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Fair and Unbiased Algorithmic Decision Making:
Current State and Future Challenges

Songül Tolan?

European Commission, Joint Research Centre (JRC), Seville, Spain

Abstract Machine learning algorithms are now frequently used in sensitive
contexts that substantially affect the course of human lives, such as credit lend-
ing or criminal justice. This is driven by the idea that ‘objective’ machines base
their decisions solely on facts and remain unaffected by human cognitive bi-
ases, discriminatory tendencies or emotions. Yet, there is overwhelming evi-
dence showing that algorithms can inherit or even perpetuate human biases
in their decision making when they are based on data that contains biased hu-
man decisions. This has led to a call for fairness-aware machine learning. How-
ever, fairness is a complex concept which is also reflected in the attempts to
formalize fairness for algorithmic decision making. Statistical formalizations
of fairness lead to a long list of criteria that are each flawed (or harmful even)
in different contexts. Moreover, inherent tradeoffs in these criteria make it im-
possible to unify them in one general framework. Thus, fairness constraints in
algorithms have to be specific to the domains to which the algorithms are ap-
plied. In the future, research in algorithmic decision making systems should be
aware of data and developer biases and add a focus on transparency to facili-
tate regular fairness audits.

? songul.tolan@ec.europa.eu - I thank Emilia Gómez, Marius Miron, Carlos Castillo, Bertin
Martens, Frank Neher and Stephane Chaudron for their thoughtful comments. This article
is part of the HUMAINT research project: https://ec.europa.eu/jrc/communities/
community/humaint
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1 Introduction

1.1 Context

We review the problem of discrimination and bias in algorithmic decision making.
Data-driven algorithmic decision making (ADM) systems are now frequently used
in sensitive contexts that substantially affect the course of many human lives, such
as credit lending, health or criminal justice. This is driven by the idea that ‘objec-
tive’ machines base their decisions solely on facts and remain unaffected by human
cognitive biases, discriminatory tendencies or emotions. Yet, there is overwhelming
evidence showing that algorithms can inherit or even perpetuate human biases in
their decision making when their underlying data contains biased human decisions
(Barocas and Selbst, 2016). This has led to a call for fairness-aware machine learning.
However, fairness as a complex value-driven concept is hard to formalize for the use
in ADM systems. Statistical formalizations of fairness lead to a long list of criteria that
can be useful in one context but can be flawed (or harmful even) in different contexts
or in the presence of bias. Moreover, tradeoffs in these criteria make it impossible to
unify them in one general framework.

We cover the state of the art in evaluating discrimination and bias in algorithmic
decision making. That is, we present common fairness evaluation methods in ADM
systems, discuss their strengths and weaknesses and discuss the tradeoffs that make
it impossible to unify these methods in one general framework. Moreover we discuss
how unfairness appears in algorithms in the first place. We conclude with the notion
that there is no simple one-size-fits-all solution to fairness in machine learning. Re-
searchers who aim at developing fair algorithms will have to take into account the
social and institutional context, as well as the consequences that arise from the im-
plementation of the technology. Finally, we discuss promising research avenues in
addressing this topic in the future and identify practices that help ensuring fairness
in algorithmic decision making.

We focus on ADM systems on the basis of machine learning (ML). Fairness is a
relevant issue in other ML applications such as recommender systems or personal-
ized ad targeting but we focus on the case of supervised ML classification algorithms
for ADM. ML classification algorithms have the potential to support in decision mak-
ing situations which may have an impact on other individuals or the society as a
whole. In many cases, these decisions are linked to a prediction problem at their core.
For instance, a school must decide which teacher to hire among a number of appli-
cants.“Good” teachers have a positive impact on student performance but student
performance cannot be observed when the hiring decision has to be made. Thus,
the decision maker has to “predict", based on observed characteristics, which appli-
cant is likely to belong to the category of “good” teachers. Over the last decades, the
availability of data related to such decision-making processes has provided quanti-
tative ways to exploit these data sources and inform human decision-making, e.g. by
means of (ML) algorithms that can learn from this data and make predictions based
on it. We illustrate the idea ML classification in Figure 1. The rules of ML classifica-
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tion algorithms are learned from datasets on categorized (i.e. labelled) observations
to identify the membership of new observations to given categories. For instance, a
classification algorithm can use a dataset of images labeled as dog and cat pictures to
identify whether a new image belongs to the dog or cat category. Similar to this, ADM
systems use present data to inform decision makers by predicting the probability (or
risk) that a present decision object belongs to a outcome-category that is relevant to
the decision context.

