Report for DG JRC in the Context of Contract JRC/PTT/2015/F.3/0027/NC "Development of shale gas and shale oil in Europe"

European Unconventional Oil and Gas Assessment (EUOGA)

Resource estimation of shale gas and shale oil in Europe

Deliverable T7b Appendix A

Appendix A

This Appendix shows all used parameters for the Monte Carlo calculations as well as all individual calculation results and sensitivities per Screening Index. For the first basin, the results are discussed in detail and can serve as an example on how to read the figures and tables for the other basins. In total 49 formations are evaluated for which some cases hold only gas, some only oil and some both shale oil and gas. In total 15 formations have both oil and gas, 26 formations have assessments for only gas and 8 for oil.

T01 – Norwegian-Danish-S. Sweden – Alum Shale

Index	Basin	Country	Shale(s)	Age	Screening- Index
	Norwegian- Danish-S.	S	Alum Shale	M. Cambrian-L. Ordovician	1015
Τ1	T1 Sweden	S	Alum Shale	M. Cambrian-L. Ordovician	1016
	(Caledonian foreland)	DK	Alum Shale	M. Cambrian-L. Ordovician	1019

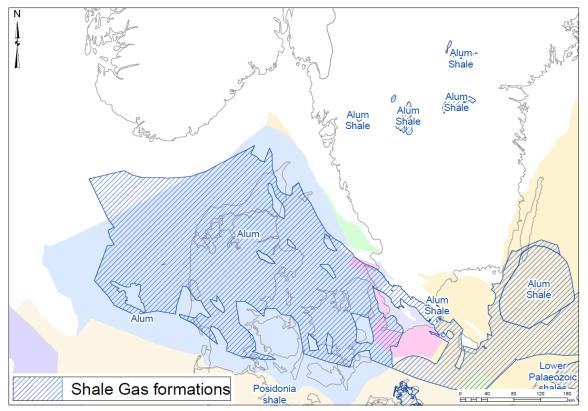


Figure A1 Overview map of the location of assessed formations

The first basin is the Norwegian-Danish-Southern Sweden basin with the Alum Shale of Lower Paleozoic age. The Alum Shale itself is also present in the Fennoscandian shield basin which will be calculated separately as a biogenic shale basin as well as an

occurrence of the Alum Shale formation within the Baltic Basin, where it is present as oil mature shale.

Table A1 Summary table of the general chance of success factors as extracted fromthe geological description of the formation (Assessment step 1, see T4b).

1015, 1016, 1019	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	High
Data availability	Moderate
HC system	Possible
Maturity variability	Moderate
Depth	Shallow, average to deep
Mineral composition	Unknown

Three separate shale occurrences have been received for this basin (Screening Index SI 1015, 1016, 1017, 1019), each will be calculated separately.

Sweden 1015

After passing the shale gas system ranking, the formation reaches a class 2 uncertainty and will be calculated with the following parameter values:

Table A2 Summary of the classification according to assessment step 3 for the Alumshale of Sweden (CP 1015) for the individual assessment units.

1015	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	108	2	1	1	1	Gas	2
Offshore	107	2	1	1	1	Gas	2

A number of parameters needed for the calculation of the adsorbed gas are not provided by the NGS. For these parameters (Bg and Langmuir's Parameters) analogues or references are needed. These are present within the delivered characteristics of the Alum Shale of Denmark (SI 1019) so these are used. Because no value for pressure was given, the pressure has to be calculated by using hydrostatic pressure.

1015	Min	Max	Mean	Distribution curve	Source
Area (km2)	SD = 59	%	2234	Normal	NGS, Class 2a, GIS data
Thickness (m)	48.8	78.8	64	Triangular	NGS
Depth (m)	0	1000	800	Triangular	NGS
Porosity (%)	1	10.2	6.1	Triangular	NGS
Saturation gas (%)	0.075	0.532	0.206	Triangular	NGS
Saturation oil (%)	0	0.279	0.0356	Triangular	NGS
Bg (gas)	62	109	85	Triangular	TNO, Calculated using depth and temp
Bo (oil)	-	-	-	-	-
Pressure (psi)	14.5	1479	1171	Triangular	TNO, Calculated, hydrostatic
Langmuir Pressure _(psi)	432	700	435	Triangular	<i>NGS, Denmark_1019</i>
Langmuir Volume (scf/ton)	20	63	36	Triangular	<i>NGS, Denmark_1019</i>
Density (g/cm3)	2.33	2.81	2.54	Triangular	NGS
Temperature (°C)	10	33	28	Triangular	NGS

Table A3 Overview of the input data used for the assessment of the OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

The results of the Monte Carlo simulation of the GIIP of the Alum Shale are shown in Figure 2. Mean values of the calculated gas in place are 122 and 237 bcm totalling in 358.6 bcm for this part of the Norwegian Danish S-Sweden Basin.

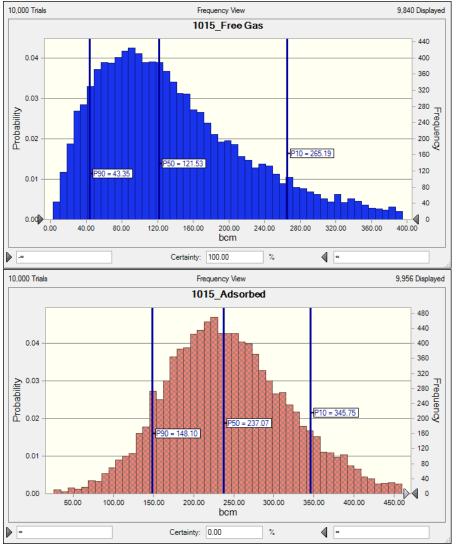


Figure A2 Results from GIIP calculations of Free Gas and Adsorbed Gas for the CP_1015, the Alum Shale of Sweden showing a mean of 122 bcm Free Gas and 237 bcm of adsorbed gas.

Sensitivity analyses on the calculation of the free and adsorbed gas shows the following result:

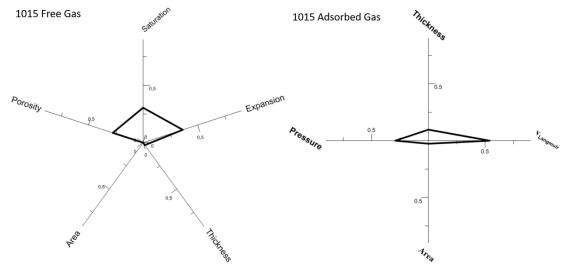


Figure A1 Sensitivity analyses results of the free gas and adsorbed calculations of the CP_1015 part of the Alum Shale.

Figure 3 shows the sensitivity analysis of the GIIP calculation. Gas saturation, expansion and porosity have the largest influence on the free gas simulation, with respectably each being responsible for some 30% of the total uncertainty of the free gas in place. For the adsorbed gas the assumed Langmuir volume has the biggest influence on the range of calculated adsorbed gas in place. About 54% of the total uncertainty are related to this parameter. Another important parameter in this case is the pressure, being responsible for another 29% of the total uncertainty. All of these parameters with the exception of the Langmuir volume and pressure come from direct measurements of the formation itself thus should have a small degree of uncertainty.

This formation was given a class 2 classification for its relatively shallow depth in this assessment unit of on average 800m. It is furthermore located in a structurally complex system, decreasing the chance of success further. One of the main questions therefore is related to the amount of gas either in free or adsorbed form in the formation. This is also reflected in the wide range of measured gas saturation in this formation.

Sweden 1016

The second SI of the Alum Shale is the deeper part of the formation, still in Sweden. The formation is run through the Ranking workflow, resulting in a Class 3 Gas formation which will be calculated in this assessment.

1016	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	110	1	1	3	1	Gas	3
Offshore	109	1	1	3	1	Gas	3

Table A4 Summary of the classification according to assessment step 3 (see x) for the individual assessment units.

For the SI_1016 a number of parameters are missing i.e. porosity, gas saturation, pressure, density, temperature and Langmuir parameters. Most of the parameters

have been obtained from the analogue formations are the Swedish and Danish Alum Shale which gives us most of the parameters. The pressure of the formation is calculated hydrostatically by using the given depth occurrence of the unit.

Table A5 Overview of the input data used for the assessment of the OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

1016	Min	Max	Mean	Distribution curve	Source
Area (km2)	$SD = 5^{\circ}$	%	427.5	Normal	NGS, Class 2a, GIS data
Thickness (m)	35	44	40	Triangular	NGS
Depth (m)	1370	2500	2300	Triangular	NGS
Porosity (%)	1	12	6.55	Triangular	<i>NGS, Ranges from Sweden_1015 and Denmark_1019</i>
Saturation gas (%)	0.075	0.8	0.353	Triangular	<i>NGS, Ranges from Sweden_1015 and Denmark_1019</i>
Saturation oil (%)	-	-	-	-	-
Bg (gas)	169	199	227	Triangular	TNO, Calculated, depth and given temp
Bo (oil)	-	-	-	-	-
Pressure (psi)	2047	4092	3477	Triangular	TNO, Calculated, hydrostatic
Langmuir Pressure (psi)	432	700	435	Triangular	<i>NGS, Denmark_1019</i>
Langmuir Volume (scf/ton)	20	63	36	Triangular	<i>NGS, Denmark_1019</i>
Density (g/cm3)	2.3	2.81	2.54	Triangular	<i>NGS, Ranges from Sweden_1015 and Denmark_1019</i>
Temperature (°C)	55.21	92.5	85.9	Triangular	TNO, Calculated using loc gradient of 3.3 deg/100 m (CP)

In Figure 4 the results of the Monte Carlo simulation are shown, which results in 78 bcm of free gas and 46 bcm of adsorbed gas, totalling 124 bcm GIIP.

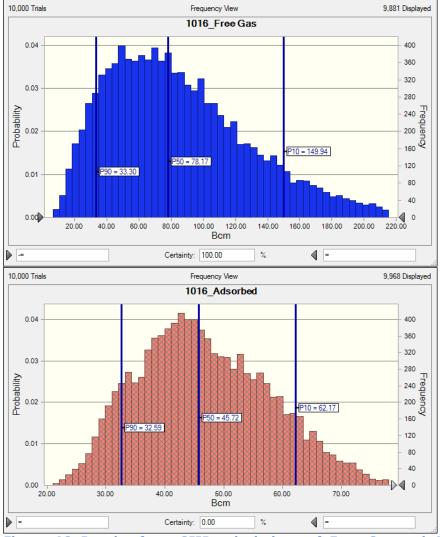


Figure A2 Results from GIIP calculations of Free Gas and Adsorbed Gas for the CP_1016, the Alum Shale of Sweden showing a mean of 78 bcm Free Gas and 46 bcm of adsorbed gas.

Figure 5 shows the sensitivity analysis of the GIIP calculation. Gas saturation and porosity have the largest influence on the free gas, each being responsible for more than 45% of the total uncertainty of the free gas in place value. For the adsorbed gas the assumed Langmuir volume has the biggest influence on the range of calculated adsorbed gas in place. About 90% of the total uncertainty is related to this parameter which is quite big. All of these parameters were from local analogues of the unit itself, increasing the uncertainty.

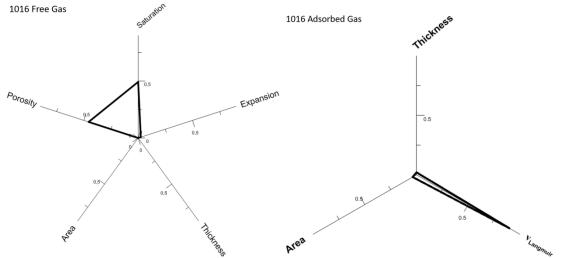


Figure A3 Sensitivity analyses of the Free Gas and Adsorbed gas calculations of the Alum Shale of Sweden (CP 1016)

This formation was given a class 3 classification for its unknown TOC content. It is furthermore located in a structurally complex system, decreasing the chance of success further. Several of the parameters needed for the calculation of the GIIP were taken from local analogues, including relatively easily obtainable parameters such as porosity, density and TOC. Better studies on the basin history, temperature and pressure could also decrease the uncertainty of this formation significantly.

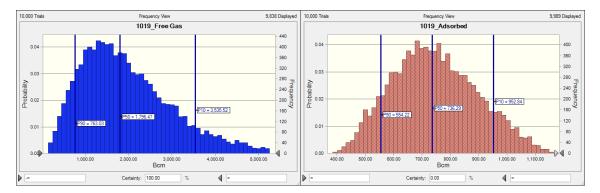
Denmark 1019

Third formation within the basin is the Alum Shale occurrence in Denmark. In comparison to the Swedish occurrences of the Alum Shale the Denmark part is substantially larger, with over three times as big a distribution area next to being thicker as well. This will of course results in higher GIIP results.

The formation is run through the ranking workflow, showing the formation is ranked as a Class 1 Gas formation, and GIIP calculations will commence. The Denmark Alum shale is a shale with a distribution depth going beyond 5 km depth. As discussed in report T2 all shale distribution deeper than 5 km will receive separate calculations as the risk for this depth is higher. Because of this the first resource assessment will cover depth 0-5000 (1019_1), the second 5000-7000 (1019_2) m depth.

1019	Object ID	Dept h	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	32, 34	1	1	1	1	Gas	1
Onshore	36	1	1	1	2	Gas	2
Onshore	20, 22, 40, 42	2	1	1	1	Gas	2
Onshore	44	2	1	1	2	Gas	2
Onshore	29	1	1	1	No	Gas	No
Onshore	38	2	1	1	No	Gas	No
Onshore	47	No	No	1	No	Overmature	No
Onshore	49, 51	No	No	1	1	Overmature	No
Onshore	53	No	No	1	2	Overmature	No
Offshore	25, 26, 31, 33	1	1	1	1	Gas	1
Offshore	35	1	1	1	2	Gas	2
Offshore	28	1	1	1	No	Gas	No
Offshore	19, 21, 39, 41	2	1	1	1	Gas	2
Offshore	23, 43	2	1	1	2	Gas	2
Offshore	37	2	1	1	No	Gas	No
Offshore	17, 45	No	1	1	1	Gas	No
Offshore	48, 50	No	No	1	1	Overmature	No
Offshore	52	No	No	1	2	Overmature	No
Offshore	46	No	No	1	No	Overmature	No

Table A6 Summary of the classification according to assessment step 3 for the individual assessment units.


Table A7 Overview of the input data used for the assessment of the GIIP of CP 1019

1019	Min	Max	Mean	Distribution curve	Source
Area (km2)	SD = 2.	5%	11739	Normal	NGS, Class 2a, GIS data
Thickness (m)	30	80	50	Triangular	NGS
Depth (m)	1500	7000	4250	Triangular	NGS
Porosity (%)	3	12	6	Triangular	NGS
Saturation gas (%)	0.03	0.28	0.67	Triangular	EU
Saturation oil (%)	-	-	-	-	-
Bg (gas)	169	292	270	Triangular	TNO, NGS temp, hydro press
Bo (oil)	-	-	-	-	-
Pressure (psi)	2945	8300	7106	Triangular	NGS
Langmuir Pressure (psi)	432	700	435	Triangular	NGS
Langmuir Volume (scf/ton)	20	63	36	Triangular	NGS
Density (g/cm3)	2.3	2.5	2.45	Triangular	NGS
Temperature (°C)	64	202	135	Triangular	NGS

Results of GIIP Calculations (Figure 6) show a mean of 1796 bcm of free gas and 736 bcm of adsorbed gas totalling in bcm for the first part of SI 1019, the second part of SI 1019 (**Error! Reference source not found.**) showing 1920 bcm of free gas and 655 bcm of adsorbed gas. These combined are a staggering volume of gas in place.

After the calculations a sensitivity analyses is performed on the gas calculations, shown in **Error! Reference source not found.** and

Figure A4 Results from GIIP calculations of Free Gas and Adsorbed Gas for depth up to 5km of CP_1019, the Alum Shale of Denmark showing a mean of 1796 bcm Free Gas and 736 bcm of adsorbed gas.

Figure A5 Results from GIIP calculations of Free Gas and Adsorbed Gas for depths deeper than 5 km of CP_1019, the Alum Shale of Denmark. This shows a mean of 1920 bcm Free Gas and 655 bcm of adsorbed gas.

Figure 8 shows the sensitivity analysis of the GIIP calculations of the Alum shale of Denmark. Gas saturation has the largest influence on the free gas in place, being responsible for about 60% of the total uncertainty of the free gas in place value for both cases. Another important parameter in this case is the porosity, being responsible for another 22% of the uncertainty of the free gas in place. For the adsorbed gas the thickness has the biggest influence on the range of calculated gas in place. More than 90% of the total uncertainty is related to this parameter, for both depth ranges. The thickness and porosity values were reported by the NGS for this formation, for the gas saturation the EU average value was selected.

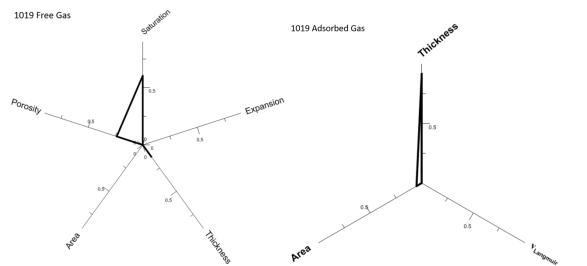


Figure A6 Sensitivity analyses of the Free Gas and Adsorbed gas calculations of the Alum Shale of Denmark up to 5 km depth (CP 1019)

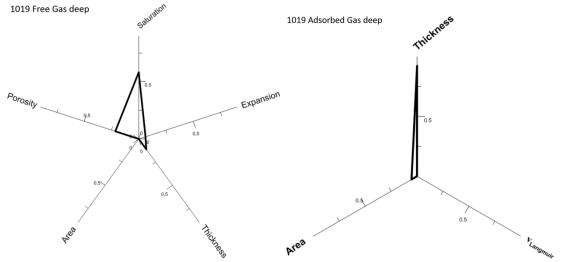


Figure A7 Sensitivity analyses of the Free Gas and Adsorbed gas calculations of the Alum Shale of Denmark deeper than 5 km depth (CP 1019)

This formation was given a class 1 classification. It is located in a structurally complex system influencing the overall chance of success. One of the main parameters influencing the uncertainty for the calculation of the GIIP were taken from the EU average.

Results

The mean value of gas in place for the entire basin for depth class <5 km is 3015 bcm. Subdivided into P10-P50-P90 this looks as follows:

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Alum Shale-1015, Adsorbed	S	148.10	237.07	345.75
Alum Shale-1015, Free Gas	S	43.35	121.53	265.19
Alum Shale-1016, Adsorbed	S	32.59	45.72	62.17
Alum Shale-1016, Free Gas	S	33.30	78.17	149.94
Alum Shale-1019_1, Adsorbed	DK	554.22	736.29	952.84
Alum Shale-1019_1, Free Gas	DK	763.03	1796.47	3535.52
Total GIIP for Basin T1			3015.26	

For the deeper (>5 km) gas is place estimations the results are:

Table A9 Overview of the results of	the GIIP calculation	for the deep formations
-------------------------------------	----------------------	-------------------------

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Alum Shale-1019_deep, Adsorbed	DK	490.69	655.20	845.09
Alum Shale-1019_deep, Free Gas	DK	841.99	1920.48	3666.89
Total GIIP Deep for Basin T1			2575.68	

Index	Basin	Country	Shale(s)	Age	Screening- Index
	Baltic Palaeobasin	LV	Zebrus	Lower Ordovician	1001
	Baltic Basin	S	Alum Shale Formation	M. Cambrian - E. Ordovician	1014
	Sorgenfrei Tornquist Zone	S	Alum Shale Formation	M. Cambrian - E. Ordovician	1015
	Norwegian- Danish-Scania	DK	Alum shale	M. Cambrian - E. Ordovician	1019
Т2	Baltic Sedimentary Basin	LT	Upper Ordovician- Llandovery Shales	Middle-Late Llandovery (Late Ordovician)	1061
	Baltic Basin	PL	Lower Palaeozoic shales	Upper Cambrian to Llandovery	1051
	Płock-Warsaw zone	PL	Lower Palaeozoic shales	Upper Cambrian to Llandovery	1052
	Podlasie basin and North Lublin	PL	Lower Palaeozoic shales	Silurian (Llandovery to Wenlock)	1053

T02 - Baltic Basin – Cambrian-Silurian Shales

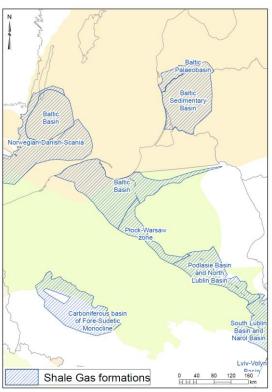


Figure A10 Overview map of the location of assessed formations

From this point onwards there will no longer be figures for each results of the stochastic volumetric calculations as well as each sensitivity study results, this are instead aggregated in Appendix A.

For the Baltic Basin a first calculation is done on the Upper Ordovician and Llandovery shales (1061) and a part of the Alum Shale (1014) of Sweden shales.

