for

- Turning radius
- Overall length
- ISO trailer compatibility to have flexibility in operations

Hydrogen Value Chain

Two main possible path

Public

Vehicle as enabling factor

TCO driven

Technology Challenge

- range
- fuel efficiency
- payload
- flexibility
- refuelling tim

TCO main CHALLENGE

hydrogen cost