Fig. 1: Illustration of a classification algorithm

Note that we distinguish between bias and (un-)fairness. While we try to iden-
tify and mitigate both, there is also a fundamental difference: fairness is a normative
concept while bias is a technical concept. The literature on fair ML algorithms mainly
derives its fairness concepts from a legal context. Generally, a process or decision is
considered fair if it does not discriminate against people on the basis of their mem-
bership to a protected group, such as sex or race.1 The right to non-discrimination
is embedded in the normative framework of the EU. Explicit mentions of it can be
found in Article 21 of the EU Charter of Fundamental Rights, Article 14 of the Euro-
pean Convention on Human Rights, and in Articles 18-25 of the Treaty on the Func-
tioning of the European Union (Goodman and Flaxman, 2016). In this context we
distinguish between common legal definitions of fairness, direct discrimination (or
’disparate treatment’) and indirect discrimination (or ’disparate impact’) as well as
definitions that can be derived from the legal framework but are based on ADM sys-
tem scores. Direct discrimination occurs when a person is treated differently based
on her membership to a protected group. Indirect discrimination occurs when an ap-
parently neutral rule leads to outcomes that differ based on a persons membership
to a protected group (European Union Agency for Fundamental Rights; European
Court of Human Rights;Council of Europe;, 2018). Discrimination based on scores

1 For instance, Article 14 of the European Convention on Human Rights states as protected
group "sex, race, colour, language, religion, political or other opinion, national or social
origin, association with a national minority, property, birth or other status".
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occurs when the risk scores of an ADM system are not equally predictive of the ac-
tual outcomes for different protected groups.

In contrast, bias is a systematic deviation from a true state. From a statistical per-
spective an estimator is biased when there is a systematic error that causes it to not
converge to the true value that it is trying to estimate. In humans, bias can man-
ifest itself in deviating perception, thinking, remembering or judgment which can
lead to decisions and outcomes differing for people based on their membership to a
protected group. There are different forms of bias, such as the subjective bias of in-
dividuals, data bias, developer bias and institutionalized biases that are ingrained in
the underlying societal context of the decision. Bias, if not controlled for, can cause
unfairness in ADM systems.

In what follows, we first motivate our topic. We start our analysis with a presen-
tation and discussion of definitions of algorithmic fairness. In Section 3 we discuss
sources of discrimination. In Section 4 we elaborate on the future work necessary to
overcome challenges towards fairness-aware ADM systems. Section 5 concludes.

1.2 Fairness and bias in humans and algorithms

Since 2012 the study of fairness in machine learning has been growing rapidly. The
topic also remains in the public media due to frequent articles in major news and
science outlets, such as Financial Times2 or Nature3. In 2018’s leading international
machine learning conference (ICML) the topic on fairness in machine learning cov-
ered several conference sessions, tutorials and critical podium discussions. By now,
there are many computer science conferences dedicated to the topic of fairness in
algorithms. This not only shows that this is a ‘hot topic’, it also emphasizes the rel-
evance of this research domain as more and more algorithmic decision systems are
being deployed frequently in highly sensitive areas that affect the course of human
lives and society as a whole. For instance, in credit lending algorithms are being used
to predict the risk of credit applicants defaulting (Huang et al., 2007). Employers use
ADM systems to select best applicants. Machine learning can also be used to predict
mortality risk of acute patients to improve the targeting of palliative care (Avati et al.,
2017). Or, in criminal justice algorithms are being deployed to inform judges about
the flight risk and re-offense risk of defendants (Kleinberg et al., 2017; Angwin et al.,
2016).

The contexts in which ADM systems are being deployed have one thing in com-
mon: the decisions have prediction problems at their core. Machine learning is a
discipline that aims at maximizing prediction performance (Kleinberg et al., 2015).
The idea of an ‘objective’ machine making decisions solely based on facts in areas
where decisions affect many people’s lives might be appealing. Especially if we are
aware of the subjective biases that human decision makers are prone to (Kahneman,