Table A10 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1001	Success factors
Mapping status	Moderate
Sedimentary variability	Moderate
Structural complexity	Low
Data availability	Poor
HC system	Possible
Maturity variability	Unknown
Depth	Average
Mineral composition	No data

1014	Success factors		
Mapping status	Moderate		
Sedimentary variability	Low		
Structural complexity	Moderate		
Data availability	Moderate		
HC system	Possible		
Maturity variability	High		
Depth	Shallow		
Mineral composition	No data		

1015	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	High
Data availability	Moderate
HC system	Possible
Maturity variability	Moderate
Depth	Shallow to average to deep
Mineral composition	Unknown

1019	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	High
Data availability	Moderate
HC system	Possible
Maturity variability	High

Depth	Shallow	
Mineral composition	Unknown	
1051	Success factors	
Mapping status	Unknown	
Sedimentary variability	Moderate	
Structural complexity	Moderate to High	
Data availability	Moderate	
HC system	Possible	
Maturity variability	Moderate	
Depth	Average	
Mineral composition	Unknown	

1052	Success factors	
Mapping status	Unknown	
Sedimentary variability	Moderate	
Structural complexity	Moderate to High	
Data availability	Moderate	
HC system	Possible	
Maturity variability	Moderate	
Depth	Average	
Mineral composition	No data	

1053	Success factors
Mapping status	Unknown
Sedimentary variability	Moderate
Structural complexity	Moderate to High
Data availability	Moderate
HC system	Possible
Maturity variability	Moderate
Depth	Average
Mineral composition	No data

1061	Success factors
Mapping status	Good
Sedimentary variability	Moderate
Structural complexity	Moderate
Data availability	Moderate
HC system	Possible
Maturity variability	Moderate
Depth	Average
Mineral composition	Unknown

Zebrus 1001

The first formation in the Baltic Basin is the Zebrus formation of Latvia, a very large formation which is present over 3000 square kilometres. The formation is run through the shale ranking system, showing:

Table A11 Summary of the classification according to assessment step 3 for theindividual assessment units.

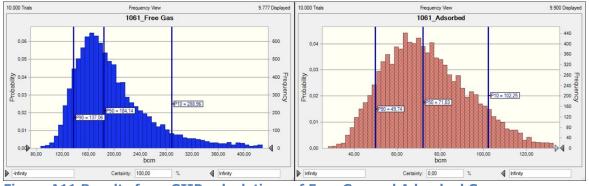
1001	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	92	1	no	1	1	Immature	No

Which means that the formation will not be assessed as it is immature.

Raikiula-Adavere and Fjäcka-Mossen Formations 1061

The second Baltic formation is the Upper Ordovician – Llandovery shales of Lithuania. This large shale formation combination (stacked almost directly on top of each other) covers some 7222 square kilometres. When running the formation through the ranking system, this gives the following result:

Table A12 Summary of the classification according to assessment step 3 for the individual assessment units.


1061	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	88, 89, 90,	1	1	1	1	Oil/Gas	1
Onshore	91	1	No	No	1	Total Basin	No

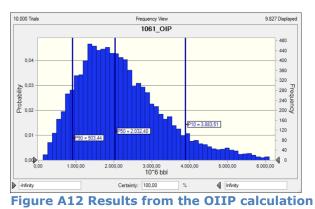

T2a	LT_1061	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		5825	Normal	NGS, Class 4a, GIS data
	Thickness (m)	16.5	35	20	Log normal	NGS
	Depth (m)	1500	2130	1800	Log normal	NGS
	Porosity (%)	0.35	14.1	5.7	Log normal	NGS
	Saturation gas	0.5	0.75	0.67	Triangular	NGS Poland as analogue
	Saturation oil	0.01	0.15	0.06	Triangular	NGS Poland as analogue
	Expansion Factor (Bg)	164	182	173	Triangular	TNO
	Bo (oil)	0.8	1.1	1.01	Triangular	NGS, Poland_1052
	Pressure (psi)	2243	3180	2690	Triangular	TNO with gradient NGS
	Langmuir Pressure (psi)	432	700	435	Triangular	NGS
	Langmuir Volume (scf/ton)	20	63	36	Triangular	NGS
	Density (g/cm3)	2.11	2.85	2.49	Log normal	NGS
	Temperature (°C)	32	91.7	71.4	Triangular	NGS

Table A13 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

This means the shale is identified as a Class 1 oil and gas shale and will have a resource assessment. For the calculations the saturation (both gas and oil) as well as the compressibility factor are taken from the Polish Lower Paleozoic shales (SI 1052) as this is the best analogue for the Lithuania formations, indicated by the Lithuanian Geological Survey. The expansion is calculated by TNO based on hydrostatic pressure and local temperature gradient.

The resource assessment for this unit shows a total of 255.97 bcm of GIP and 2.03 billion million barrels of OIP, which is a very high amount of hydrocarbons in place. The Monte Carlo results as well as the sensitivities can be found in Appendix A.

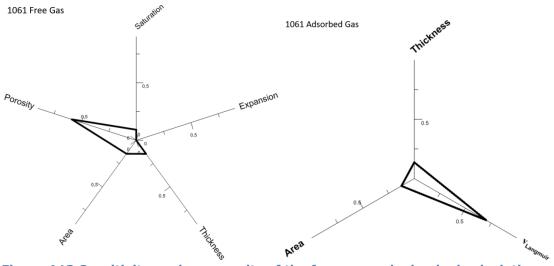
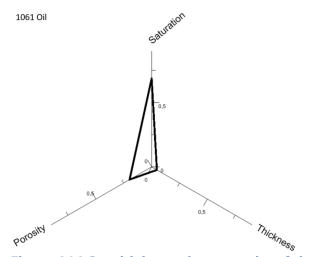



Figure A13 Sensitivity analyses results of the free gas and adsorbed calculations.

Figure A14 Sensitivity analyses results of the oil in place calculation

Alum Shale Formation 1014

Fourth formation of the Baltic Basin is the Alum Shale of Sweden, which we've also seen in basin T1, although its characteristics are somewhat different that before. The formation is quite small with a distribution are of 106 square kilometres. To see in which Class the formation falls it is run through the ranking workflow:

Table A14 Summary of the classification according to assessment step 3 for the individual assessment units.

1014	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore		2	2	1	1	gas	2
Offshore	103	2	2	1	1	gas	2

T1	S_1014	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD = 10%		99.78	Normal	NGS, Class 4a, GIS data
	Thickness (m)	15	25	20	Triangular	NGS
	Depth (m)	0	800	300	Triangular	NGS
	Porosity (%)	1	10.2	6.1	Triangular	NGS, Sweden_1015
	Saturation gas	-	-	-	-	-
	Saturation oil	0	0.279	0.0356	Triangular	NGS, Sweden_1015
	Expansion Factor (Bg)	-	-	-	-	-
	Bo (oil)	0.76	1.1	1.01	Triangular	NGS, Summary_1061
	Pressure (psi)	145	1160	432	Triangular	NGS
	Langmuir Pressure (psi)	-	-	-	-	-
	Langmuir Volume (scf/ton)	-	-	-	-	-
	Density (g/cm3)	2.33	2.81	2.54	Triangular	NGS, Sweden_1015
	Temperature (°C)	8	35	15	Triangular	NGS

Table A15 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

This shows that the formation is a Class 2 oil shale, and resources will be calculated. When doing the calculation the formation did not have values for the porosity, saturation, density and compressibility factor. Analogue formation Alum Shale SI 1015 is used, which is a continuation of the same formation.

Figure shows the results of the OIL Monte Carlo simulation, with a mean value of 66 million barrels of oil. As expected not a lot of oil in place, as it is a rather small formation.

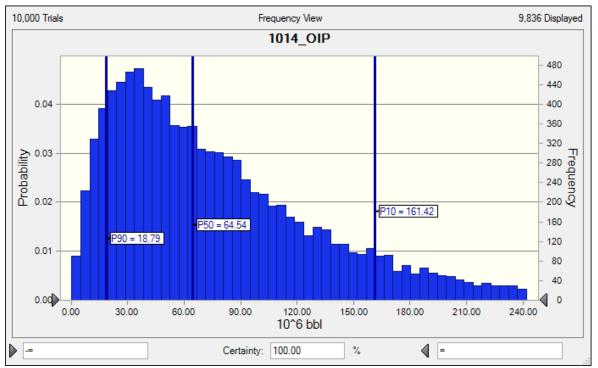
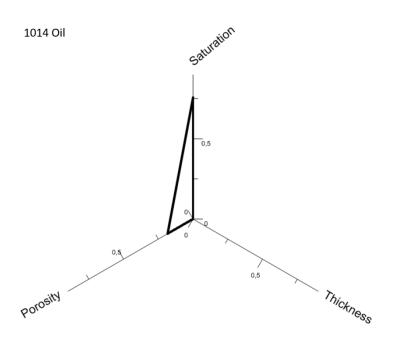



Figure A15: OIP Monte Carlo results of the Alum shale showing 65 million barrels of oil in place as a P50.

Figure A16 Sensitivity analyses results of the oil in place calculation

Alum Shale Formation of the Sorgenfrei Tornquist Zone 1015

Table A16 Summary of the classification according to assessment step 3 for the individual assessment units.

1015	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	106	2	1	1	1	Gas	2
Offshore	105	2	1	1	1	Gas	2

Alum Shale of the Norwegian-Danish-Scania 1019

Table A17 Summary of the classification according to assessment step 3 for the individual assessment units.

1019	Object ID	Dept h	Maturity	тос	Thickness	Gas/Oil	Class
Offshore	24, 26, 27, 30	1	1	1	1	Gas	1
Offshore	15, 16, 18	No	1	1	1	Gas	No
Offshore	14	No	3	1	1	Gas	No

Lower Paleozoic shale Baltic basin 1051

Table A18 Summary of the classification according to assessment step 3 for theindividual assessment units.

1051	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	95	1	1	1	1	oil	1

Onshore	96	1	1	1	1	aas	1
onone	50	-	-	÷	-	guu	-

Table A19 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T2b	PL_1051	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		17820	Normal	NGS, Class 4a, GIS data
	Thickness (m)	12	73	40	Triangular	NGS
	Depth (m)	1500	4500	2800	Triangular	NGS
	Porosity (%)	4	5	4.5	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	0.005	0.15	0.06	Triangular	NGS
	Expansion Factor (Bg)	172	299	250	Triangular	NGS
	Bo (oil)	0.8	1.1	1	Triangular	NGS
	Pressure (psi)	2200	6600	4100	Triangular	NGS
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.5	2.7	2.6	Triangular	NGS
	Temperature (°C)	40	120	70	Triangular	NGS

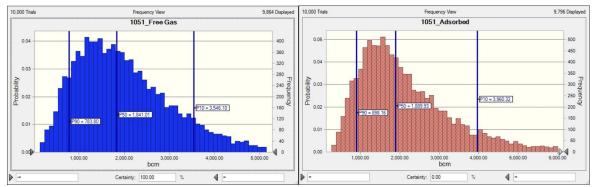


Figure A17 Results from GIIP calculations of Free Gas and Adsorbed Gas

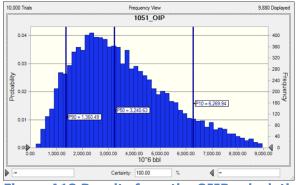


Figure A18 Results from the OIIP calculation

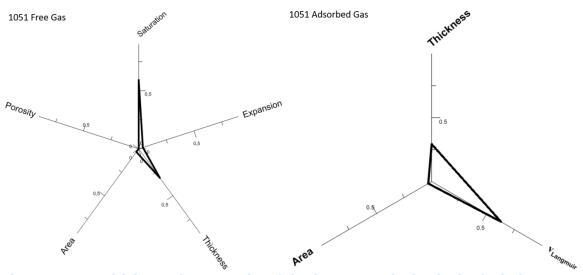


Figure A19 Sensitivity analyses results of the free gas and adsorbed calculations.

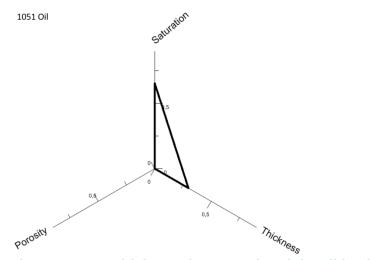


Figure A20 Sensitivity analyses results of the oil in place calculation

Lower Paleozoic shale Płock-Warsaw zone 1052

Table A20 Summary of the classification according to assessment step 3 for the individual assessment units.

1052	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	97	1	1	1	1	gas	1

Table A21 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T2c	PL_1052	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		4599	Normal	NGS, Class 4a, GIS data
	Thickness (m)	30	80	50	Triangular	NGS
	Depth (m)	3500	5000	4430	Triangular	NGS
	Porosity (%)	4	5	4.5	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	0.005	0.15	0.06	Triangular	NGS
	Expansion Factor (Bg)	315	333	317	Triangular	NGS
	Bo (oil)	-	-	-	-	-
	Pressure (psi)	5200	7300	6500	Triangular	NGS
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.5	2.7	2.6	Triangular	NGS
	Temperature (°C)	110	140	129	Triangular	NGS

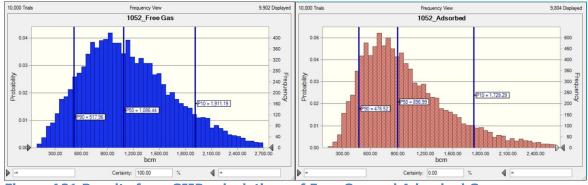


Figure A21 Results from GIIP calculations of Free Gas and Adsorbed Gas

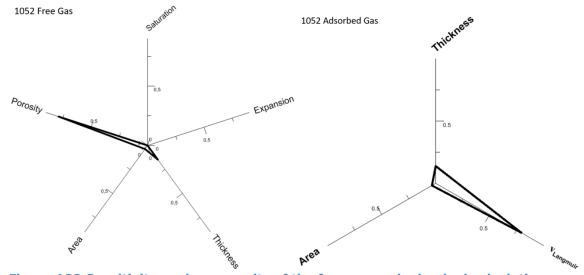


Figure A22 Sensitivity analyses results of the free gas and adsorbed calculations.

Lower Paleozoic shales Podlasie and North Lublin Basin 1053

Table A22 Summary of the classification according to assessment step 3 for the individual assessment units.

1053	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore		1	1	1	1	oil	1
Onshore	99	1	1	1	1	gas	1

Table A23 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T2d	PL_1053	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		3670	Normal	NGS, Class 4a, GIS data
	Thickness (m)	24	60	40	Triangular	NGS
	Depth (m)	1500	4000	2025	Triangular	NGS
	Porosity (%)	4	5	4.5	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	0.005	0.15	0.06	Triangular	NGS
	Expansion Factor (Bg)	164	277	172	Triangular	NGS
	Bo (oil)	0.8	1.1	1	Triangular	NGS
	Pressure (psi)	2200	3000	5900	Triangular	NGS
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.5	2.7	2.6	Triangular	NGS
	Temperature (°C)	57	107	68	Triangular	NGS

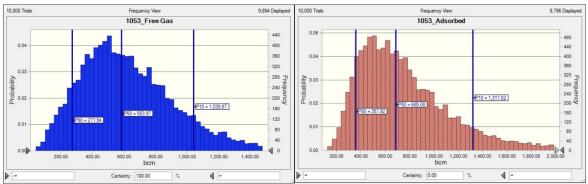


Figure A23 Results from GIIP calculations of Free Gas and Adsorbed Gas

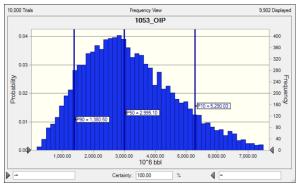


Figure A24 Results from the OIIP calculation

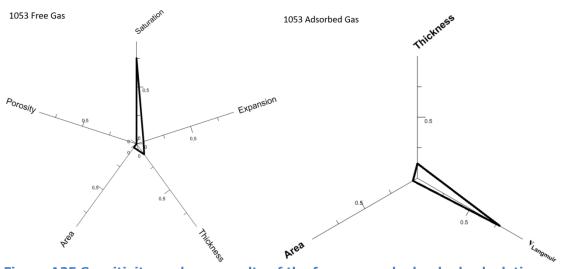


Figure A25 Sensitivity analyses results of the free gas and adsorbed calculations.

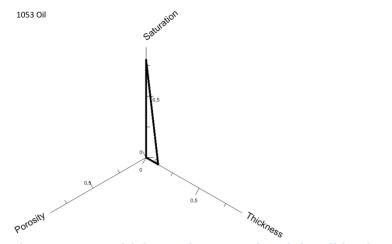


Figure A26 Sensitivity analyses results of the oil in place calculation

Results

Table A24 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Lower Palaeozoic shales-1051, Adsorbed	PL	898.16	1889.93	3960.32
Lower Palaeozoic shales-1051, Free Gas	PL	783.80	1841.01	3546.10
Lower Palaeozoic shales-1052, Adsorbed	PL	476.52	896.99	1729.29
Lower Palaeozoic shales-1052, Free Gas	PL	517.96	1086.44	1911.19
Lower Palaeozoic shales-1053, Adsorbed	PL	357.92	685.08	1317.82
Lower Palaeozoic shales-1053, Free Gas	PL	271.94	583.97	1039.87
Llandovery-1061, Adsorbed	LT	49.74	71.83	102.25
Llandovery-1061, Free Gas	LT	137.06	184.14	288.96
Total GIIP for Basin T2			7239.40	
Total GIP for Basin 12			7239.40	

Basin T2 only holds one formation which is expected to hold shale oil, this is the Alum shale of Sweden. The results for the oil in place estimations are:

Table A25 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Alum Shale-1014, Oil	S	18.79	64.54	161.42
Total OIIP for Basin T1			64.54	

Index	Basin	Country	Shale(s)	Age	Screening- Index
	Lviv-Volyn	UA	Black shale	Lower Silurian	1062
Т03	South Lublin Basin and Narol Basin		Lower Palaeozoic shales	Silurian (Llandovery to Wenlock)	1054

T03 - Podlasis Lublin Basin – Various shales 1054, 1062

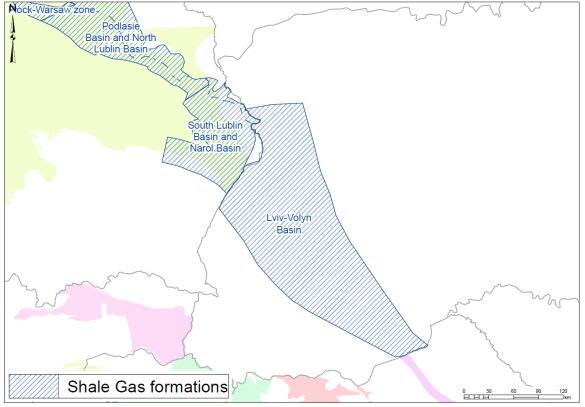


Figure A27 Overview map of the location of assessed formations

Table A26 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1054	Success factors	
Mapping status	Unknown	
Sedimentary variability	Moderate	
Structural complexity	Moderate to High	
Data availability	Moderate	
HC system	Unknown	
Maturity variability	Unknown	
Depth	Average	
Mineral composition	No data	

1062 Success factors	
------------------------	--

Mapping status	Moderate
Sedimentary variability	Moderate
Structural complexity	Moderate to High
Data availability	Moderate
HC system	Unknown
Maturity variability	Unknown
Depth	Average
Mineral composition	No data

Lower Paleozoic shales South Lublin and Narol Basin 1054

Table A27 Summary of the classification according to assessment step 3 for the individual assessment units.

1054	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	100	1	1	1	1	oil	1
Offshore	101	1	1	1	1	gas	1

Table A28 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

Т3	PL_1054	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		7759	Normal	NGS, Class 4a, GIS data
	Thickness (m)	21	34	30	Triangular	NGS
	Depth (m)	2000	4300	2995	Triangular	NGS
	Porosity (%)	4	5	4.5	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	0.05	0.15	0.06	Triangular	NGS
	Expansion Factor (Bg)	212	294	243	Triangular	NGS
	Bo (oil)	0.8	1.1	1	Triangular	NGS
	Pressure (psi)	2900	6300	4400	Triangular	NGS
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.4	2.79	2.67	Triangular	NGS
	Temperature (°C)	60	110	80	Triangular	NGS

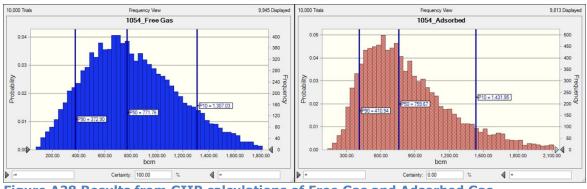


Figure A28 Results from GIIP calculations of Free Gas and Adsorbed Gas

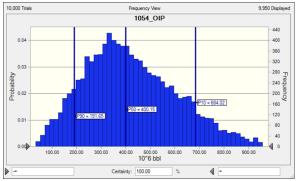


Figure A29 Results from the OIIP calculation

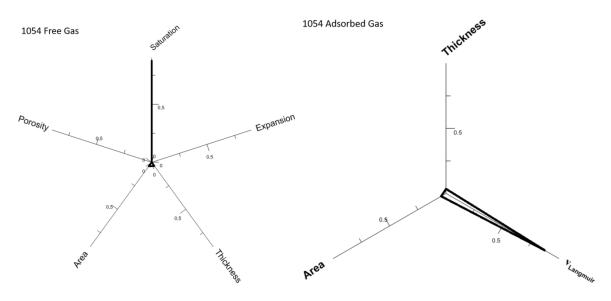
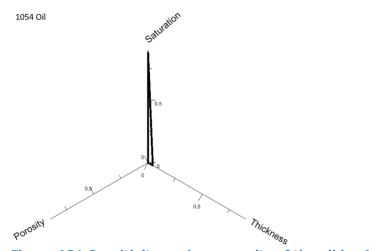



Figure A30 Sensitivity analyses results of the free gas and adsorbed calculations.

Black Shales of the Lviv-Volyn Basin 1062

Table A29 Summary of the classification according to assessment step 3 for the individual assessment units.

1062	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	120	1	1	3	2	gas	3

Table A30 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

Т3	UA_1062	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=25%		30611	Normal	NGS, Class 5a, GIS data
	Thickness (m)	17.5	63.925	40.725	Triangular	NGS, with N/G 2.5%
	Depth (m)	261.4	5120	2821.4	Triangular	NGS
	Porosity	0.013	0.061	0.0435	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	SD=0.083		0.044	Log normal	EU
	Expansion Factor	27	291	230	Triangular	EU
	Bo (oil)	0.85	1.01	0.98	Triangular	EU
	Pressure (psi)	372	4010	7277	Triangular	TNO
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.6	2.8	2.7	Triangular	NGS
	Temperature (°C)	87	8.1	159	Triangular	TNO, gradient 31

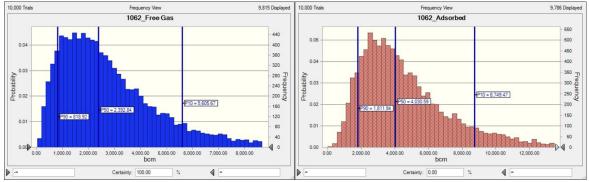


Figure A32 Results from GIIP calculations of Free Gas and Adsorbed Gas

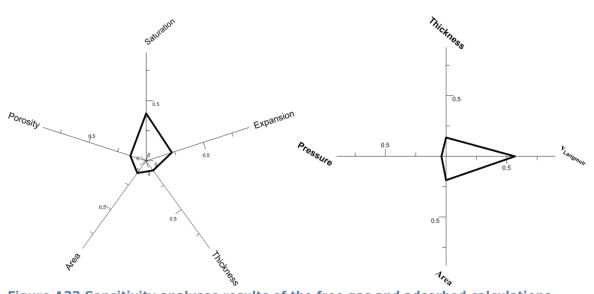


Figure A33 Sensitivity analyses results of the free gas and adsorbed calculations.

Results

Table A31 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Lower Palaeozoic shales-1054, Adsorbed	PL	410.94	759.67	1431.95
Lower Palaeozoic shales-1054, Free Gas	PL	372.90	771.76	1307.03
Black shale-1062, Adsorbed	UA	1811.94	4030.59	8749.47
Black shale-1062, Free Gas	UA	818.92	2392.84	5605.67
Total GIIP for Basin T03			7954.86	

Index	Basin	Country	Shale(s)	Age	Screening- Index (summarized in 2001)
	E		Lower Paleozoic Shales	Silurian to Lower Devonian	1056
		RO	Tandarei Graptolitic Black Shales	U Ordovician U Silurian L Devonian	1038
	BG	Upper Paleozoic shale & coal succession Trigorska & Konarska Fms	Lower carboniferous (Middle Mississippian, Upper Visean)	1057	
TA	T4 Moesian Platform RO BG	RO	Calarasi bituminous limestones	U Devonian L Carboniferous	1039
14		RO	Vlasin black shale Formation	U Carboniferous	1040
		BG	J1 shale & clay limestonesOzirovo Fm (Bucorovo & Dolnilucovt Mbs)	Jurassic (Sinemurian - Toarcian)	1058
		BG	J2 shale Etropole Fm (Stefanets Mb)	Aalenian Lower Bajocian	1059
	Kamchia Basin	BG	Ruslar Fm	Oligocene	1060

T04 - Moesian Platform – Lower and Upper Paleozoic Shales

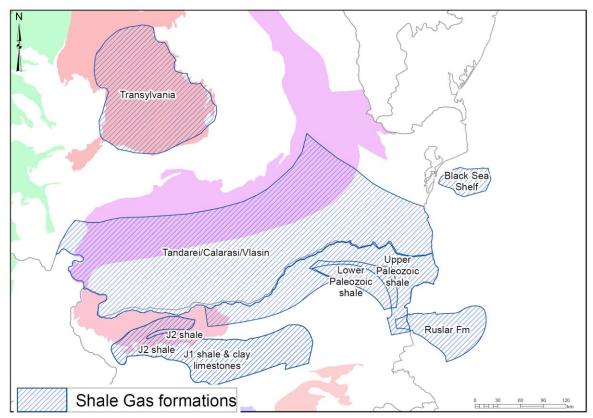


Figure A34 Overview map of the location of assessed formations

Table A32 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1038	Success factors
Mapping status	Moderate
Sedimentary variability	Moderate
Structural complexity	High
Data availability	Moderate
HC system	Unknown
Maturity variability	High
Depth	Average
Mineral composition	No data

1039	Success factors			
Mapping status	Moderate			
Sedimentary variability	Moderate			
Structural complexity	High			
Data availability	Moderate			
HC system	Unknown			
Maturity variability	Unknown			
Depth	Unknown			
Mineral composition	No data			

1040	Success factors			
Mapping status	Moderate			
Sedimentary variability	Moderate			
Structural complexity	Moderate to High			
Data availability	Moderate			
HC system	Unknown			
Maturity variability	Unknown			
Depth	Unknown			
Mineral composition	No data			

1056	Success factors			
Mapping status	Moderate			
Sedimentary variability	Moderate			
Structural complexity	High			
Data availability	Moderate			
HC system	Unknown			
Maturity variability	High			
Depth	Average			
Mineral composition	No data			

1057 Success factors

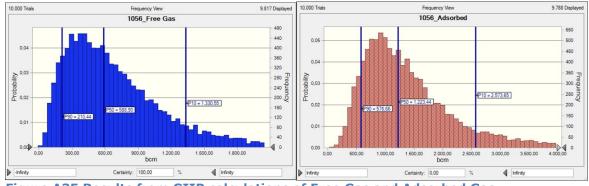
Mapping status	Moderate		
Sedimentary variability	Moderate		
Structural complexity Moderate to High			
Data availability	Good		
HC system	Unknown		
Maturity variability	High		
Depth	Average		
Mineral composition	No data		

1058	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Good
HC system	Proven
Maturity variability	Moderate
Depth	Average
Mineral composition	No data

1059	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Good
HC system	Possible
Maturity variability	Moderate
Depth	Average
Mineral composition	Favourable

1060	Success factors			
Mapping status	Moderate			
Sedimentary variability	Moderate			
Structural complexity	Low			
Data availability	Good			
HC system	Proven			
Maturity variability	Moderate			
Depth	Shallow to deep			
Mineral composition	No data			

Lower Paleozoic Shales 1056


Table A33 Summary of the classification according to assessment step 3 for the individual assessment units.

1056	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	8	1	1	1	2	gas	2

Table A34 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

BG_1056	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=25%		3652	Normal	NGS, Class 5a, GIS
Thickness (m)	60	170	108	Normal	NGS
Depth (m)	800	>3500	2200	Triangular	NGS
Porosity	0.005	0.04	0.02	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	95	246	210	Triangular	TNO with NGS gradient
Bo (oil)	-	-	-	-	-
Pressure (psi)	1300	6400	4200	Triangular	NGS
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.3	2.5	2.4	Triangular	NGS
Temperature (°C)	40	150	100	Triangular	NGS

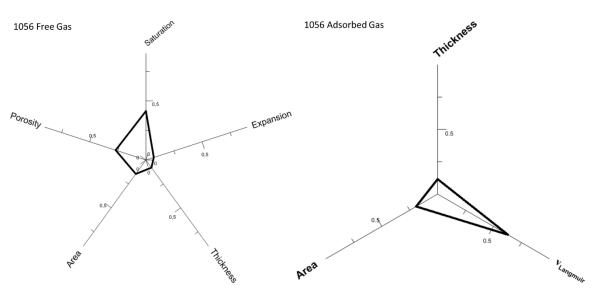


Figure A36 Sensitivity analyses results of the free gas and adsorbed calculations.

Tandarei Graptolitic Black Shales 1038

Table A35 Summary of the classification according to assessment step 3 for the individual assessment units.

1038	Object ID	Depth	Maturity	тос	Thickness Gas/Oil	Class
Onshore	137	1	1	3	1	3

Table A36 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T4a	RO_1038	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=25%		30000	Normal	NGS, Class 5a
	Thickness (m)	4.8	37.75	20.1	Triangular	TNO & NGS with N/G 5%
	Depth (m)	2000	4250	3350	Triangular	NGS
	Porosity (%)	1.5	11.8	4.88	Triangular	EU
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	-	-	-	-	-
	Expansion Factor (Bg)	167	245	208	Triangular	TNO
	Bo (oil)	-	-	-	-	-
	Pressure (psi)	2842	6041	4762	Triangular	TNO, hydrostatic
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.1	2.71	2.45	Triangular	NGS
						TNO with gradient 31
	Temperature (°C)	72	142	114	Triangular	degc/km

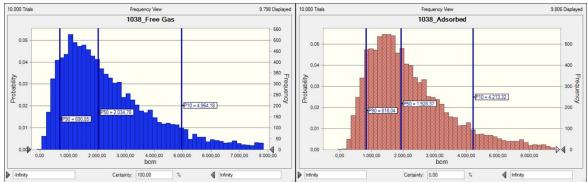


Figure A37 Results from GIIP calculations of Free Gas and Adsorbed Gas

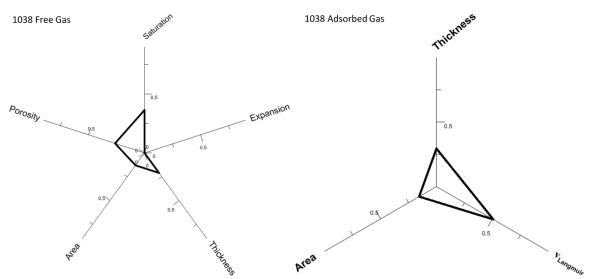


Figure A38 Sensitivity analyses results of the free gas and adsorbed calculations.

Upper Paleozoic Shale 1057

Table A37 Summary of the classification according to assessment step 3 for the individual assessment units.

1057	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	9	1	1	1	2	gas	2

BG_1057	Min	Max	Mean	Dist. Curve	Source
					NGS, Class 4a, GIS, 80%
Area (km2)	SD=10%		10082	Normal	gas 20% oil
Thickness (m)	0	250	90	Triangular	NGS
Depth (m)	850	3400	2000	Triangular	NGS
Porosity	0.005	0.05	0.025	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	85	228	199	Triangular	TNO
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	1300	6800	4500	Triangular	NGS
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.3	2.45	2.35	Triangular	NGS
Temperature (°C)	42	170	110	Triangular	NGS

Table A38 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

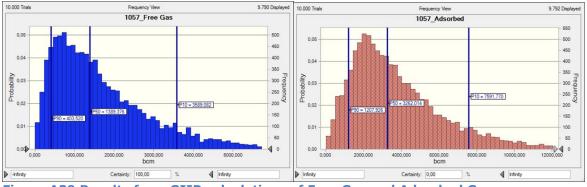


Figure A39 Results from GIIP calculations of Free Gas and Adsorbed Gas

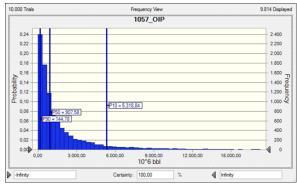


Figure A40 Results from the OIIP calculation

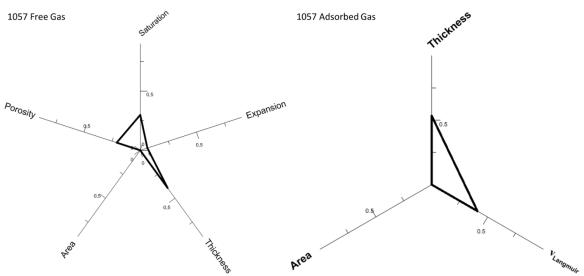


Figure A41 Sensitivity analyses results of the free gas and adsorbed calculations.

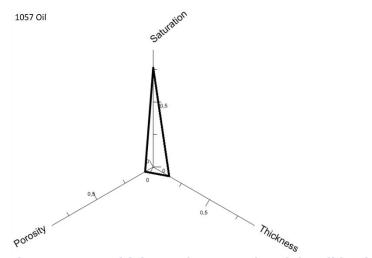


Figure A42 Sensitivity analyses results of the oil in place calculation

Calarasi bituminous limestones 1039

Table A39 Summary of the classification according to assessment step 3 for the individual assessment units.

1039	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	126	No data	3	3	2		No

As the amount of data proved to be to scarce no calculations will be performed.

Vlasin Black Shale Formation 1040

Table A40 Summary of the classification according to assessment step 3 for theindividual assessment units.

1040	Object ID	Depth	Maturity	тос	Thickness Gas/Oil	Class
Onshore	136	No data	3	1	1	No

As no depth indication is given no calculations will be performed.

J1 Shale 1058

Table A41 Summary of the classification according to assessment step 3 for the individual assessment units.

1058	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	10	1	1	3	1	gas	3

Table A42 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

BG_1058	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		12582	Normal	NGS, Class 4a, GIS
Thickness (m)	0	200	55	Triangular	NGS with N/G 10%
Depth (m)	2600	4400	3500	Triangular	NGS
Porosity (%)	0.002	0.055	0.03	Triangular	NGS
Saturation gas	0.02	0.1	0.05	Triangular	NGS
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	198	295	241	Triangular	TNO
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	3700	6800	5200	Triangular	EU
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.25	2.5	2.4	Triangular	NGS
Temperature (°C)	95	150	120	Triangular	NGS

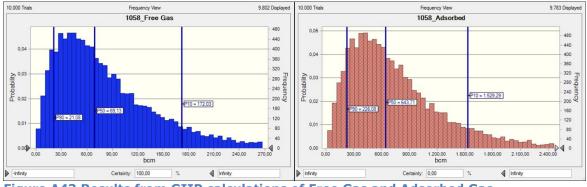


Figure A43 Results from GIIP calculations of Free Gas and Adsorbed Gas

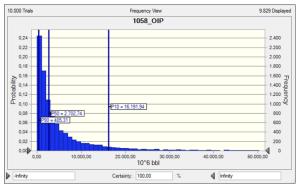


Figure A44 Results from GIIP calculations of Free Gas and Adsorbed Gas

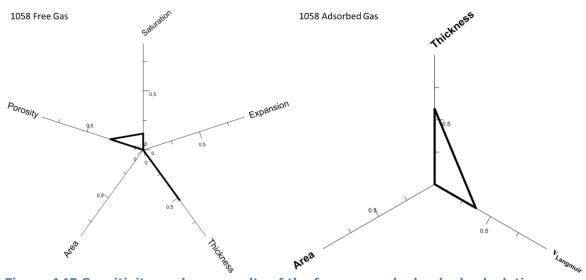


Figure A45 Sensitivity analyses results of the free gas and adsorbed calculations.

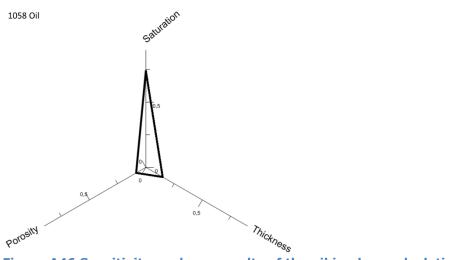


Figure A46 Sensitivity analyses results of the oil in place calculation

J2 Shale 1059

Table A43 Summary of the classification according to assessment step 3 for the individual assessment units.

1059	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	11	1	1	3	1	gas	3

Table A44 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

BG_1059	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		12582	Normal	NGS, Class 4a, GIS data
Thickness (m)	0	200	50	Triangular	NGS with N/G 10%
Depth (m)	2500	4400	3350	Triangular	NGS
Porosity (%)	0.2	4.5	0.0275	Triangular	NGS
Saturation gas	-	-	-	-	-
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	-	-	-	-	-
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	3550	6000	4800	Triangular	NGS
Langmuir Pressure (psi)	-	-	-	-	-
Langmuir Volume (scf/ton)	-	-	-	-	-
Density (g/cm3)	2.25	2.4	2.3	Triangular	NGS
Temperature (°C)	90	130	110	Triangular	NGS

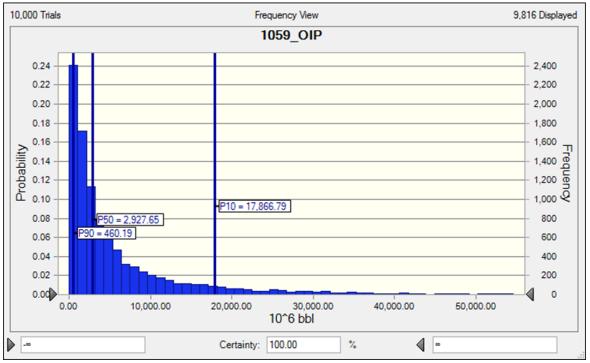
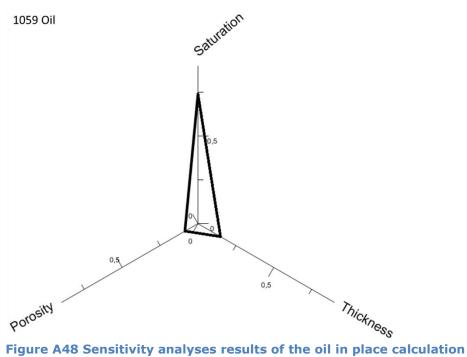



Figure A47 Results from the OIIP calculation

Figure A46 Sensitivity analyses results of the off in place calculation

Ruslar Formation of the Kamchia Basin 1060

Table A45 Summary of the classification according to assessment step 3 for the individual assessment units.

1060	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	12	2	No	1	2	gas	No
Offshore	13	1	2	1	2	gas	2

As the formation is immature this formation is not calculated.

Results

Table A46 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Tandarei graptolitic black shales-1038, Adsorbed	RO	818.04	1928.37	4213.32
Tandarei graptolitic black shales-1038, Free Gas	RO	690.85	2034.78	4964.18
Total GIIP for Basin T4a			3963.16	

Table A47 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Lower Paleozoic shales-1056, Adsorbed	BG	576.66	1223.44	2573.65
Lower Paleozoic shales-1056, Free Gas	BG	210.44	588.90	1330.55
Trigorska & Konarska Fms-1057, Adsorbed	BG	1207.92	3262.01	7591.77
Trigorska & Konarska Fms-1057, Free Gas	BG	403.52	1389.38	3589.08
J1 shale-1058, Adsorbed	BG	226.08	643.71	1529.29
J1 shale-1058, Free Gas	BG	21.08	69.13	172.03
Total GIIP for Basin T4b			7176.57	

Table A48 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Trigorska & Konarska Fms-1057, Oil	BG	144.78	907.58	5318.84
J1 shale-1058, Oil	BG	405.31	2702.74	16191.94
J2 shale-1059, Oil	BG	460.19	2927.65	17866.79
Total OIIP for Basin T4b			6537.98	

T05 - Ukraine – Dnieper-Donets Basin Lower Carboniferous Black Shales

Index	Basin	Country	Shale(s)	Age	Screening- Index
Т5	Dnieper- Donets Basin	UA	Rudov Beds (Upper Visean Shales) (Lower Serpukhovian)	Upper Visean (Upper Visean) (Serpukhovian)	1043

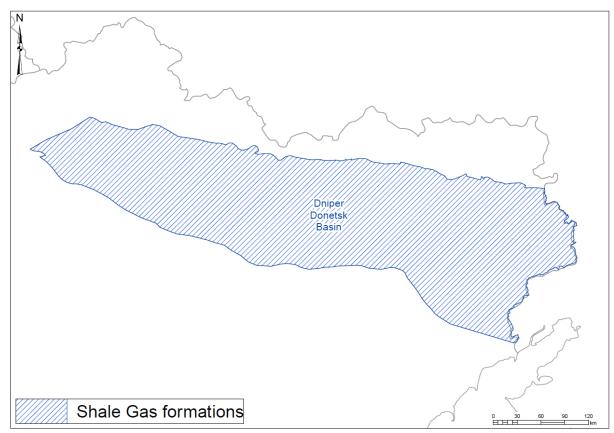


Figure A49 Overview map of the location of assessed formations

Table A49 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1043	Success factors
Mapping status	Moderate
Sedimentary variability	Low to Moderate
Structural complexity	Low to Moderate
Data availability	Good
HC system	Proven
Maturity variability	Moderate
Depth	Average
Mineral composition	Poor

Rudov Beds Ukraine 1043

Table A50 Summary of the classification according to assessment step 3 for the individual assessment units.