2 https://www.ft.com/content/46def3ba-8f67-11e8-9609-3d3b945e78cf
3 https://www.nature.com/articles/d41586-018-05469-3
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2011). Human biases in sensitive areas of decision making are a serious problem.
Multiple studies show how extraneous factors, such as mood or hunger, can signifi-
cantly affect judicial decision making (Danziger et al., 2011; Chen et al., 2016). Com-
pared to this, with enough data that is representative of the respective decision prob-
lem machine-learning algorithms can make predictions that are as good as or even
more accurate than human expert predictions. However, due to the opacity of many
ADM systems (because of black-box approaches or secrecy around proprietary al-
gorithms) (Miron, 2018), it is often difficult to have a transparent description of how
a machine decision was made. As a consequence, it is difficult to ensure that these
algorithms are free of biases and that they adhere to the respective standards of fair-
ness. There is overwhelming evidence showing that algorithms can inherit or even
perpetuate human biases in their decision making when they are trained on data
that contain biased human decisions (Barocas and Selbst, 2016).

Indeed, ADM systems can discriminate, as seen in an article titled “Machine Bias”
(Angwin et al., 2016) by the investigative news organization ProPublica4. The authors
analyzed the re-offense risk assessment tool COMPAS which is being deployed in
federal US criminal justice systems. Angwin et al. (2016) stated that this tool was “bi-
ased against blacks” as among the defendants who did not re-offend in the two year
window of analysis blacks were more than twice as likely to be classified by COMPAS
as medium or high risk of re-offense as whites (42 percent vs. 22 percent). North-
pointe (the company that created COMPAS) rejected ProPublica’s reproach of dis-
crimination by arguing that their score was “calibrated” as blacks and whites with
equal risk scores have practically the same probability of actual re-offense. Subse-
quent research shows that it is mathematically impossible to satisfy both notions of
fairness if the true recidivism probability differs between both groups. In the follow-
ing, we elaborate on this dispute and discuss the research that followed it.

2 Algorithmic fairness

Principally, in a legal context there is fairness when people are not discriminated
against based on their membership to a (protected) group or class. In practice there
are several definitions of algorithmic fairness that try to achieve this goal. In fact, in
the literature we talk of at least 21 definitions of fairness (Narayanan, 2018). Many of
these definitions are also surveyed and discussed in Berk et al. (2017) or Narayanan
(2018). We distinguish between two categories of fairness: individual fairness and
group fairness (also known as statistical fairness). In addition, we distinguish be-
tween three categories of statistical fairness definitions that are based on: predicted
classifications, a combination or predicted classifications and actual outcomes, and
a combination of predicted risk scores and actual outcomes. As the more applica-
ble definition in algorithmic decision making, group fairness has been studied more
extensively in the literature. For illustrative purposes we present these definitions in

4 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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the classification context of re-offense prediction in criminal justice with a binary
outcome (high and low re-offense risk) but most of the following definitions can also
be extended to a context with multiple outcomes. Thus, we present the case of a
ML algorithm that predicts the risk R that a defendant will re-offend. We denote the
outcome re-offense as Y , where Y = 1 if the defendant re-offended. The predicted
outcome is represented by Ŷ . The ML algorithm classifies someone as high risk for
recidivism, i.e. Ŷ = 1 if the risk score R surpasses a predefined threshold (rt ), i.e.
R > rt . We further observe information on characteristics (or features) of a defen-
dant in a dataset. We denote the matrix of these features X . We further observe the
protected attribute A, such as gender or race.

2.1 Statistical/group fairness

Statistical fairness definitions are best described with the help of a confusion matrix
which depicts a cross-tabulation of the actual outcomes (Y ) against the predicted
outcomes (Ŷ ), as shown in Table 1. The central cells report counts of correct and
wrong classifications of the algorithm.

Table 1: Confusion Matrix
Predicted Classification

Ŷ = 1 Ŷ = 0

O
u

tc
o

m
e Y = 1

True Positives
(TP)

False Negatives
(FN)

False Negative Rate (FNR)
F N /(T P +F N )

Y = 0
False Positives

(FP)
True Negatives

(TN)
False Positive Rate (FPR)

F P/(F P +T N )
False Omission Rate (FOR)

F P/(T P +F P )
False Discovery Rate (FDR)

F N /(F N +T N )

Cross-tabulation of actual and predicted outcomes.