1043	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	119	2	1	1	2	gas	2

Table A51 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T5	UA_1043	Min	Max	Mean	Dist. Curve	Source
						NGS, Class 5a, no GIS,
	Area (km2)	SD=25%		10500	Normal	50% oil 50% gas
	Thickness (m)	5	140	285	Triangular	NGS, with N/G 5%
	Depth (m)	100	8000	4500	Triangular	NGS
	Porosity	0.02	0.07	0.03	Triangular	NGS
	Saturation gas	0.18	0.23	0.2	Triangular	NGS
	Saturation oil	SD=0.083		0.044	Log normal	EU
	Expansion Factor (Bg)	9	385	282	Triangular	TNO
	Bo (oil)	0.85	1.01	0.98	Triangular	EU
	Pressure (psi)	142	15919	6396	Triangular	TNO with NGS gradient
	Langmuir Pressure (psi)	320	630	395	Log normal	EU
	Langmuir Volume (scf/ton)	15	55	30	Log normal	EU
	Density (g/cm3)	2.4	2.79	2.67	Triangular	NGS
	Temperature (°C)	28	212	119	Triangular	NGS

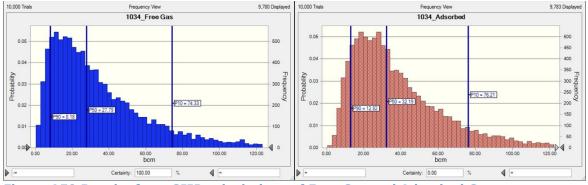


Figure A50 Results from GIIP calculations of Free Gas and Adsorbed Gas

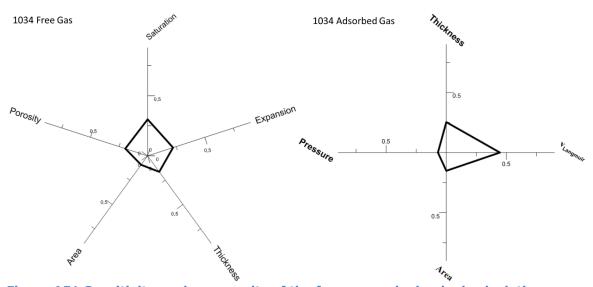


Figure A51 Sensitivity analyses results of the free gas and adsorbed calculations.

Results

Table A52 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
East Ukraine shales-1043, Adsorbed	UA	957.36	2592.47	6314.52
East Ukraine shales-1043, Free Gas	UA	257.33	933.23	2410.66
Total GIIP for Basin T03			3525.70	

Table A53 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
East Ukraine shales-1043, Oil	UA	411.50	2781.81	17168.89
Total OIIP for Basin T03			2781.81	

T06 - Poland – Lower Carboniferous shales of the Fore-Sudetic Monocline Basin

Index	Basin	Country	Shale(s)	Age	Screening- Index
Т6	Fore-Sudetic Monocline Basin	PL	Lower Carboniferous shales and siltstones	Lower Carboniferous	1055

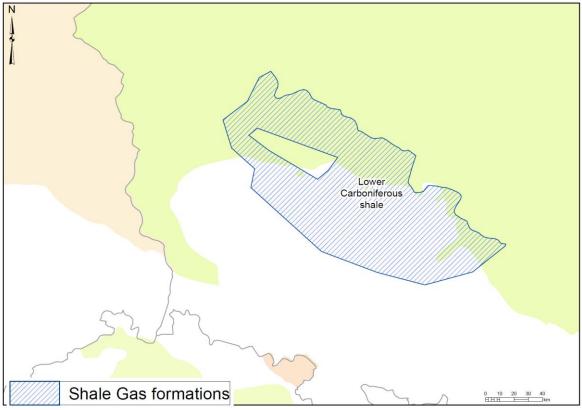


Figure A52 Overview map of the location of assessed formations

Table A54 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1055	Success factors
Mapping status	Poor
Sedimentary variability	Unknown
Structural complexity	Moderate to High
Data availability	Moderate
HC system	Proven
Maturity variability	Moderate
Depth	Average
Mineral composition	Unknown

Lower Carboniferous shales 1055

Table A55 Summary of the classification according to assessment step 3 for the individual assessment units.

1055	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	102	1	1	1	1	gas	1

Table A56 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

Т6	PL_1055	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		13179	Normal	NGS, Class 4a, GIS data
	Thickness (m)	20	100	55	Triangular	NGS
	Depth (m)	1700	3500	2500	Triangular	NGS
	Porosity (%)	1.4	8.5	3.6	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	NGS
	Saturation oil	-	-	-	-	-
	Expansion Factor (Bg)	217	263	204	Triangular	NGS
	Bo (oil)	-	-	-	-	-
	Pressure (psi)	2800	5700	4000	Triangular	NGS
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.5	2.7	2.6	Triangular	NGS
	Temperature (°C)	65	115	85	Triangular	NGS

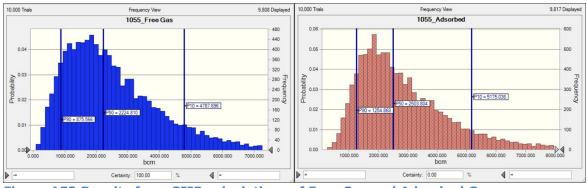


Figure A53 Results from GIIP calculations of Free Gas and Adsorbed Gas

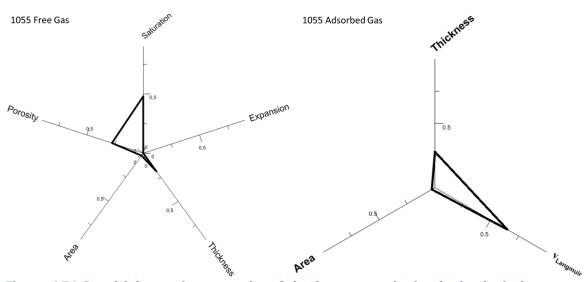


Figure A54 Sensitivity analyses results of the free gas and adsorbed calculations.

Results

Table A57 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Upper Palaeozoic shales-1055, Adsorbed	PL	1254.87	2503.80	5175.04
Upper Palaeozoic shales-1055, Free Gas	PL	875.57	2224.81	4787.70
Total GIIP for Basin T6			4728.61	

Index	Basin	Country	Shale(s)	Age	Screening- Index
T7a	Pannonia	HU	Kössen Marl	Norian, Late Triassic	1049
T7b	Pannonia	HU	Tard Clay	Oligocene	1050
T7c	Pannonia, Mura-Zala	SLO	Haloze-Špilje Fm. Shale	Neogene	1066&1068 (gas), 1067&1069 (oil)

T07 – Pannonian Basin – Hungary and Slovenia

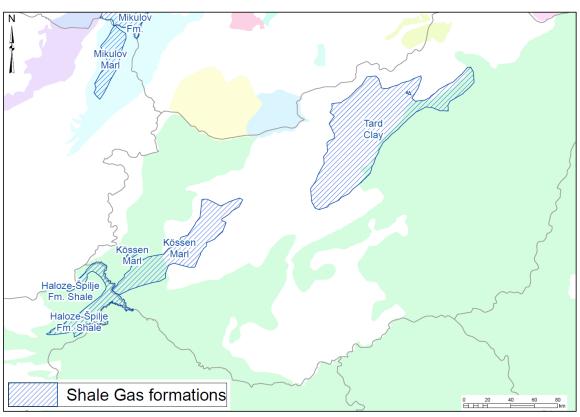


Figure A55 Overview map of the location of assessed formations

Table A58 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1049	Success factors
Mapping status	Good
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Moderate
HC system	Proven
Maturity variability	Moderate
Depth	Average
Mineral composition	Unknown to Favourable

1050	Success factors
Mapping status	Good
Sedimentary variability	Low
Structural complexity	Low
Data availability	Moderate
HC system	Possible
Maturity variability	Moderate
Depth	Average
Mineral composition	Unknown

1066, 1067, 1068, 1069	Success factors	
Mapping status	Good	
Sedimentary variability	Moderate to High	
Structural complexity	Moderate	
Data availability	Good	
HC system	Possible	
Maturity variability	Moderate	
Depth	Average	
Mineral composition	Unknown	

Kössen Marl Hungary 1049

Table A59 Summary of the classification according to assessment step 3 for the individual assessment units.

1049	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	72	1	1	1	2	oil	2
Onshore	127	1	1	1	2	gas	2

Table A60 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T7a	HU_1049	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=7.5%		720	Normal	NGS, Class 3a, GIS data
	Thickness (m)	17	575	200	Triangular	NGS
	Depth (m)	2100	5000	3250	Triangular	NGS
	Porosity (%)	1.2	2.2	2	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	SD=0.083		0.044	Log normal	EU
	Expansion Factor (Bg)	211	217	212	Triangular	TNO, NGS temp, hydro
	Bo (oil)	1.055	1.06	1.05	Triangular	NGS
	Pressure (psi)	4264	7107	5686	Triangular	TNO, hydrostatic
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.4	2.5	2.7	Triangular	NGS
	Temperature (°C)	100	250	165	Triangular	NGS

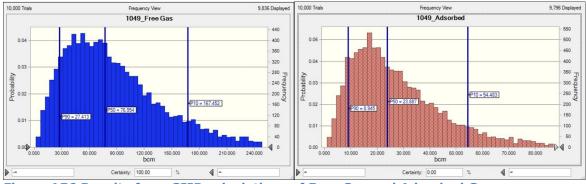
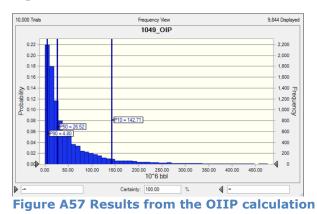



Figure A56 Results from GIIP calculations of Free Gas and Adsorbed Gas

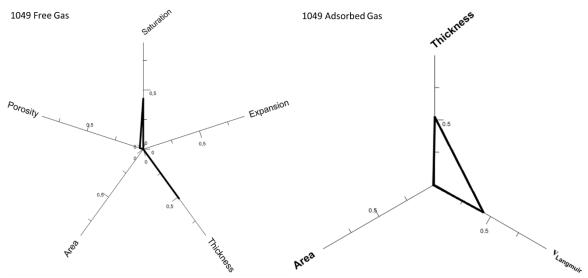


Figure A58 Sensitivity analyses results of the free gas and adsorbed calculations.

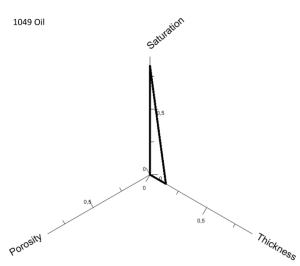


Figure A59 Sensitivity analyses results of the oil in place calculation

Tard Clay Hungary 1050

Table A61 Summary of the classification according to assessment step 3 for the individual assessment units.

1050	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	73	1	1	1	1	oil	1
Onshore	128	1	1	1	1	gas	2

Table A62 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T7b	HU_1050	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=7.5%		1900	Normal	NGS, Class 3a, GIS data
	Thickness (m)	3.2	80	27	Triangular	NGS
	Depth (m)	3000	4500	3750	Triangular	NGS
	Porosity (%)	5.6	24.3	10	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	SD=0.083		0.044	Log normal	EU
	Expansion Factor (Bg)	183	204	193	Triangular	TNO, NGS temp, hydro
	Bo (oil)				Triangular	NGS
	Pressure (psi)	3045	3916	3480	Triangular	TNO
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.4	2.7	2.5	Triangular	NGS
	Temperature (°C)	70	200	130	Triangular	NGS

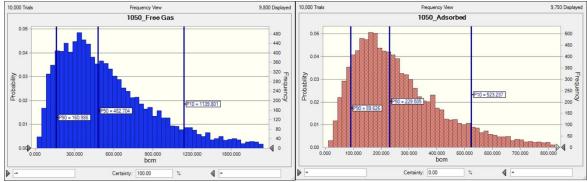


Figure A60 Results from GIIP calculations of Free Gas and Adsorbed Gas

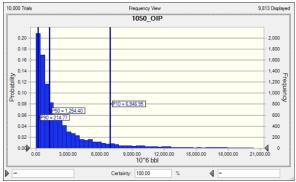
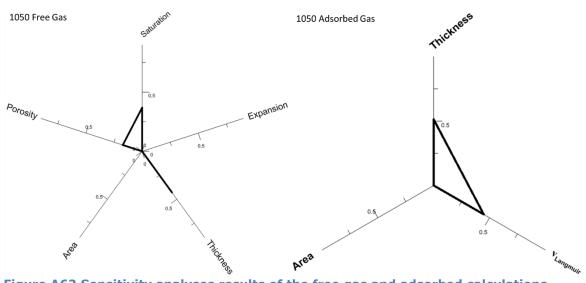



Figure A61 Results from the OIIP calculation

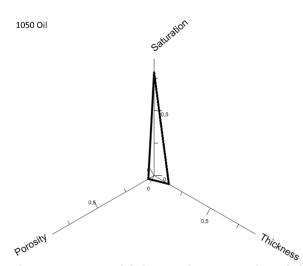


Figure A63 Sensitivity analyses results of the oil in place calculation

Haloze-Špilje Formation Slovenia 1066 and 1067

1068 and 1069 classified as sandstones and will therefore not be calculated as they not fall under the scope of this research.

Table A63 Summary of the classification according to assessment step 3 for the individual assessment units.

1066	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	114	1	1	3	1	gas	3
Onshore	115	1	1	3	2	gas	3

Table A64 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T7c	SI_1066	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=7.5%		857	Normal	NGS, Class 3a, GIS data
	Thickness (m)	8	75	68.5	Triangular	NGS, with N/G 10%
	Depth (m)	1500	4300	2900	Triangular	NGS
	Porosity (%)	1	5	2	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	-	-	-	-	-
	Expansion Factor (Bg)	127	288	186	Triangular	TNO, NGS temp, hydro
	Bo (oil)	-	-	-	-	-
	Pressure (psi)	3000	6000	4500	Triangular	TNO, hydrostatic
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.1	2.5	2.3	Triangular	NGS
	Temperature (°C)	70	190	130	Triangular	NGS

Table A65 Summary of the classification according to assessment step 3 for the individual assessment units.

1067	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	116, 117, 118	1	1	3	2	oil	3

Table A66 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T7c	SI_1067	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		1153	Normal	NGS, Class 3a, GIS data
	Thickness (m)	13	78	66	Triangular	NGS, with N/G 10%
	Depth (m)	1500	4000	2800	Triangular	NGS
	Porosity (%)	1	5	2	Triangular	NGS
	Saturation gas	-	-	-	-	-
	Saturation oil	SD=0.083		0.044	Log normal	EU
	Expansion Factor (Bg)	-	-	-	-	-
	Bo (oil)	0.85	1.01	0.98	Triangular	EU
	Pressure (psi)	3000	6000	4500	Triangular	NGS
	Langmuir Pressure (psi)	-	-	-	-	-
	Langmuir Volume (scf/ton)	-	-	-	-	-
	Density (g/cm3)	2.1	2.5	2.3	Triangular	NGS
	Temperature (°C)	70	190	130	Triangular	NGS

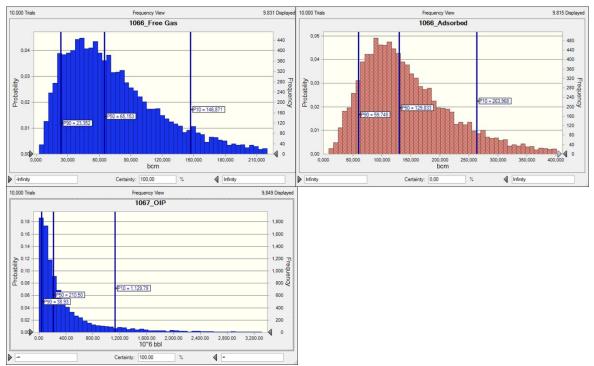


Figure A64 Results from GIIP calculations of Free Gas and Adsorbed Gas and the OIIP calculation

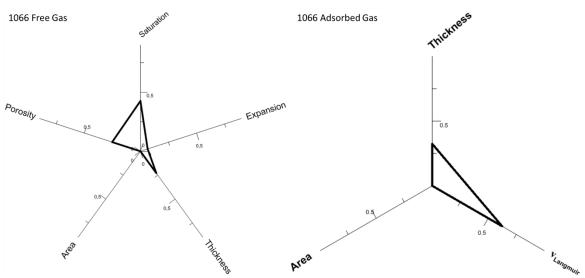


Figure A65 Sensitivity analyses results of the free gas and adsorbed calculations.

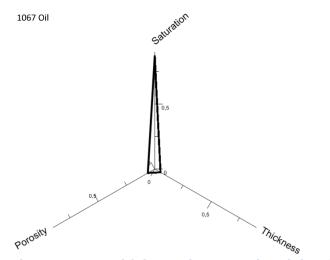


Figure A66 Sensitivity analyses results of the oil in place calculation

Results

Table A67 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Kössen Marl-1049, Adsorbed	HU	8.94	23.89	54.48
Kössen Marl-1049, Free Gas	HU	27.41	76.95	167.45
Tard Clay-1050, Adsorbed	HU	89.63	229.50	523.24
Tard Clay-1050, Free Gas	HU	160.99	482.70	1139.80
Haloze-Špilje Fm. Shale-1066, Adsorbed	SL	59.75	129.83	263.97
Haloze-Špilje Fm. Shale-1066, Free Gas	SL	23.35	65.15	146.87
Total GIIP for Basin T7			1008.03	

Table A68 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Kössen Marl-1049, Oil	HU	4.80	26.52	142.71
Tard Clay-1050, Oil	HU	214.77	1254.40	6946.95
Haloze-Špilje Fm. Shale-1067, Oil	SL	38.93	210.50	1129.79
Total OIIP for Basin T7			1491.42	

T08 - Vienna Basin – Mikulov Marl

Index	Basin	Country	Shale(s)	Age	Screening- Index
то	Vienna Basin	A	Mikulov Marl Fm. (Mergelsteinserie)	U. Jurassic (Oxfordian – Kimmeridgean)	1018
Т8	SE Bohemian Massif	CZ	Mikulov Fm.	U. Jurassic - Oxfordian	1063

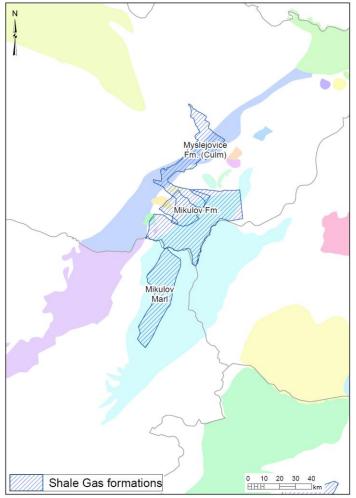


Figure A67 Overview map of the location of assessed formations

Table A69 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1018	Success factors	
Mapping status	Good	
Sedimentary variability	Low	
Structural complexity	Moderate	
Data availability	Good	
HC system	Proven	
Maturity variability	Moderate	
Depth	Average to deep	
Mineral composition	Unknown	

1063	Success factors
Mapping status	Good
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Good
HC system	Proven
Maturity variability	Moderate
Depth	Average to deep
Mineral composition	Unknown

Mikulov Marl Formation Austria 1018

Table A70 Summary of the classification according to assessment step 3 for the individual assessment units.

1018	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	1	1	1	1	2	oil	2
Onshore	2, 3	2	1	1	2	gas	2

Table A71 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

Т8	AT_1018	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=10%		726	Normal	NGS, Class 4a, GIS
	Thickness (m)	150	900	525	Triangular	NGS
	Depth (m)	4000	7000	5500	Triangular	NGS
	Porosity (%)	0	9	5	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	SD=0.083		0.0444	Log normal	EU
	Expansion Factor (Bg)	255	300	283	Triangular	TNO
	Bo (oil)	0.85	1.01	0.98	Triangular	EU
	Pressure (psi)	5700	9964	7832	Triangular	TNO, hydrostatic
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.15	2.7	2.24	Triangular	EU
	Temperature (°C)	126	213	170	Triangular	TNO with NGS gradient

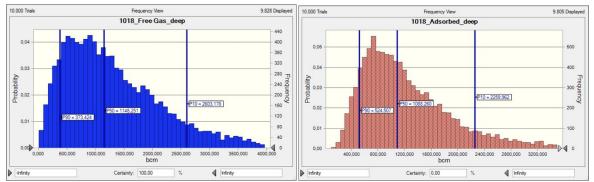


Figure A68 Results from GIIP calculations of Free Gas and Adsorbed Gas

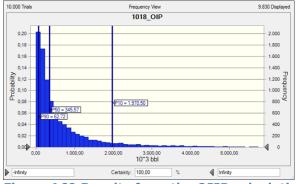


Figure A69 Results from the OIIP calculation

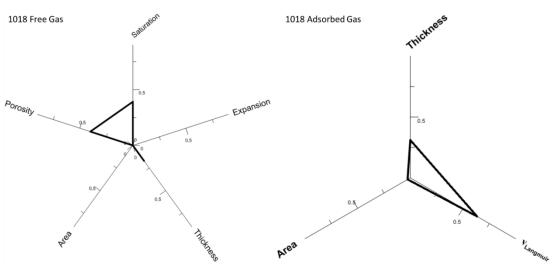


Figure A70 Sensitivity analyses results of the free gas and adsorbed calculations.

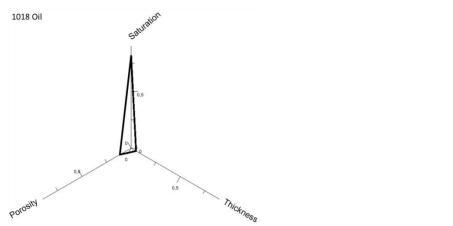
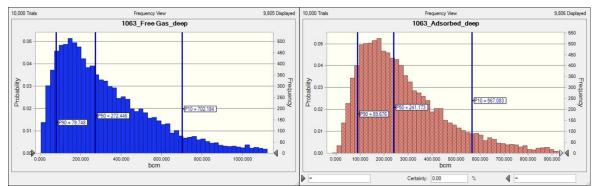


Figure A71 Sensitivity analyses results of the oil in place calculation

Mikulov Marl Formation Czech Republic 1063


Table A72 Summary of the classification according to assessment step 3 for the individual assessment units.

1063	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	129	1	1	1	2	Oil/gas	2

Table A73 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

Т8	CZ_1063	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=25%		1483	Triangular	NGS, GIS, Class 5a
	Thickness (m)	3	150	65	Triangular	NGS, with N/G 10%
	Depth (m)	3000	8000	5500	Triangular	NGS
	Porosity (%)	0.5	8.2	4.35	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	SD=0.083		0.0444	Log normal	EU
	Expansion Factor (Bg)	188	323	299	Triangular	TNO, NGS temp hydro
	Bo (oil)	0.85	1.01	0.98	Triangular	EU
	Pressure (psi)	4786	12763	8775	Triangular	TNO with NGS gradient
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.41	2.63	2.52	Triangular	NGS
	Temperature (°C)	75	185	130	Triangular	NGS

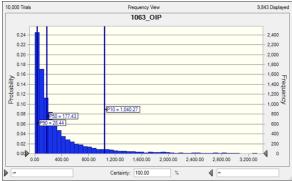


Figure A73 Results from the OIIP calculation

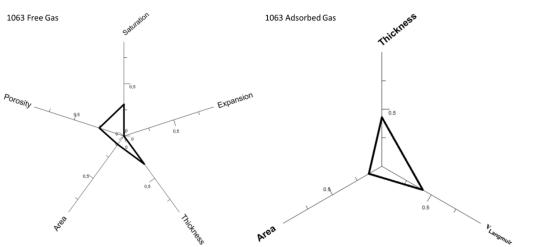


Figure A74 Sensitivity analyses results of the free gas and adsorbed calculations.

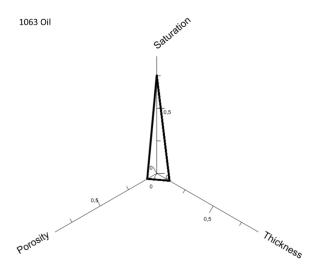


Figure A75 Sensitivity analyses results of the oil in place calculation

Results

Table A74 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Mikulov Marl-1063, Adsorbed	CZ	89.68	241.17	567.08
Mikulov Marl-1063, Free Gas	CZ	79.75	272.45	702.18
Total GIIP for Basin T8			513.62	

Table A75 Overview of the results of the GIIP calculation for the deep formations

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Mikulov Marl-1018, Adsorbed-deep	A, CZ	524.51	1088.26	2259.96
Mikulov Marl-1018, Free Gas-deep	A, CZ	373.42	1148.25	2603.18
Total deep GIIP for Basin T8			2236.51	

Shale	Country	P90	P50 (10^6 bbl)	P10
Mikulov Marl-1018, Oil	A	62.72	345.57	1970.50
Mikulov Marl-1063, Oil	CZ	28.44	177.43	1040.27
Total OIIP for Basin T8			523.00	

T09 - Lombardy Basin Italy – Triassic – Early Cretaceous shales

Index	Basin	Country	Shale(s)	Age	Screening- Index
		It	Various Ladinian shales	Ladinian	1005
Т9	Lombardy Basin	It	Argillite di Riva di Solto Fm	Norian	1006
		It	Marne di Bruntino formation	Early Cretaceous	1007

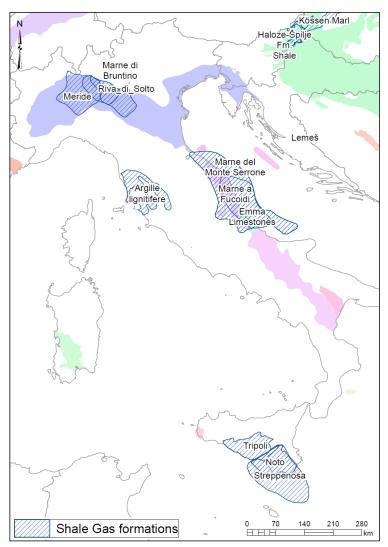


Figure A76: Overview map of the location of assessed formations

Table A77: Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1005, 1006, 1007	Success factors	
Mapping status	Poor	
Sedimentary variability	High	
Structural complexity	High	
Data availability	Poor	
HC system	Proven	
Maturity variability	High	
Depth	Average to deep	
Mineral composition	No data	

Ladinian shales 1005

Table A78 Summary of the classification according to assessment step 3 for the individual assessment units.

1005	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	74	2	1	No	1	oil	No

No calculations are performed as the TOC content of the formation is too low.

Argillite di Riva di Solto Formation 1006

Table A79 Summary of the classification according to assessment step 3 for the individual assessment units.

1006	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	75	2	3	No	2	oil	No

No calculations are performed as the TOC content of the formation is too low.

Marne di Bruntino Formation 1007

Table A80 Summary of the classification according to assessment step 3 for theindividual assessment units.

1007	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	76	1	3	No	1	oil	No

No calculations are performed as the TOC content of the formation is too low.

T10, T22, T23, T24, T33 - Northwest European Carboniferous Basin

Index	Basin	Country	Shale(s)	Age	Screening- Index
T10a	Northwest European Carboniferous Basin	NL	Geverik	Namurian A	1064
T10b	UK Carboniferous	UK	Bowland, Hodder	Carboniferous	1077
T22	Campine	В	Westphalian, Chokier	Carboniferous	1045, 1048
T23	Mons	В	Chokier	Carboniferous	1046
T24	Liege	В	Chokier	Carboniferous	1047
Т33	Northern Germany	D	Westphalian, Choiker	Carboniferous	2013

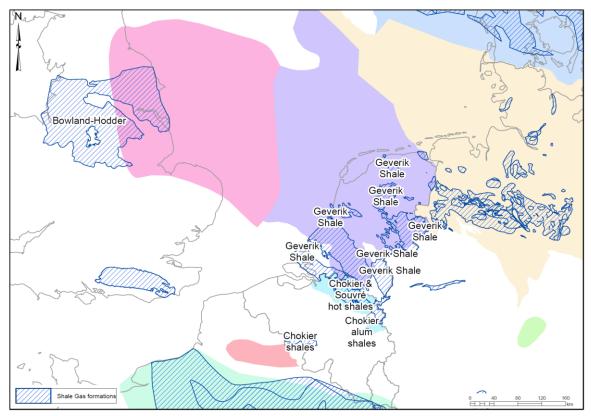


Figure A77 Overview map of the location of assessed formations

Table A81 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1064	Success factors
Mapping status	Moderate
Sedimentary variability	Moderate to High
Structural complexity	Moderate
Data availability	Moderate

HC system	Possible
Maturity variability	Moderate to High
Depth	Average to deep
Mineral composition	Favourable

1045	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Moderate
HC system	Unknown
Maturity variability	Moderate
Depth	Average
Mineral composition	Poor

1046	Success factors
Mapping status	Moderate
Sedimentary variability	High
Structural complexity	Moderate to High
Data availability	Moderate
HC system	Unknown
Maturity variability	Moderate
Depth	Average
Mineral composition	No data

1047	Success factors				
Mapping status	Moderate				
Sedimentary variability	Moderate				
Structural complexity	High				
Data availability	Moderate				
HC system	Unknown				
Maturity variability	Moderate				
Depth	Average				
Mineral composition	No data				

1048	Success factors			
Mapping status	Moderate			
Sedimentary variability	Moderate			
Structural complexity	Moderate			
Data availability	Moderate			
HC system	Unknown			
Maturity variability	Moderate			
Depth	Average			

Mineral composition	Unknown			
1077	Success factors			
Mapping status	Good			
Sedimentary variability	Moderate			
Structural complexity	Moderate			
Data availability	Good			
HC system	Proven			
Maturity variability	Moderate			
Depth	Shallow to Average			
Mineral composition	No data			

Geverik Shale Formation 1064

Table A82 Summary of the classification according to assessment step 3 for the individual assessment units.

1064	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	93	2	1	1	1	gas	2

Table A83 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

T10a	NL_1064	Min	Max	Mean	Dist. Curve	Source
	Area (km2)	SD=7.5%		8672	Normal	NGS, Class 3a
	Thickness (m)	40	80	50	Triangular	NGS
	Depth (m)	444	7000	3700	Triangular	NGS
	Porosity (%)	1	9	1.5	Triangular	NGS
	Saturation gas	0.03	0.67	0.28	Triangular	EU
	Saturation oil	-	-	-	-	-
	Expansion Factor (Bg)	12	335	212	Triangular	NGS
	Bo (oil)	-	-	-	-	-
	Pressure (psi)	646	9964	5273	Triangular	NGS
	Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
	Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
	Density (g/cm3)	2.63	2.77	2.71	Triangular	NGS
	Temperature (°C)	24	227	124	Triangular	NGS

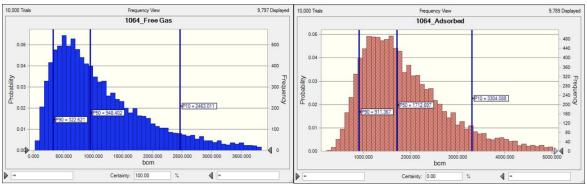


Figure A78 Results from GIIP calculations of Free Gas and Adsorbed Gas

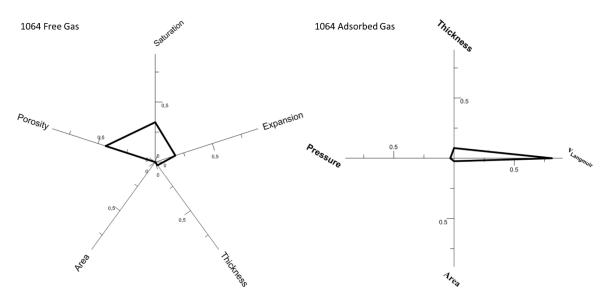


Figure A79 Sensitivity analyses results of the free gas and adsorbed calculations.

Alaunschiefer Germany 2013

German shale formations are not calculated in this study as Germany is not part of the EUOGA project. The results presented in Ladage 2016 (Schieferöl und schiefergas in Deutschland) were examined and the GIIP resource estimations turn out to be calculated in similar method as this report does as well as give similar results. The OIIP calculated are done by a different method. Because of this the GIIP estimations of the BGR are used and presented together with the EUOGA results in our reports.

Bowland Hodder 1077

Table A84 Summary of the classification according to assessment step 3 for the individual assessment units.

1077	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	122	1	1	1	2	gas	2

Table A85 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

UK_1077	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=7.5%		21611	Normal	NGS, Class 3a, GIS
Thickness (m)	0,2	355 <i>,</i> 5	86,35	Triangular	NGS, GIS, with N/G 10%
Depth (m)	0	4866	1635	Triangular	NGS, GIS
Porosity (%)	0,5	10	3	Triangular	NGS
Saturation gas	-	-	1	-	NGS, 'gas filled porosity'
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	168	253	211	Triangular	NGS min max, TNO mean
Bo (oil)	-	-	-	-	-
Pressure (psi)	2610	3915	3263	Triangular	NGS
Langmuir Pressure (psi)	2,5	10	6,25	Triangular	NGS
Langmuir Volume (scf/ton)	18	71	44,5	Triangular	NGS
Density (g/cm3)	2,55	2,65	2,6	Triangular	NGS
					TNO, temp gradient
Temperature (°C)	10	161	61	Triangular	31c/km

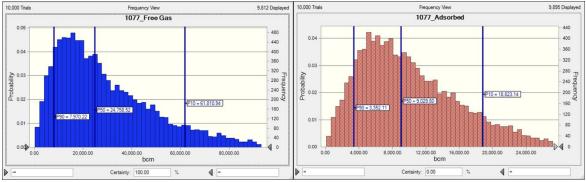


Figure A80 Results from GIIP calculations of Free Gas and Adsorbed Gas

Special case; both porosity and saturation is taken from US analogues. Because of this the resources estimates gives very high results. When using EUOGA means for the porosity and saturation total volumes reduces by 60%, a thing to keep in mind.

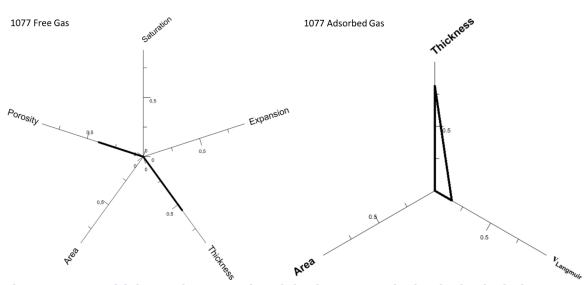


Figure A81 Sensitivity analyses results of the free gas and adsorbed calculations.

Westphalian Chokier 1045 and 1048

Table A86 Summary of the classification according to assessment step 3 for the individual assessment units.

1045	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	4	1	1	1	1	gas	1

Table A87 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

BE_1045	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		708	Normal	NGS, Class 4a, GIS data
Thickness (m)	15	45	30	Triangular	NGS
Depth (m)	1500	2237	1869	Triangular	NGS
Porosity (%)	2	6	4	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
					TNO, NGS temp, hydro
Expansion Factor (Bg)	127	199	170	Triangular	press
Bo (oil)	-	-	-	-	-
Pressure (psi)	2219	3353	2786	Triangular	NGS
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	1.95	2.8	2.48	Triangular	NGS
Temperature (°C)	52.5	71	61.75	Triangular	NGS

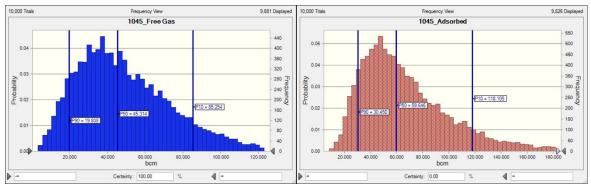


Figure A82 Results from GIIP calculations of Free Gas and Adsorbed Gas

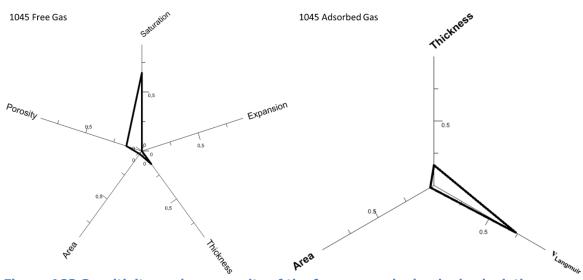


Figure A83 Sensitivity analyses results of the free gas and adsorbed calculations.

Table A88 Summary of the classification according to assessment step 3 for the individual assessment units.

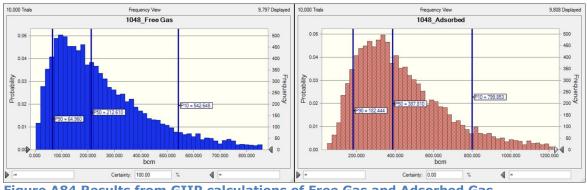

1048	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	133	1	1	1	2	gas	2

Table A89 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

BE_1048	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		1713	Normal	NGS, Class 4a, GIS data
Thickness (m)	70	120	120	Triangular	NGS
Depth (m)	1500	5286	1838	Triangular	NGS
Porosity (%)	0.1	7.6	1.59	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)				Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	1140	1700	1420	Triangular	NGS
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	SD=0.12		2.61	Normal	NGS
Temperature (°C)	67	100	83.5	Triangular	NGS

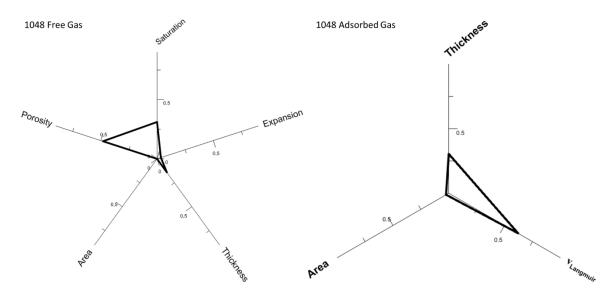


Figure A85 Sensitivity analyses results of the free gas and adsorbed calculations.

Mons Chokier 1046

Table A90 Summary of the classification according to assessment step 3 for the individual assessment units.

1046	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	5	1	3	3	1	gas	3

Table A91 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

BE_1046	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		466	Normal	NGS, Class 4a, GIS
Thickness (m)	55	80	75	Triangular	NGS
Depth (m)	1500	2000	1750	Triangular	NGS
Porosity (%)	0.1	7.6	1.95	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	127	167	147	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	2147	2857	2502	Triangular	TNO, hydrostatic gradient
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	SD=0.12		2.61	Normal	NGS
Temperature (°C)	46.5	63	54.25	Triangular	NGS and TNO

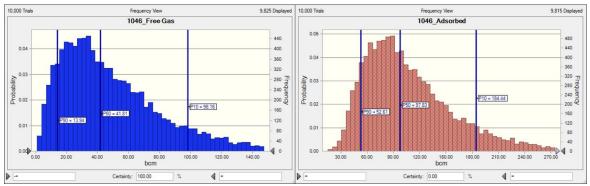


Figure A86 Results from GIIP calculations of Free Gas and Adsorbed Gas

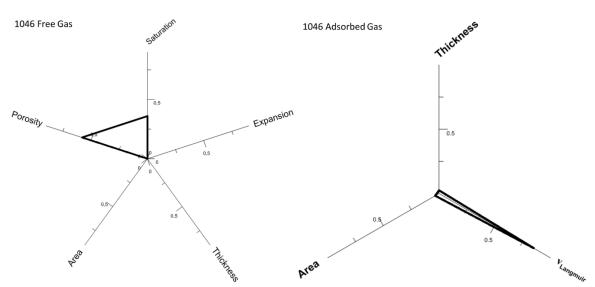


Figure A87 Sensitivity analyses results of the free gas and adsorbed calculations.

Liege Chokier 1047

Table A92 Summary of the classification according to assessment step 3 for the individual assessment units.

1047	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	6	1	3	3	2	gas	3

Table A93 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

BE_1047	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		15.7	Normal	NGS, Class 4a, GIS data
Thickness (m)	100	110	105	Triangular	NGS
Depth (m)	1500	1800	1650	Triangular	NGS
Porosity (%)	0.1	7.6	1.95	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	130	159	141	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	2147	2573	2360	Triangular	NGS
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	SD=0.12		2.61	Normal	NGS
Temperature (°C)	65	76	70	Triangular	TNO, NGS gradient

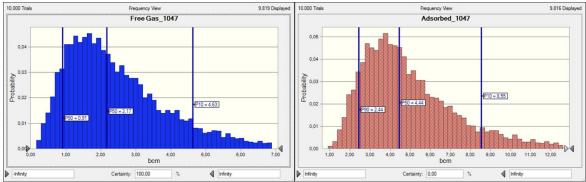


Figure A88 Results from GIIP calculations of Free Gas and Adsorbed Gas

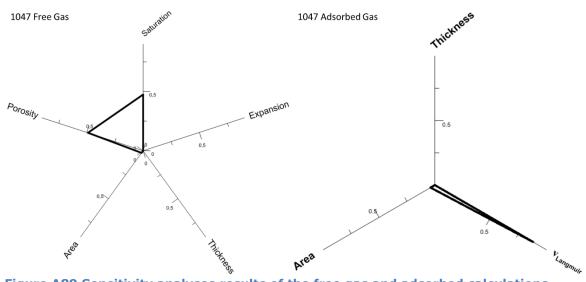


Figure A89 Sensitivity analyses results of the free gas and adsorbed calculations.