The correct (True) classifications are reported in the diagonal of the central table
and the incorrect (False) classifications in the off-diagonal of the central table. Dif-
ferent error rates are presented in the last row and the last column. False negative
rate (FNR) and false positive rate (FPR) are defined as fractions over the distribution
of the true outcome. False discovery rate (FDR) and false omission rate (FOR) are
defined as fractions over the distribution of the predicted classification. Using this
setup we now describe three broad categories into which the different definitions of
group fairness fall.
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2.1.1 Based on predicted classifications

This category of group fairness is also known as demographic parity and is based
on predicted classifications (Ŷ , see also the columns in Table 1). Demographic parity
is fulfilled if the following condition holds:

E[Ŷ = 1 | A = a] = E[Ŷ = 1 | A = b] (1)

meaning that the share of defendants classified as high risk should be equal across
different protected groups. In other words, people from different protected groups
should have on average equal classifications. This definition can also be extended to
conditional demographic parity:

E[Ŷ = 1 | X = x, A = a] = E[Ŷ = 1 | X = x, A = b] (2)

which states that the share of defendants classified as high risk should be equal
for defendants with the same realizations in their ‘legitimate’ characteristics X but
different realizations for the protected attribute A. Where ‘legitimate’ features are
characteristics that are considered OK to discriminate against, as they are highly pre-
dictive of the outcome but not of the protected attribute. Put simply, people with the
same legitimate characteristics from different protected groups should on average
have the same classification. This is also related to affirmative action which is partic-
ularly relevant in recruitment decisions.

The problem with this fairness definition is the missing link to the actual out-
come, which could cause the problem of the self-fulfilling prophecy or reverse to-
kenism Dwork et al. (2012). In case of the self-fulfilling prophecy the decision maker
could fulfill demographic parity by classifying the same share of people across pro-
tected groups as low risk but she could select truly low risk people from one group
and make a random selection from the other group causing a bad track record for
the group with random selection. This situation could occur intentionally but it can
also happen if prediction performance of the classifier is better for one group than
the other. For instance, if women were released more often than men, we would have
more observations for women than for men on which we could train a classifier with
a better predictive performance, causing even worse outcomes for released men as
we continue to apply this classification algorithm. In case of reverse tokenism, the
decision maker could intentionally not release low risk females as ‘tokens’ to also not
release other males with equal risks. Finally, demographic parity implicitly assumes
that there are no intrinsic differences between different protected group features, i.e.
between men and women or people of different races. This should hold despite the
fact that people from different protected groups are often exposed to very diverging
history that had in impact on the societal composition of each respective group. Nat-
urally, one might conclude that this is a very strict assumption which often does not
hold in reality.
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2.1.2 Based on predicted and actual outcomes

This definition of fairness relates to the principle of indirect discrimination. In
this case we look at both predicted and actual outcomes which can be deducted
from the individual cells in Table 1. ProPublica’s approach to discover discrimina-
tion in COMPAS falls within this category. Following ProPublica’s argumentation this
definition can be expressed in other words as follows. If the classifier gets it wrong, it
should be equally wrong for all protected groups, since being more wrong for one
group would result in harmful (or beneficial) outcomes for this group compared
to the other group. This would be discriminatory. An equivalent statement can be
made for correct classifications. Formal fairness definitions of this category have
been made by Hardt et al. (2016); Chouldechova (2017) and Zafar et al. (2017a). For
instance error rate balance as in Chouldechova (2017) is given if the following con-
ditions hold.

E[Ŷ = 1 | Y = 0, A = a] = E[Ŷ = 1 | Y = 0, A = b] (3)

and

E[Ŷ = 0 | Y = 1, A = a] = E[Ŷ = 0 | Y = 1, A = b] (4)

Meaning that FNR and FPR (see Table 1) should be equal across different pro-
tected groups. Chouldechova (2017) also shows how unbalanced error rates can lead
to harmful outcomes for one group in the case of re-offense prediction as predic-
tions of higher re-offense risk lead to stricter penalties for the defendant. Equivalent
formalizations can be made for other error rates as well as conditions on true rates
(e.g. equal TPR, defined as “equal opportunity" in Hardt et al. (2016)).

Problematically for this category of fairness definitions, Corbett-Davies et al. (2017)
show that any statistic from a confusion matrix (which is based on counting correct
and wrong classifications) can be manipulated through (intentionally) harmful ex-
ternal changes to the real-world processes that are reflected in the data. For instance,
in the case of rec-offense risk prediction, the FPR (see Table 1) can be lowered by ar-
resting more innocent people and classifying them as low risk. The relevance of this
problem, called infra-marginality is highlighted in the case of police stop practices
in North Carolina (Simoiu et al., 2017).