Results

Table A94	Overview	of the	results	of	the	GIIP	calculation
-----------	-----------------	--------	---------	----	-----	------	-------------

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Geverik Shale Member-1064, Adsorbed	NL	911.37	1712.70	3304.09
Geverik Shale Member-1064, Free Gas	NL	322.62	948.40	2463.01
Bowland -Hodder unit-1077, Adsorbed	UK	3352.11	9029.80	18823.14
Bowland -Hodder unit-1077, Free Gas	UK	7970.22	24758.52	61810.94
Total GIIP for Basin T10			36449.42	

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Westphalian A and B-1045, Adsorbed	BE	30.45	59.65	118.10
Westphalian A and B-1045, Free Gas	BE	19.81	45.31	85.25
Chokier & Souvré hot shales-1048, Adsorbed	BE	182.44	387.81	799.85
Chokier & Souvré hot shales-1048, Free Gas	BE	64.96	212.61	542.65
Chokier shales-1046, Adsorbed	BE	52.61	97.83	184.44
Chokier shales-1046, Free Gas	BE	13.94	41.81	98.16
Chokier alum shales-1047, Adsorbed	BE	2.44	4.44	8.55
Chokier alum shales-1047, Free Gas	BE	0.91	2.17	4.63
Total GIIP for Basins T22, T23, T24			851.62	

Table A95 Overview of the results of the GIIP calculation

T11, T12, T13 – Italian basins – Various shales

Index	Basin	Country	Shale(s)	Age	Screening- Index
T11b	Emma	I	Emma Formation	L. Triassic – E. Jurassic	1008
T11a	Umbria-Marche	I	Marne del Monte Serrone Formation	E. Jurassic (Toarcian)	1009
T11a	Umbria-Marche	I	Marne a Fucoidi Formation	E. Cretaceous (Aptian- Albian)	1010
T12	Ribolla	I	Argille Lignitifere	Miocene (Tortonian- Messinian)	1011
Т13	Ragusa	I	Noto & Streppenosa Shales	Triassic	1012, 1013

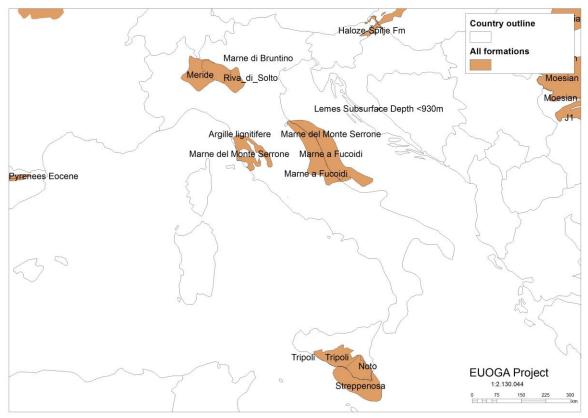


Figure A90 Overview map of the location of assessed formations

Table A96 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1008	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Moderate
HC system	Proven
Maturity variability	High
Depth	Average to deep
Mineral composition	No data

1009	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Poor
HC system	Possible
Maturity variability	High
Depth	Average
Mineral composition	No data

1010	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	High
Data availability	Moderate
HC system	Proven
Maturity variability	High
Depth	Average
Mineral composition	No data

1011	Success factors
Mapping status	Good
Sedimentary variability	Moderate
Structural complexity	Low
Data availability	Moderate
HC system	Proven
Maturity variability	Low
Depth	Average
Mineral composition	Favourable

1012	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Low
HC system	Unknown
Maturity variability	High
Depth	Average
Mineral composition	Poor

1013	Success factors	
Mapping status	Poor	
Sedimentary variability	High	
Structural complexity	High	
Data availability	Low	
HC system	Unknown	
Maturity variability	High	
Depth	Average	
Mineral composition	No data	

Emma Formation 1008

Table A97 Summary of the classification according to assessment step 3 for the individual assessment units.

1008	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	78	2	3	1	no	oil	No
Offshore	77	2	3	1	no	oil	No

As the thickness does not meet the EUOGA requirements this formation will not be calculated.

Marne del Monte Serrone Formation 1009

Table A98 Summary of the classification according to assessment step 3 for the individual assessment units.

1009	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	80	1	3	No	no	oil	No
Offshore	79	1	3	No	no	oil	No

As the thickness does not meet the EUOGA requirements this formation will not be calculated.

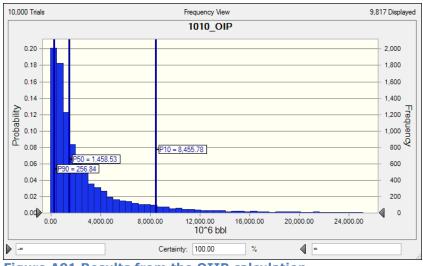

Marne a Fucoidi Formation 1010

Table A99 Summary of the classification according to assessment step 3 for the individual assessment units.

1010	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore		1	3	1	1	oil	3
Offshore	81	1	3	1	1	oil	3

Table A100 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

IT_1010	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=25%		8981	Normal	NGS, Class 5a, GIS
Thickness (m)	8	42	20	Triangular	NGS
Depth (m)	2000	5000	4500	Triangular	NGS
Porosity (%)	1,5	11,8	4,88	Triangular	EU
Saturation gas	-	-	-	-	-
Saturation oil	SD=0.083		0,044	Log normal	EU
Expansion Factor (Bg)	-	-	-	-	-
Bo (oil)	0,85	1,01	0,98	Triangular	EU
Pressure (psi)					
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2,1	2,71	2,45	Triangular	EU
Temperature (°C)	58	130	118	Triangular	C/km

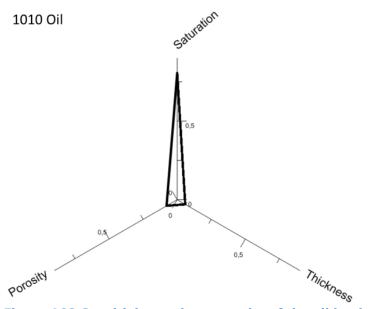


Figure A92 Sensitivity analyses results of the oil in place calculation

Results

Table A101 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Marne a Fucoidi-1010, Oil	IT	256.84	1458.53	8455.78
Total OIIP for Basin T11			1458.53	

Argille Lignitifere 1011

Table A102 Summary of the classification according to assessment step 3 for the individual assessment units.

1011	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	83	2	1	1	No	gas	No

No calculation will be performed as the formation is too thin.

Noto Shale 1012

Table A103 Summary of the classification according to assessment step 3 for the individual assessment units.

1012	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	85	1	3	1	no	oil	no
Offshore	84	1	3	1	no	oil	3

No calculation will be performed as the formation is too thin.

Streppenosa Shale 1013

Table A104 Summary of the classification according to assessment step 3 for the individual assessment units.

1013	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore		1	3	No	no	oil	No
Offshore	86	1	3	No	no	oil	No

No calculation will be performed as the formation is too thin.

T14 - Lemeš shale 1004

Index	Basin	Country	Shale(s)	Age	Screening- Index
T14	Dinarides	HR	Lemeš	Jurassic	1004

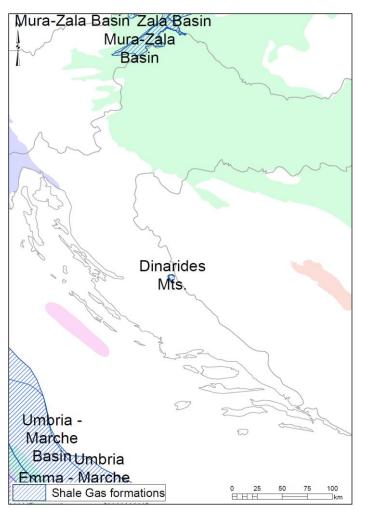


Figure A93 Overview map of the location of assessed formations

Table A105 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1004	Success factors
Mapping status	Moderate
Sedimentary variability	Moderate
Structural complexity	High
Data availability	Moderate
HC system	Unknown
Maturity variability	Low
Depth	Average
Mineral composition	Favourable

Table A106 Summary of the classification according to assessment step 3 for the individual assessment units.

1004	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	70	2	1	1	1		2
Onshore	71	No	1	1	1		No

Table A107 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

HR_1004	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=25%		34,2	Normal	NGS, Class 5a, GIS
Thickness (m)	3	70	36,5	Triangular	NGS
Depth (m)	0	930	465	Triangular	NGS
Porosity (%)	1	5,4	4,2	Triangular	NGS
Saturation gas	0,03	0,67	0,28	Triangular	EU
Expansion Factor (Bg)	1	94	48	Triangular	TNO
Pressure (psi)	14,5	1336	676	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2,6	2,7	2,65	Triangular	NGS
Temperature (°C)	10	38,8	24,4	-	TNO

Results

Table A108 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Lemeš shale-1004, Adsorbed	HR	0.41	1.27	3.34
Lemeš shale-1004, Free Gas	HR	0.13	0.46	1.22
Total GIIP for Basin T14			1.74	

T15, T16, T17, T18, T19, T20, T21 – Spanish Basins

Index	Basin	Country	Shale(s)	Age	Screening- Index
T15	Cantabria	E	Cantabia shales	Silurian-Jurassic	1027, 1028, 1029, 1030, 1031, 1032
T16	Guadalquivir	E	Guadalquivir Carboniferous shales	Carboniferous	1026
T17	Ebro	E	Ebro shales	Eocene, Carboniferous	1024, 1025
T18	Duero	E	Duero shales	Carboniferous	1023
T19	Iberian	E	Iberian shales	Cretaceous, Carboniferous	1021, 1022
T20	Catalonia	E	Catalonia shales	Carboniferous	1020
T21	Pyrenees	E	Pyrenees shale	Jurassic-Eocene	1033, 1034, 1035

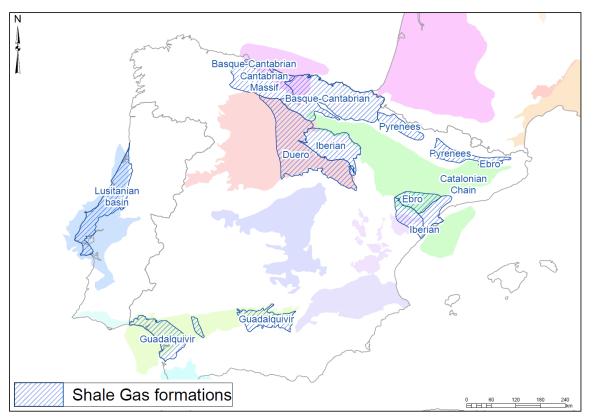


Figure A94 Overview map of the location of assessed formations

Table A109 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1020	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Poor
HC system	Unknown
Maturity variability	Unknown
Depth	Shallow to Average
Mineral composition	No data

1021	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	Moderate
Data availability	Moderate
HC system	Unknown
Maturity variability	High
Depth	Shallow
Mineral composition	No data

1022	Success factors
Mapping status	Poor
Sedimentary variability	Moderate
Structural complexity	Moderate
Data availability	Poor
HC system	Unknown
Maturity variability	Unknown
Depth	Shallow to Average
Mineral composition	No data

1023	Success factors	
Mapping status	Poor	
Sedimentary variability	High	
Structural complexity	High	
Data availability	Moderate	
HC system	Unknown	
Maturity variability	Unknown	
Depth	Average	
Mineral composition	No data	

1024 S	Success factors
--------	-----------------

Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Poor
HC system	Unknown
Maturity variability	Unknown
Depth	Average
Mineral composition	No data

1025	Success factors	
Mapping status	Poor	
Sedimentary variability	High	
Structural complexity	Low	
Data availability	Moderate	
HC system	Unknown	
Maturity variability	Unknown	
Depth	Shallow to Average	
Mineral composition	No data	

1026	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Poor
HC system	Possible
Maturity variability	Unknown
Depth	Shallow to Average
Mineral composition	No data

1027	Success factors
Mapping status	Poor
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Moderate
HC system	Possible
Maturity variability	Unknown
Depth	Shallow to deep
Mineral composition	No data

1028	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	Moderate

Data availability	Moderate
Data availability	
HC system	Possible
Maturity variability	Unknown
Depth	Shallow to deep
Mineral composition	No data
1029	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	Moderate
Data availability	Moderate
HC system	Possible
Maturity variability	Unknown
Depth	Shallow to deep
Mineral composition	No data
1000	
1030	Success factors
Mapping status	Poor
Sedimentary variability	Moderate to High
Structural complexity	High
Data availability	Moderate
HC system	Proven
Maturity variability	Unknown
Depth	Shallow to Average

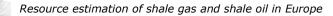
1031	Success factors
Mapping status	Poor
Sedimentary variability	Moderate to High
Structural complexity	Moderate to High
Data availability	Moderate
HC system	Possible
Maturity variability	Unknown
Depth	Shallow to deep
Mineral composition	No data

No data

Mineral composition

1032	Success factors	
Mapping status	Poor	
Sedimentary variability	Moderate to High	
Structural complexity	Moderate to High	
Data availability	Moderate	
HC system	Possible	
Maturity variability	Unknown	

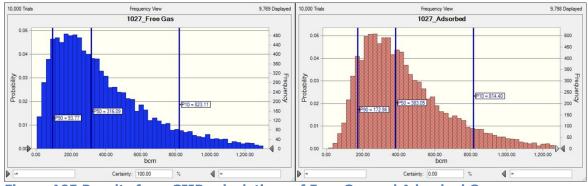
Depth	Shallow to deep
Mineral composition	No data
1033	Success factors
Mapping status	Poor
Sedimentary variability	Moderate
Structural complexity	High
Data availability	Poor
HC system	Unknown
Maturity variability	Unknown
Depth	Average
Mineral composition	No data


1034	Success factors
Mapping status	Poor
Sedimentary variability	Moderate
Structural complexity	Moderate
Data availability	Poor
HC system	Unknown
Maturity variability	Unknown
Depth	Shallow to Average
Mineral composition	Favourable

1035	Success factors
Mapping status	Poor
Sedimentary variability	Moderate
Structural complexity	Low
Data availability	Moderate
HC system	Unknown
Maturity variability	Low
Depth	Shallow to Average
Mineral composition	No data

Basque-Cantabrian Liassic-1027

Table A110 Summary of the classification according to assessment step 3 for the individual assessment units.


1027	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	61	1	3	1	1	gas	3

_		
	1.1	
_	European	

Table A111 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

ES_1027	Min	Max	Mean	Dist. Curve	Source
Area (km2)	1200	3500	2350	Triangular	NGS, Class 5a
Thickness (m)	25	100	62,5	Triangular	NGS
Depth (m)	0	7000	2200	Triangular	NGS
Porosity	1,5	11,8	4,88	Triangular	EU
Saturation gas	0,03	0,67	0,28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	1	248	162	Triangular	TNO, NGS temp, hydro press
Bo (oil)	-	-	-	-	-
Pressure (psi)	14,5	9964	3142	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	1,9	2,4	2,15	Triangular	NGS
Temperature (°C)	10	293,5	99,1	Triangular	TNO with gradient NGS

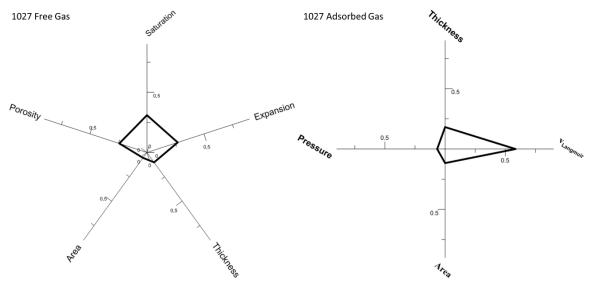


Figure A96 Sensitivity analyses results of the free gas and adsorbed calculations.

Basque-Cantabrian Lower Cretaceous 1028

Table A112 Summary of the classification according to assessment step 3 for theindividual assessment units.

1028	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	62	1	3	No	2	gas	No

No calculation will be performed as the TOC is too low.

Basque-Cantabrian Upper Cretaceous 1029

Table A113 Summary of the classification according to assessment step 3 for the individual assessment units.

1029	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	63	1	3	3	2	gas	No

No calculation will be performed as too little data is available.

Basque-Cantabrian Carboniferous-1030

 Table A114 Summary of the classification according to assessment step 3 for the individual assessment units.

1030	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	64	1	3	3	1	gas	3

Table A115 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

ES_1030	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=25%		379	Normal	NGS, Class 5a
Thickness (m)	26	50	38	Triangular	NGS
Depth (m)	0	2500	1200	Triangular	NGS
Porosity (%)	1,5	11,8	4,88	Triangular	EU
Saturation gas	0,03	0,67	0,28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	1	232	130	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	14,5	3568	1720	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2,1	2,6	2,35	Triangular	NGS
Temperature (°C)	10	56,25	32,2	Triangular	TNO, NGS gradient

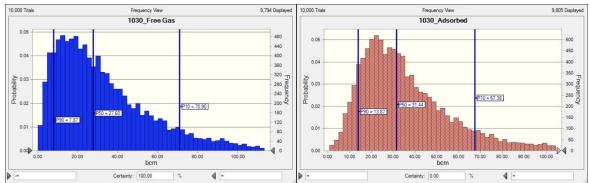


Figure A97 Results from GIIP calculations of Free Gas and Adsorbed Gas

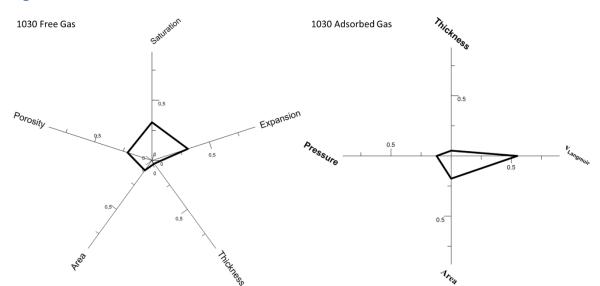


Figure A98 Sensitivity analyses results of the free gas and adsorbed calculations.

Cantabrian Massif Carboniferous 1031

Table A116 Summary of the classification according to assessment step 3 for the individual assessment units.

1031	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	65	1	1	No	2	gas	No

No calculation will be performed as the TOC values of the formations are too low.

Cantabrian Massif Silurian 1032

Table A117 Summary of the classification according to assessment step 3 for the individual assessment units.

1032	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	66	1	1	No	2	gas	No

No calculation will be performed as the TOC values of the formations are too low.

Guadalquivir Carboniferous-1026

Table A118 Summary of the classification according to assessment step 3 for the individual assessment units.

1026	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	60	1	3	3	1	gas	3

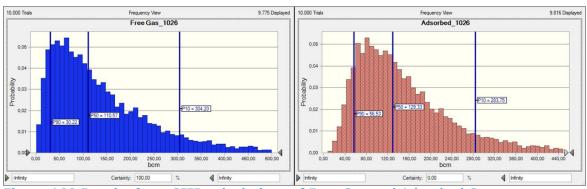


Figure A99 Results from GIIP calculations of Free Gas and Adsorbed Gas

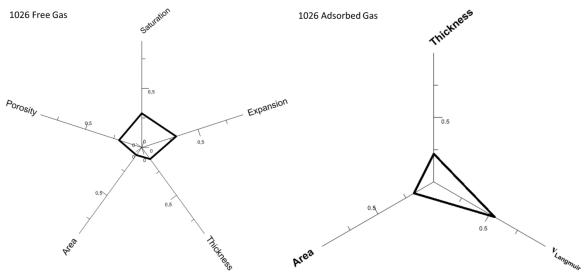


Figure A100 Sensitivity analyses results of the free gas and adsorbed calculations.

Ebro Carboniferous-1024

Table A119 Summary of the classification according to assessment step 3 for the individual assessment units.

1024	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	58	1	1	No	1	gas	No

No calculation will be performed as the TOC values of the formations are too low.

Ebro Eocene 1025

Table A120 Summary of the classification according to assessment step 3 for the individual assessment units.

1025	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	59	1	3	3	1	gas	No

No calculation will be performed as too little data is available.

Duero Carboniferous-1023

Table A121 Summary of the classification according to assessment step 3 for the individual assessment units.

1023	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	57	1	3	3	1	gas	3

Table A122 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

ES_1023	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=25%		900	Normal	NGS, Class 5a
Thickness (m)	50	100	75	Triangular	NGS
Depth (m)	1000	2500	1700	Triangular	NGS
Porosity (%)	1.5	11.8	4.88	Triangular	EU
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	104	204	149	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	1436	3568	2431	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.1	2.6	2.35	Triangular	NGS
Temperature (°C)	40	85	61	Triangular	TNO, NGS gradient

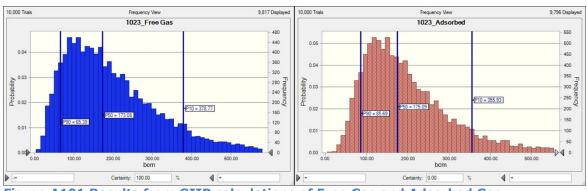


Figure A101 Results from GIIP calculations of Free Gas and Adsorbed Gas

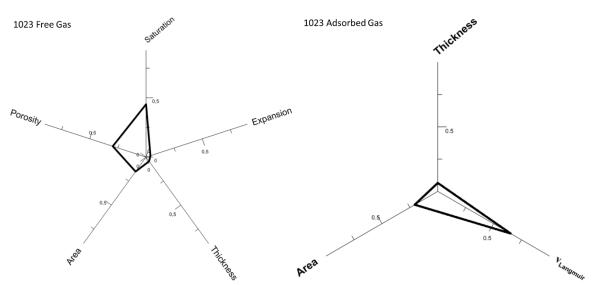


Figure A102 Sensitivity analyses results of the free gas and adsorbed calculations.

Iberian Lower Cretaceous 1021

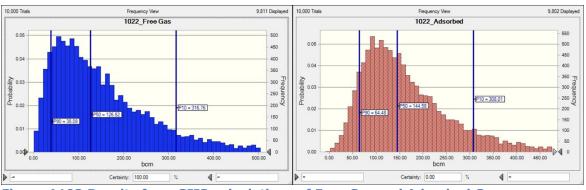
Table A123 Summary of the classification according to assessment step 3 for the individual assessment units.


1021	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	55	2	1	No	2	gas	No

No calculation will be performed as the TOC values of the formations are too low.

Iberian Carboniferous-1022

Table A124 Summary of the classification according to assessment step 3 for the individual assessment units.


1022	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	56	1	3	3	1	gas	3

	5
$(N_{\rm eff})$	

ES_1022	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=25%		850	Normal	NGS, Class 5a
Thickness (m)	50	100	75	Triangular	NGS
Depth (m)	0	2500	1500	Triangular	NGS
Porosity (%)	1.5	11.8	4.88	Triangular	EU
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	1	220	153	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	15	3568	2147	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.1	2.6	2.35	Triangular	NGS
Temperature (°C)	10	67.5	44.5	Triangular	TNO, NGS gradient

Table A125 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

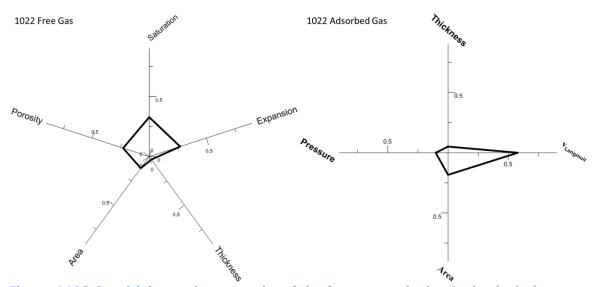


Figure A103 Sensitivity analyses results of the free gas and adsorbed calculations.

Catalonian Chain Carboniferous-1020

Table A126 Summary of the classification according to assessment step 3 for the individual assessment units.

1020	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	54	1	3	1	1	gas	3

Table A127 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

ES_1020	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=25%		500	Normal	NGS, Class 5a, GIS data
Thickness (m)	50	100	75	Triangular	NGS
Depth (m)	0	2000	1500	Triangular	NGS
Porosity (%)	1.5	11.8	4.88	Triangular	EU
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	1	167	149	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	15	2857	2147	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.1	2.6	2.35	Triangular	NGS
Temperature (°C)	10	72	53	Triangular	TNO, NGS gradient

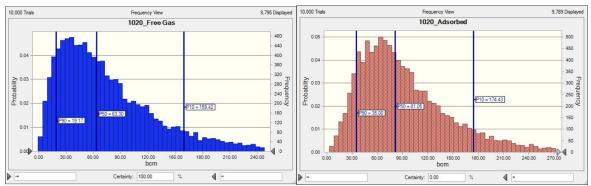


Figure A104 Results from GIIP calculations of Free Gas and Adsorbed Gas

Figure A105 Sensitivity analyses results of the free gas and adsorbed calculations.

Cantabrian Massif Silurian-1033

Table A128 Summary of the classification according to assessment step 3 for the individual assessment units.

1033	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	67	1	3	3	1	gas	3

Pyrenees Lower Cretaceous-1034

Table A129 Summary of the classification according to assessment step 3 for the individual assessment units.

1034	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	68	1	3	3	1	gas	3

Pyrenees Eocene 1035

Table A130 Summary of the classification according to assessment step 3 for the individual assessment units.

1035	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	69	1	3	No	1	gas	No

No calculations will be performed as the TOC is too low.

Results

Table A131 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Basque-Cantabrian Liassic-1027, Adsorbed	ES	172.86	383.05	814.40
Basque-Cantabrian Liassic-1027, Free Gas		93.77	316.09	823.11
Basque-Cantabrian Carboniferous-1030, Adsorbed	ES	13.87	31.44	67.38
Basque-Cantabrian Carboniferous-1030, Free Gas	ES	7.87	27.60	70.90
Guadalquivir Carboniferous-1026, Adsorbed	ES	56.53	129.33	283.75
Guadalquivir Carboniferous-1026, Free Gas	ES	30.22	110.57	304.20
Ebro Carboniferous-1024, Adsorbed	ES	299.58	706.62	1236.44
Ebro Carboniferous-1024, Free Gas	ES	223.97	718.27	1362.75
Duero Carboniferous-1023, Adsorbed	ES	85.69	175.09	355.93
Duero Carboniferous-1023, Free Gas	ES	65.39	173.08	378.77
Iberian Carboniferous-1022, Adsorbed	ES	64.48	144.58	308.01
Iberian Carboniferous-1022, Free Gas	ES	38.08	126.82	316.76
Catalonian Chain Carboniferous-1020, Adsorbed	ES	35.00	81.05	174.43
Catalonian Chain Carboniferous-1020, Free Gas	ES	19.17	63.30	159.42
Cantabrian Massif Silurian-1033, Adsorbed	ES	45.68	95.77	200.32
Cantabrian Massif Silurian-1033, Free Gas	ES	48.29	131.09	292.40
Pyrenees Lower Cretaceous-1034, Adsorbed	ES	12.82	32.19	76.21
Pyrenees Lower Cretaceous-1034, Free Gas	ES	8.18	27.79	74.33
Total GIIP for the Spanish basins			3473.72	

Table A132 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Ebro Carboniferous-1024, Oil	ES	0.31	1.71	3.72
Total OIIP for the Spanish basins			1.71	

T25, T31, T32 - Northwest European Lower Jurassic Basin - Central Europe

Index	Basin	Country	Shale(s)	Age	Screening- Index
T25a	Northwest European L. Jurassic	NL	Posidonia Shale	Toarcian	1065
			Posidonien Schiefer	Toarcian	2012
T25c	Northwest	D	Wealden	Tithonian-Berriasian	2012
1250	German Basin	D	Blättertone/Fish Shale	Barremian/Aptian	n/a
	Dasin		Mid Rhaetian shale	Rhaetian	n/a
		/eald asin SE UK ngland	Kimmeridge Clay	Kimmeridgian-Tithonian (Late Jurassic)	1070
	Weald		Mid Lias Clay	Pliensbachian	1074
T25d			Oxford Clay	Oxfordian	1075
	Lligiallu		Upper Lias Clay	Early Toarcian	1076
			Corallian Clay	Oxfordian	1078
T31	Molasse Basin	D	Fish shale	Oligocene	n/a
	Upper		Posidonien Schiefer	Toarcian (Jurassic)	2012
Т32	Rhine Graben	D	Fish shale	Oligocene	n/a

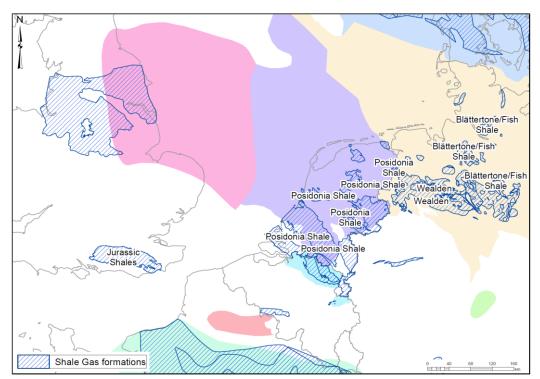


Figure A106 Overview map of the location of assessed formations

Table A133 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1065	Success factors
Mapping status	Good
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Good
HC system	Proven
Maturity variability	Moderate to High
Depth	Average
Mineral composition	Poor

1070	Success factors	
Mapping status	Good	
Sedimentary variability	Low	
Structural complexity	Moderate	
Data availability	Good	
HC system	Possible	
Maturity variability	Moderate	
Depth	Shallow	
Mineral composition	Unknown to Poor	

1074	Success factors
Mapping status	Good
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Good
HC system	Possible
Maturity variability	Moderate
Depth	Shallow to average
Mineral composition	No data

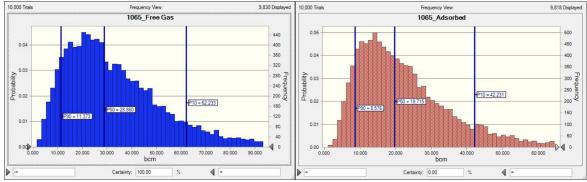
1075	Success factors
Mapping status	Moderate
Sedimentary variability	Moderate
Structural complexity	Moderate
Data availability	Good
HC system	Unknown
Maturity variability	Moderate
Depth	Shallow to Average
Mineral composition	Unknown

1076	Success factors
Mapping status	Good
Sedimentary variability	Unknown

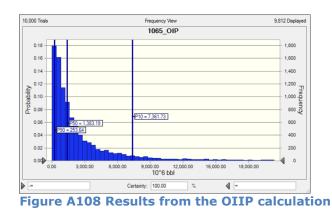
Structural complexity	Moderate
Data availability	Good
HC system	Possible
Maturity variability	Moderate
Depth	Shallow to average
Mineral composition	Unknown

1078	Success factors
Mapping status	Moderate
Sedimentary variability	Moderate
Structural complexity	Moderate
Data availability	Good
HC system	Unknown
Maturity variability	Moderate
Depth	Shallow to Average
Mineral composition	Unknown

Posidonia Shale Formation 1065


Table A134 Summary of the classification according to assessment step 3 for the individual assessment units.

1065	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	94	1	1	1	1	gas	1


Table A135 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

NL_1065	Min	Max	Mean	Dist. Curve	Source
Area (km2)			5798	Normal	NGS, Class 1a, GIS
Thickness (m)	8	60	30	Triangular	NGS
Depth (m)	90	3960	2000	Triangular	NGS
Porosity (%)	5	13	7	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	85	259	195	Triangular	NGS
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	127	5628	2842	Triangular	NGS
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.4	2.7	2.6	Triangular	NGS
Temperature (°C)	12.8	133	72	Triangular	NGS

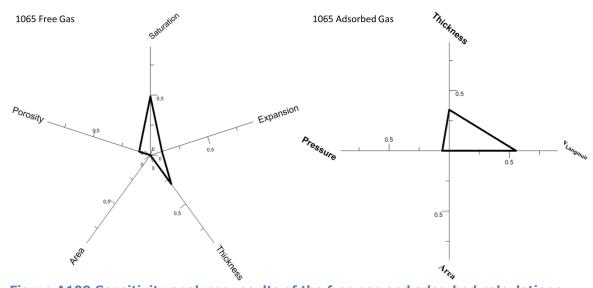


Figure A109 Sensitivity analyses results of the free gas and adsorbed calculations.

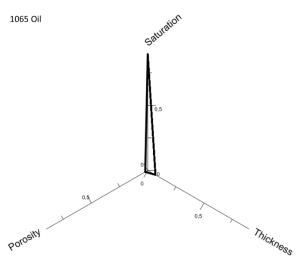


Figure A110 Sensitivity analyses results of the oil in place calculation

Kimmeridge Clay 1070

Table A136 Summary of the classification according to assessment step 3 for the individual assessment units.

1070	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	121	1	1	1	2	oil	1

Table A137 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

UK_1070	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=7.5%		3506	Normal	NGS, GIS, Class 3a
Thickness (m)	4,2	147,7	80,6	Triangular	NGS, GIS, N/G 10%
Depth (m)	0	1326	586	Triangular	NGS, GIS
Porosity (%)	1,5	11,8	4,88	Triangular	EU
Saturation gas	-	-	-	-	-
Saturation oil	SD=0.083		0,044	Log normal	EU
Expansion Factor (Bg)	-	-	-	-	-
Bo (oil)	0,85	1,01	0,98	Triangular	EU
Pressure (psi)	-	-	-	-	-
Langmuir Pressure (psi)	-	-	-	-	-
Langmuir Volume (scf/ton)	-	-	-	-	-
Density (g/cm3)	2,6	2,7	2,6	Triangular	NGS
Temperature (°C)	-	-	-	-	-

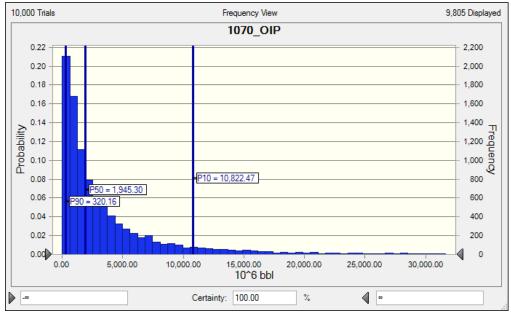


Figure A111 Results from the OIIP calculation

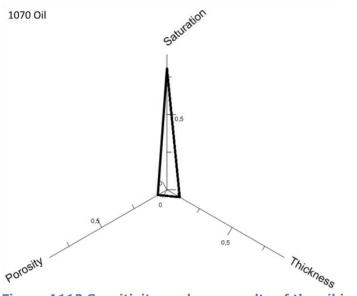


Figure A112 Sensitivity analyses results of the oil in place calculation

Mid Lias Clay 1074

Table A138 Summary of the classification according to assessment step 3 for the individual assessment units.

1074	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore		3	1	No	1	-	No

No calculations will be performed as the average TOC is too low.

Oxford Clay 1075

Table A139 Summary of the classification according to assessment step 3 for theindividual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	3	1	1	No	-	No

No calculations will be performed as no thickness information is available.

Upper Lias Clay 1076

Table A140 Summary of the classification according to assessment step 3 for theindividual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	3	1	1	No	-	No

No calculations will be performed as no thickness information is available.

Corallian Clay 1078

Table A141 Summary of the classification according to assessment step 3 for theindividual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	3	1	No	1	-	No

No calculations will be performed as the average TOC is too low.

German Lower Jurassic shales; Posidonien Schiefer 2012, Fish Shale Germany, Wealden Germany 2012, Blättertone/Fish Shale, Mid Rhaetian Shale

The German shale formations are not calculated in this study as Germany is not part of the EUOGA project. The results presented in Ladage 2016 (Schieferöl und schiefergas in Deutschland) were examined and the GIIP resource estimations turn out to be calculated in similar method as this report does as well as give similar results. The OIIP calculated are done by a different method. Because of this the GIIP estimations of the BGR are used and presented together with the EUOGA results in our reports.

Results

Table A142 Overview of the results of the GIIP calculation

Shale	Country	Р90 (bcm)	P50 (bcm)	P10 (bcm)
Posidonia Shale Fm-1065, Adsorbed	NL	8.58	19.71	42.23
Posidonia Shale Fm-1065, Free Gas	NL	11.37	28.86	62.23
Total GIIP for Basin T25			48.57	

Table A143 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Posidonia Shale Fm-1065, Oil	NL	253.64	1383.19	7361.73
Kimmeridge Clay-1070, Oil	UK	320.16	1945.30	10822.47
Total OIIP for Basin T25			3328.49	

T26, T27, T28, T29 - French Basins

Index	Basin	Country	Shale(s)	Age	Screening- Index
			Promicroceras	Late Pliensbachian	1082
T26	Paris Basin	F	Amaltheus	Sinemurian	1083
			Schistes Carton	Toarcian	1084
T27	Aquitaine	F	Sainte Suzanne Marls	Aptian (Cretaceous)	1085
T28a	South Eastern basin	F	Schistes Cartons Fm	Jurassic	1084
T28b	South Eastern basin	F	Permo Carboniferous	Permian- Carboniferous	1080
T29	Jura Mountains	F	Jurassic shales	Toarcian (Jurassic)	1080, 1082 1083, 1084
Txx		F	Autunian		1081

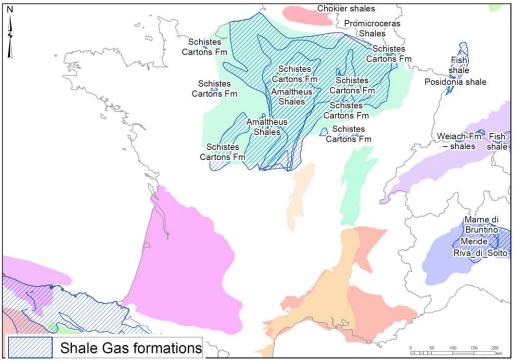


Figure A113 Overview map of the location of assessed formations

Table A144 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1080	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Poor
HC system	Unknown
Maturity variability	High
Depth	Unknown
Mineral composition	No data

1081	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Poor
HC system	Unknown
Maturity variability	Unknown
Depth	Shallow
Mineral composition	No data

1082	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	Moderate
Data availability	Moderate
HC system	Unknown
Maturity variability	Moderate
Depth	Shallow to Average
Mineral composition	No data

1083	Success factors	
Mapping status	Moderate	
Sedimentary variability	Low	
Structural complexity	Moderate	
Data availability	Moderate	
HC system	Unknown	
Maturity variability	Moderate	
Depth	Shallow to Average	
Mineral composition	No data	

1084	Success factors
Mapping status	Poor
Sedimentary variability	High
Structural complexity	High
Data availability	Poor
HC system	Possible
Maturity variability	High
Depth	Unknown
Mineral composition	No data

1085	Success factors	
Mapping status	Poor	
Sedimentary variability	Low	
Structural complexity	Low and High	
Data availability	Poor	
HC system	Unknown	
Maturity variability	Unknown	
Depth	Unknown	
Mineral composition	No data	

Autunian 1081

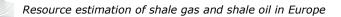
Table A145 Summary of the classification according to assessment step 3 for the individual assessment units.

1081	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	2	3	3	2	-	3

No calculations will be performed as too little data is available for the formation.

Promicroceras 1082

Table A4146 Summary of the classification according to assessment step 3 for the individual assessment units.


	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	3	1	No	1	-	No

No calculations will be performed as the TOC values of the formation are too low.