2.1.3 Based on predicted risk scores and actual outcomes

This category of fairness definitions is commonly known as calibration. While
the other group fairness definitions relate to the fairness of classifications, calibra-
tion5 relates to the fairness of risk scores (R). Calibration means that for a given

5 Also known as predictive parity (Chouldechova, 2017)
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risk score R = r , the proportion of people re-offending is the same across protected
groups. Formally, the following condition has to hold for calibration:

E[Y = 1 | R = r, A = a] = E[Y = 1 | R = r, A = b),∀r ∈ R] (5)

This is also the fairness criteria that Northpointe (the company that owns COM-
PAS) shows to fulfill for the COMPAS risk score. In fact, they reject ProPublica’s dis-
crimination reproaches by showing that COMPAS is calibrated for race.6 Clearly, the
two fairness criteria are in conflict, as we discuss in Section 2.4.

Barocas et al. (2018a) show that calibration is often satisfied by default if the data
on which the classifier is trained on (X ) contains enough other features that pre-
dict the protected features in A. This also means that calibration as a fairness condi-
tion would not require much intervention in the existing decision making processes.
Moreover, calibration, too can be manipulated and there is no way to identify manip-
ulation if we only have access to the score (R) and the outcome (Y ). Corbett-Davies
et al. (2017) show how a risk score can be manipulated to appear calibrated by ignor-
ing information about the favoured group which they relate to the historical practice
of redlining in credit risk assessments.

2.2 Individual fairness

Except in the case of conditional demographic parity, group fairness definitions only
aim to ensure equality between group averages. In contrast, individual fairness takes
into account additional characteristics of individual observations (X ) and looks, as
the name says, at differences between individuals rather than groups. It is driven
by the notion that similar people should be treated similarly. Similarity depends on
a function that determines the distance between two individuals (i , j ) in terms of
their predicted outcomes (Ŷi , Ŷ j ) and individual characteristics (Xi , X j ). Individual
fairness is given if the distance between the predicted outcomes is not greater than
the distance between the individual characteristics (Dwork et al., 2012). In a sense
conditional parity is a more specific case of the more generic definition of individual
fairness and both definitions come with the same problem as they rely on the choice
of features for the vector X . This is not a trivial task and Dwork et al. (2012) leave this
question open for further research. The non-triviality of choosing the right attributes
is also reflected in the following section.

2.3 Direct vs. indirect discrimination

At a first glance it seems that we can fix the problem of algorithmic discrimination
by restraining the algorithm from taking into account the protected group features,

6 Although, COMPAS is not calibrated for gender (Corbett-Davies et al., 2017).



Fair and Unbiased Algorithmic Decision Making 11

such as gender or race. That is, we impose on the decision making algorithm to re-
main blind towards sensitive attributes. In practice, this relates to the tension be-
tween direct and indirect discrimination. In EU Law both the right to direct and in-
direct non-discrimination are two highly held principles. The breach of either one of
these principles is only justified in exceptional cases and can only be decided upon
on a case-by-case basis (Fribergh and Kjaerum, 2011).

The tension between these two principles is a common problem in the field of
machine learning. For instance, Chouldechova (2017) shows that if the distribution
of risk is different for different protected groups, then adjusting for the criteria of
balanced error rates requires the setting of different classification thresholds (rt ) for
different groups; i.e. holding people from different groups to different standards to
achieve equal outcomes. Or Corbett-Davies et al. (2017) show that COMPAS is not
calibrated between men and women as women have a lower re-offense prevalence
than men for the same risk score. They argue that adjusting for the protected feature
‘gender’ would help to adjust the risk score for this type of discrimination. Generally,
many computer scientist argue for the necessity of using information on sensitive at-
tributes to adjust for fairness in data-driven decision making (Žliobaitė and Custers,
2016)

In any case, keeping a classifier blind to sensitive attributes is not a useful strat-
egy to prevent indirect discrimination. In practice discrimination can still feed into a
data driven decision system if the protected group features are correlated with other
features or the predicted outcome itself. In the presence of big data, this is almost al-
ways the case (Hardt, 2014; Barocas and Selbst, 2016). In order to circumvent this
problem other researchers suggest to use the protected group feature during the
training of the classifier but not when it is used for prediction (Zafar et al., 2017b).
But Lipton et al. (2018) show that this practice does not prevent disparate impact if
other features are predictive or partly predictive of group membership. In the con-
text of credit risk classification, Hardt et al. (2016) quantify by how much different
fairness constraints are breached as race blindness is imposed on the classifier.