Amaltheus 1083

Table A147 Summary of the classification according to assessment step 3 for the individual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	3	1	1	1	Oil	3

Table A148 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

FR_1083	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		2104	Normal	NGS, GIS, Class 4a
Thickness (m)	0	40	20	Triangular	NGS,
Depth (m)	2100	2500	2300	Triangular	TNO, literature
Porosity (%)	1.5	11.8	4.88	Triangular	EU
Saturation gas	-	-	-	-	-
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	-	-	-	-	-
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	-	-	-	-	-
Langmuir Pressure (psi)	-	-	-	-	-
Langmuir Volume (scf/ton)	-	-	-	-	-
Density (g/cm3)	2.1	2.71	2.45	Triangular	EU
Temperature (°C)	-	-	-	-	-

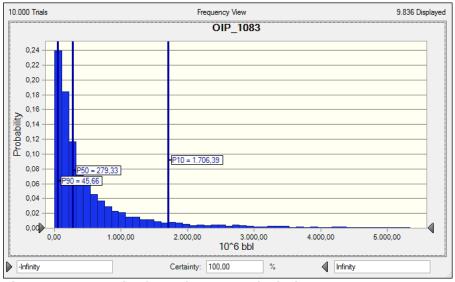


Figure A114 Results from the OIIP calculation

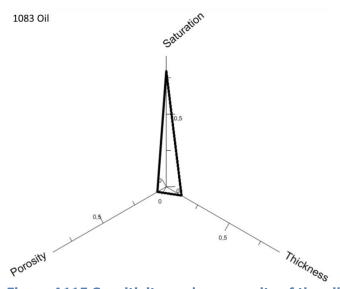


Figure A115 Sensitivity analyses results of the oil in place calculation

Schistes Carton 1084

Table A149 Summary of the classification according to assessment step 3 for the individual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	2	1	1	2	Oil	No

Table A150 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

FR_1084	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		20280	Normal	NGS, GIS, Class 4a
Thickness (m)	1	32	13	Triangular	NGS
Depth (m)	0	1180	800	Triangular	NGS
Porosity (%)	1.5	11.8	4.88	Triangular	EU
Saturation gas	-	-	-	-	-
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	-	-	-	-	-
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	-	-	-	-	-
Langmuir Pressure (psi)	-	-	-	-	-
Langmuir Volume (scf/ton)	-	-	-	-	-
Density (g/cm3)	2.1	2.71	2.45	Triangular	EU
Temperature (°C)	-	-	-	-	-

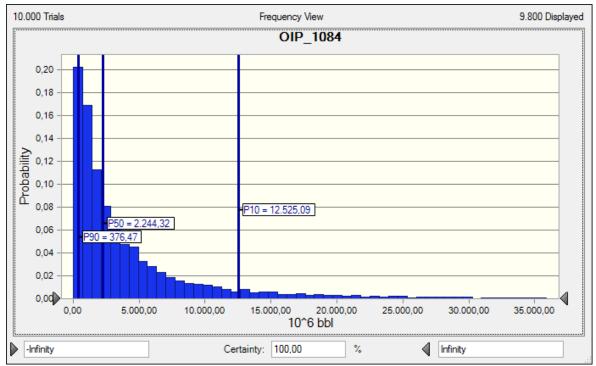


Figure A116 Results from the OIIP calculation

Figure A117 Sensitivity analyses results of the oil in place calculation

Results

Table A151 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Amaltheus Shales-1083, Oil	FR	45.66	279.33	1706.39
Schistes Cartons Fm-1084, Oil	FR	376.47	2244.32	12525.09
Total OIIP for Basin T26			2523.65	

T30 - Lusitanian basin Portugal - Jurassic Shales

Index	Basin	Country	Shale(s)	Age	Screening- Index
Т30	Lusitanian	PT	Jurassic	Jurassic	1087

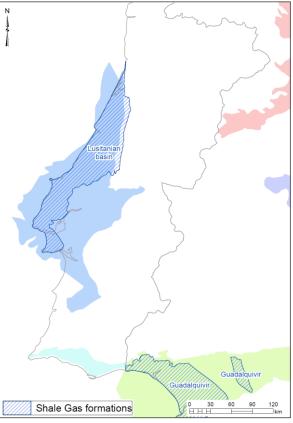


Figure A118 Overview map of the location of assessed formations

Table A152 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1087	Success factors
Mapping status	Poor
Sedimentary variability	Moderate
Structural complexity	Moderate
Data availability	Moderate
HC system	Possible
Maturity variability	Moderate
Depth	Average
Mineral composition	Unknown to Favourable

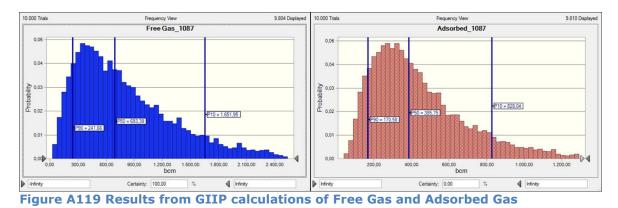


Table A153 Summary of the classification according to assessment step 3 for the individual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	134	1	1	1	2	both	2

Table A154 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

PT_1087	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		9515	Normal	NGS, GIS, Class 4a
Thickness (m)	50	400	200	Triangular	Literature, N/G 20%
Depth (m)	1000	3500	2250	Triangular	NGS
Porosity (%)	0.2	19.8	10	Triangular	NGS
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	101	237	190	Triangular	TNO
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	1436	4989	3213	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.1	2.71	2.45	Triangular	EU
Temperature (°C)	41	119	80	Triangular	TNO

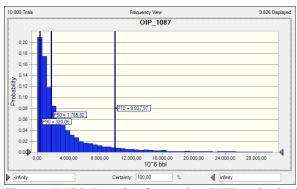


Figure A120 Results from the OIIP calculation

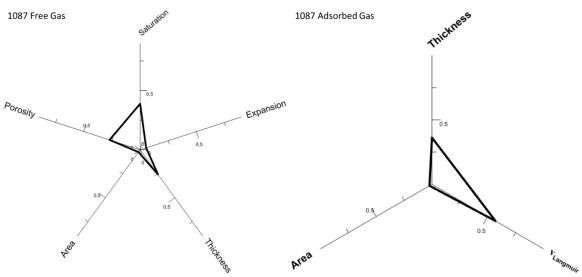


Figure A121 Sensitivity analyses results of the free gas and adsorbed calculations.

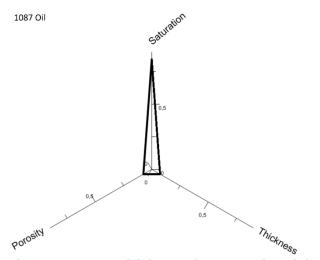


Figure A122 Sensitivity analyses results of the oil in place calculation

Results

Table A155 Overview of the results of the GIIP calculation

Shale	Country	P90	P50 (bcm)	P10
		(bcm)		(bcm)
Lias shales-1087, Adsorbed	PT	170.58	385.75	828.04
Lias shales-1087, Free Gas	PT	241.66	693.39	1651.95
Total GIIP for Basin T30			1079.14	

Table A156 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
Lias shales-1087, Oil	PT	320.06	1765.82	9937.97
Total OIIP for Basin T30			1765.82	

T34 – Midland Valley of Scotland – Carboniferous shales

Index	Basin	Country	Shale(s)	Age	Screening- Index
			Limestone Coal Formation	Carboniferous	1071
T24	Midland Valley	UK	West Lothian Oil Shale unit	Carboniferous	1072
T34	of Scotland	UK	Lower Limestone Formation	Carboniferous	1073
		UK	Gullane Unit	Carboniferous	1079

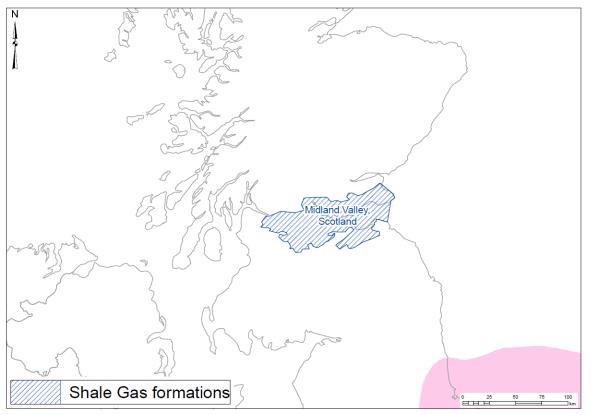


Figure A123 Overview map of the location of assessed formations

Table A157 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1071	Success factors	
Mapping status	Good	
Sedimentary variability	High	
Structural complexity	High	
Data availability	Good	
HC system	Possible	
Maturity variability	High	
Depth	Shallow to Average	
Mineral composition	Unknown to Poor	

1072	Success factors
Mapping status	Good
Sedimentary variability	High
Structural complexity	High
Data availability	Good
HC system	Possible
Maturity variability	High
Depth	Shallow to Average
Mineral composition	Unknown to Poor

1073	Success factors
Mapping status	Good
Sedimentary variability	High
Structural complexity	High
Data availability	Good
HC system	Possible
Maturity variability	High
Depth	Shallow to Average
Mineral composition	Unknown to Poor

1079	Success factors
Mapping status	Good
Sedimentary variability	High
Structural complexity	High
Data availability	Good
HC system	Possible
Maturity variability	High
Depth	Shallow to Average
Mineral composition	Unknown to Poor

Limestone Coal Formation – 1071

Table A158 Summary of the classification according to assessment step 3 for the individual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	1	1	1	No	-	NO

No calculations will be performed as too little data is available.

West Lothian Oil Shale unit – 1072

Table A159 Summary of the classification according to assessment step 3 for the individual assessment units.

	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	1	1	1	2	Gas and oil	2

Table A160 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

UK_1072	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=7.5%		2943	Normal	NGS, Class 3a, GIS
Thickness (m)	0	1915	451	Triangular	NGS, GIS, N/G 10% gas 30% oil
Depth (m)	804	4505	1050	Triangular	NGS, GIS
Porosity (%)	1.5	11.8	4.88	Triangular	EU
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	84	302	103	Triangular	TNO
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	1157	6418	1507	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.55	2.65	2.6	Triangular	NGS
Temperature (°C)				Triangular	TNO, temp gradient 31c/km

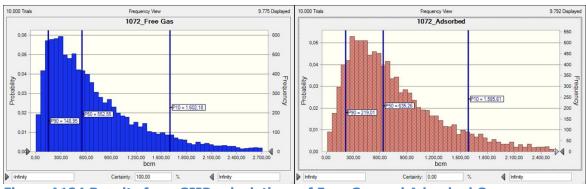


Figure A124 Results from GIIP calculations of Free Gas and Adsorbed Gas

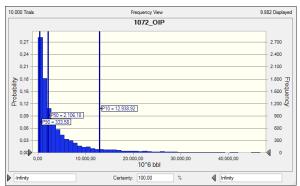
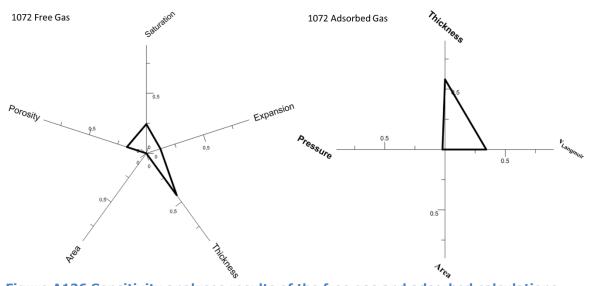



Figure A125 Results from the OIIP calculation

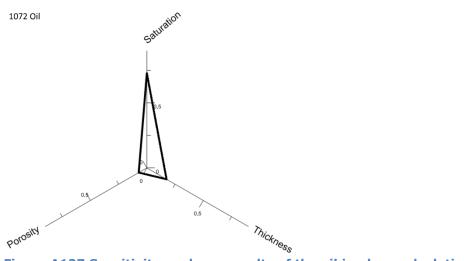


Figure A127 Sensitivity analyses results of the oil in place calculation

Lower Limestone Formation – 1073

Table A161 Summary of the classification according to assessment step 3 for the individual assessment units.

1079	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	-	1	1	1	No	-	No

No calculations will be performed as too little data is available.

Gullane Unit – 1079

Table A162 Summary of the classification according to assessment step 3 for the individual assessment units.

1079	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	123	1	1	1	1	oil	1

Table A163 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

UK_1079	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=7.5%		4378	Normal	NGS, Class 3a, GIS
Thickness (m)	0	191	54	Triangular	NGS, GIS, N/G 10%
Depth (m)	809	5469	1570	Triangular	NGS, GIS
Porosity (%)	1.5	11.8	4.88	Triangular	EU
Saturation gas	0.03	0.67	0.28	Triangular	EU
Saturation oil	SD=0.083		0.044	Log normal	EU
Expansion Factor (Bg)	80	275	149	Triangular	TNO
Bo (oil)	0.85	1.01	0.98	Triangular	EU
Pressure (psi)	1164	7788	2246	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2.55	2.65	2.6	Triangular	NGS
					TNO, temp gradient
Temperature (°C)	35	59	180	Triangular	31c/km

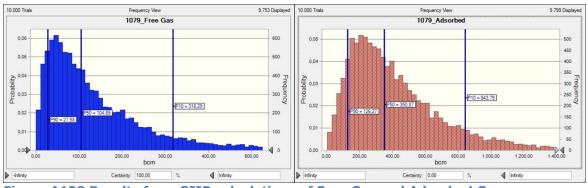


Figure A128 Results from GIIP calculations of Free Gas and Adsorbed Gas

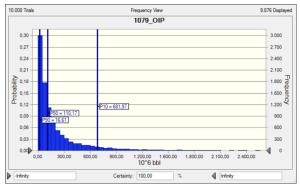
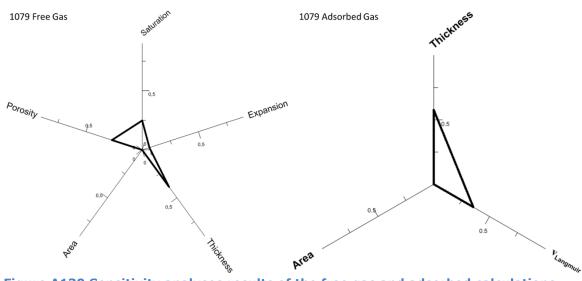
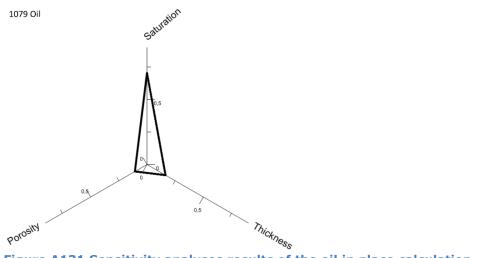




Figure A129 Results from the OIIP calculation

Results

Table A164 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
West Lothian Oil Shale unit-1072, Adsorbed	UK	219.01	635.26	1585.61
West Lothian Oil Shale unit-1072, Free Gas	UK	148.95	552.55	1602.18
Gullane Unit-1079, Adsorbed	UK	126.27	350.87	843.79
Gullane Unit-1079, Free Gas	UK	27.58	104.89	318.29
Total GIIP for Basin T10			1643.57	

Table A165 Overview of the results of the OIIP calculation

Shale	Country	P90	P50 (10^6 bbl)	P10
West Lothian Oil Shale unit-1072, Oil	UK	333.58	2106.18	12938.92
Gullane Unit-1079, Oil	UK	16.61	110.17	681.97
Total OIIP for Basin T10			2216.35	

B01 - Transilvanian Basins – Neogene Shales

Index	Basin	Country	Shale(s)	Age	Screening- Index
D1 Turn til un view Da sin s	RO		Neogene	1041	
DI	B1 Transilvanian Basins	RO		Neogene	1042

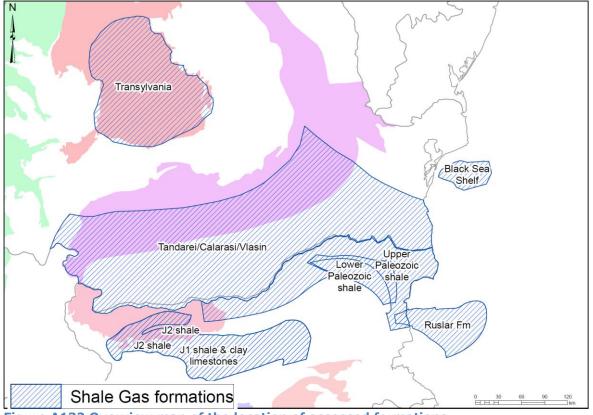


Figure A132 Overview map of the location of assessed formations

Table A166 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1041	Success factors
Mapping status	Moderate
Sedimentary variability	Moderate
Structural complexity	Moderate
Data availability	Poor
HC system	Possible
Maturity variability	Biogenic
Depth	Average to deep
Mineral composition	No data

1042	Success factors	
Mapping status	Moderate	
Sedimentary variability	Moderate	
Structural complexity	Moderate	
Data availability	Poor	
HC system	Possible	
Maturity variability	Biogenic	
Depth	Average to deep	
Mineral composition	No data	

Biogenic shale Romania 1041

Table A167 Summary of the classification according to assessment step 3 for the individual assessment units.

1041	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	135	1	2	2	1	biogenic	2

Table A168 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

RO_1041	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		18649	Normal	NGS, GIS, Class 4a
Thickness (m)	SD=35		50	Log normal	TNO, NGS maps with N/G 10
Depth (m)	550	4400	1400	Triangular	TNO, literature
Porosity (%)	1,5	11,8	4,88	Triangular	EU
Saturation gas	0,03	0,67	0,28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	47	305	137	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	796	6269	2004	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2,1	2,71	2,45	Triangular	EU
Temperature (°C)	26,5	142	52	Triangular	TNO, NGS gradient

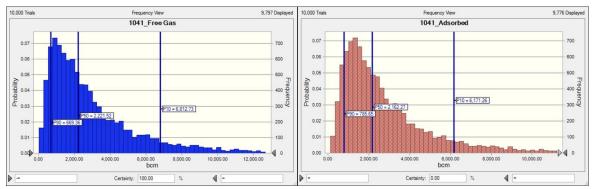


Figure A133 Results from GIIP calculations of Free Gas and Adsorbed Gas

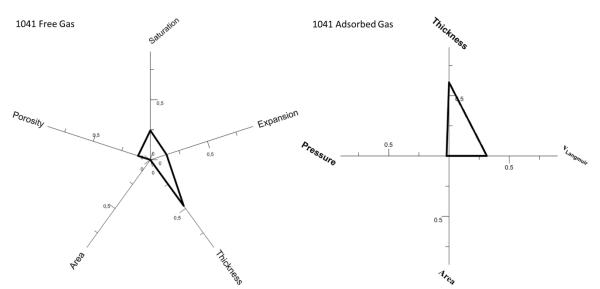


Figure A134 Sensitivity analyses results of the free gas and adsorbed calculations.

Biogenic shale Hungary 1042

Table A169 Summary of the classification according to assessment step 3 for the individual assessment units.

1042	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	124	1	2	2	1	biogenic	2

Table A170 Overview of the input data used for the assessment of the GIIP/OIIP and the source of that data (NGS, TNO, EU analogue - EU, US analogue - US)

RO_1042	Min	Max	Mean	Dist. Curve	Source
Area (km2)	SD=10%		18649	Normal	NGS, GIS, Class 4a
Thickness (m)	SD=25		30	Triangular	TNO, NGS maps with N/G 10
Depth (m)	0	2200	500	Triangular	TNO, literature
Porosity (%)	1,5	11,8	4,88	Triangular	EU
Saturation gas	0,03	0,67	0,28	Triangular	EU
Saturation oil	-	-	-	-	-
Expansion Factor (Bg)	1	205	44	Triangular	TNO
Bo (oil)	-	-	-	-	-
Pressure (psi)	14,5	3142	725	Triangular	TNO, hydrostatic
Langmuir Pressure (psi)	SD=450		1230	Log normal	EU
Langmuir Volume (scf/ton)	SD=34		69	Log normal	EU
Density (g/cm3)	2,1	2,71	2,45	Triangular	EU
Temperature (°C)	10	76	25	Triangular	TNO, NGS gradient

Figure A135 Results from GIIP calculations of Free Gas and Adsorbed Gas

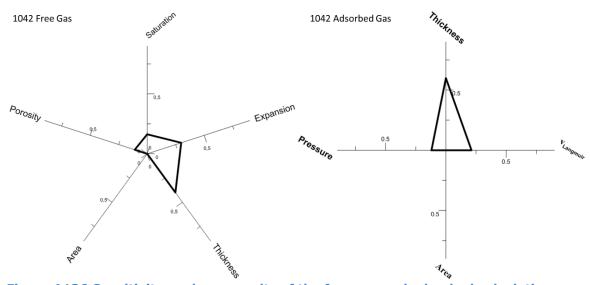


Figure A136 Sensitivity analyses results of the free gas and adsorbed calculations.

Results

Table A171 Overview of the results of the GIIP calculation

Shale	Country	P90 (bcm)	P50 (bcm)	P10 (bcm)
Biogenic shale-1041_Adsorbed	RO	785.65	2162.27	6171.26
Biogenic shale-1041_Free Gas	RO	669.36	2221.52	6812.73
Biogenic shale-1042_Adsorbed	RO	241.25	830.36	2712.13
Biogenic shale-1042_Free Gas	RO	118.55	536.46	2098.47
Total Biogenic GIIP for Basin B1			5750.62	

B02 – Fennoscandian shield – Alum Shale

Index	Basin	Country	Shale(s)	Age	Screening- Index
B2	Fennoscandian shield	S	Alum shale	Cambrian- Ordovician	1017

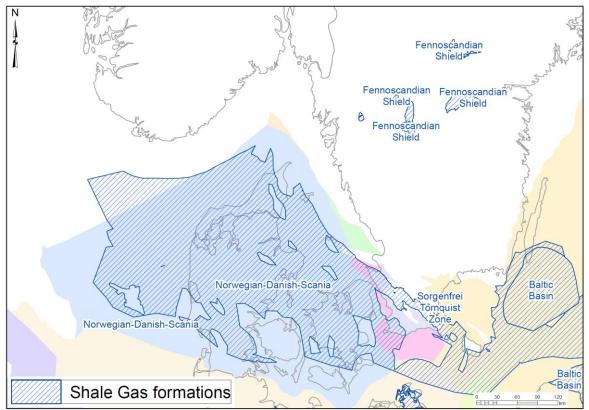


Figure A137 Overview map of the location of assessed formations

Table A172 Summary table of the general chance of success factors as extracted from the geological description of the formation (Assessment step 1, see T4b).

1017	Success factors
Mapping status	Moderate
Sedimentary variability	Low
Structural complexity	High
Data availability	Moderate
HC system	Possible
Maturity variability	Moderate
Depth	Shallow
Mineral composition	Unknown

The second biogenic basin and its formation, the Alum shale of the Fennoscandian shield, is so small that it is not calculated at this point. The formation does show some potential with TOC of 11% on average, but a too small area.

Table A173 Summary of the classification according to assessment step 3 for the individual assessment units.

1017	Object ID	Depth	Maturity	тос	Thickness	Gas/Oil	Class
Onshore	111, 112, 1113	2	2	1	no	biogenic	No

No calculations will be performed as the formation is too thin.