Thus, an overwhelming part of the computer science literature supports the view,
that blindness to sensitive attributes is not a good way to account for fairness in
algorithms. Yet, the in May 2018 implemented EU General Data Protection Regu-
lation (GDPR) specifically addresses discrimination through profiling (or algorithm
training) on the basis of ‘sensitive data’, where sensitive data could at least cover the
sensitive group features directly, such as gender or race or at most cover features
correlated with the sensitive group features, such as the postal code (Goodman and
Flaxman, 2016). In the context of data-driven decisions in sensitive areas such as
credit lending, it is also completely understandable that individuals may not want
to trust credit providers with their sensitive data if they might as well use it with
malicious intentions. It may also put their privacy at risk. Therefore, Kilbertus et al.
(2018) propose a protocol from secure multi-party computation between individ-
ual users, providers of data-driven services and a regulator with fairness aims. This
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method allows for fairness certification and fairness adjustments of ADM systems
while keeping sensitive attributes encrypted to both, the regulator and the ADM sys-
tem provider. Yet, legally implementing such protocols poses additional challenges
as we would have to decide on who should perform such audits and who should
carry the costs of these audits (Goodman, 2016b).

2.4 Tradeoffs

There are several methods to ensure that a classifier fulfills the above mentioned
fairness criteria. In most cases, adjusting for fairness is seen as a constrained opti-
mization problem where the difference between the actual outcome (Y ) and the pre-
dicted classification (Ŷ ) is minimized subject to the constraints of different fairness
criteria. Clearly, imposing too many restrictions to the classifier at once will make it
impossible to find a meaningful solution.

In fact, several mathematical proofs show the incompatibility of these fairness
criteria under fairly weak assumptions. Most prominently, Kleinberg et al. (2016) and
Chouldechova (2017) mathematically proof that it is impossible to reconcile calibra-
tion and fairness criteria based on a combination of predicted and actual outcomes
(Section 2.1.2) if the prevalence of the outcome differs across different protected
groups. Berk et al. (2017) illustrates the seriousness of this result. It means that any
one classifier can never be adjusted for all fairness criteria if prevalence is different
for different groups. Instead, the choice of the fairness criteria depends on the re-
spective moral context of the decision. That is, this finding takes away the notion of
objectivity in adjusting ADM systems for fairness.

Finally, Corbett-Davies et al. (2017) show that there also exists a trade-off be-
tween these common measures of fairness and utility. In their criminal justice case,
utility depends on public safety (keep as many dangerous people in prisons as possi-
ble) and the public costs of incarceration (people in prison, especially innocent peo-
ple in prison impose costs on society). Compared to a classifier that does not specifi-
cally account for fairness, different classifiers adjusted to different fairness risk crite-
ria lead to over-proportional decreases in public safety or increases in public costs.

To sum up, the problem of algorithmic discrimination has no one-size-fits-all so-
lution as different fairness definitions have different meanings in different contexts
and not all fairness criteria can be simultaneously fulfilled in one decision process.
In addition, every decision process involves different stakeholders: decision-makers,
individuals affected by the decision, and sometimes the general public as some de-
cisions (such as in the case of criminal justice) also have an impact on the society
as a whole. Navigating these tradeoffs means that decisions on algorithmic fairness
criteria have to be made on a case by case basis. Getting from formal abstract defi-
nitions, to a meaningful fairness context means defining an answer to the following
questions in each case:

• Who are the stakeholders involved?
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• What is the role of each stakeholder?
• What are the immediate costs for each stakeholder?
• What are the long term costs or consequences of the decision taken for each

stakeholder?
• Do legal/moral foundations already exist?

For instance, in the case of criminal justice, the cost-benefit analysis between
safety, short-term costs of incarceration as well as long term consequences of incar-
ceration (Corbett-Davies and Goel, 2018) provide a good starting point for a mean-
ingful context in which to discuss fairness. However, this should be extended by tak-
ing into account the differences in costs for different stakeholders, such as the gen-
eral public, institutions and decision makers as well as the people to whom these
decisions are applied to. In addition, fairness restrictions to the decision should ad-
here to already existing legal and moral foundations in each context. Domain experts
can help in the definition of this meaningful context.

Nevertheless, all these definitions remain meaningless if we do not take into ac-
count the different sources of discrimination in algorithms. Only when we under-
stand the underlying mechanisms that lead to discrimination in algorithms can we
ensure that adjusting for fairness will lead to overall improvements. These mecha-
nisms will be discussed in more detail in the following section.

3 Sources of discrimination

One of the major obstacles towards fair machine learning is the presence of bias.
Using machine learning for ADM systems in contexts that affect people is per con-
struction prone to many sources of bias. Figure 2 illustrates where bias can occur in
the process of developing a ML algorithm.

For instance, we know that humans can have their individual biased preferences
(Goodman, 2016a) or that we are prone to cognitive biases (Kahneman, 2011). If the
same bias is shared by many individuals, it manifests itself in institutionalized bias.
In addition, machine learning is data driven and data is per construction a reductive
description of the real world. Naturally, data can never capture all real world pro-
cesses (Calders and Žliobaitė, 2013). We distinguish between biases that are already
in the data due to biased data-generating processes, biases that occur during the de-
velopment of the algorithm due to biased developers and other human biases that
can be reflected in the data but that are more difficult to define in a pure fairness and
machine-learning context.

3.1 Bias in data

Barocas and Selbst (2016) elaborate on the different ways that data (and in particular
‘big data’) can be biased. For instance, since data for decision making represents a
collection of past decisions, it will also inherit the prejudices of prior decision mak-
ers. In addition, decision makers are also affected by existing biases in society and
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Fig. 2: Sources of unfairness in machine learning

these will be reflected in the data, too. In other cases big data contains correlations
relevant for decision making that are in fact only based on patterns of exclusion and
unequal treatment.

The problem of selective labels (Kleinberg et al., 2017) occurs due to the nature of
data used for the generation of ADM systems as records from previous human deci-
sions. Then, we often only observe the outcome (or label) of one side of the decision.
For instance, in health we only observe the health outcomes of patients who were
assigned a treatment. Or in judge bail decisions we only observe crimes committed
by released defendants, not of jailed defendants (Kleinberg et al., 2017). Predicting
crime rates for the jailed is problematic as judges might have selected these individ-
uals based on features not observed in the data, thus creating biased machine pre-
dicted outcomes based on observables. There would be no problem if researchers
could observe what would have happened, had the jailed been released. However,
this is the ‘counterfactual’ scenario that does not occur in the real world and thus,
can never be observed. The authors address this problem by applying a technique
from the econometric literature (as this literature mostly deals with causal inference)
called ‘contraction’ (Lakkaraju et al., 2017) in which the researchers exploit the ran-
dom allocation of defendants to judges. An alternative approach would be to assume
that judge decisions could be mostly explained by the features observed in the data,
i.e. a ‘selection on observables’ assumption combined with a sensitivity analysis as
conducted by Jung et al. (2017) and similarly combined with a Bayesian approach by
Jung et al. (2018b) and Jung et al. (2018a). These identification techniques are drawn
from the econometric causal inference literature. These approaches require a deeper
understanding of the data-generating process and the institutional background of
the data which heavily increases the workload invested in evaluating an algorithm
for fairness. However, this investment is valuable since ignoring this bias in the data
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would lead to biased results.

Another problem is sample bias which occurs when the data sample on which
the algorithm is trained for is not representative of the overall population due to a
systematic error in data collection. Any decision making system based on this sam-
ple would be biased in favour or against the over- or underrepresented group (Baro-
cas and Selbst, 2016; Drosou et al., 2017; Chouldechova and Roth, 2018). There are
many reasons why a group would be over- or underrepresented in the data.

One of this reasons is measurement error. For instance, in the criminal justice
case, the risk of re-offense is measured through re-arrest. However, this could be a
poor proxy for actual crimes committed if one protected group has a higher likeli-
hood of being arrested than the other. For instance, predictive policing that directs
higher police awareness to neighbourhoods with a higher share of one protected
class could also lead to over-proportional arrests of this group. So far, the literature
has only come up with one way to address this and other problems of measurement
error: improve measurement. For instance, Corbett-Davies et al. (2017) address mis-
measurement of crimes committed by only counting incidences of violent crime
as evidence suggests that this constitutes a better proxy for actual re-offense. Mul-
lainathan and Obermeyer (2017) show how the prediction of strokes (in a medical
setting) can be biased due to mismeasurement of the stroke event if hospital visits are
used as a proxy. This could have far-reaching societal implications as marginalised
people or just those that cannot afford health insurance would be less likely to visit a
hospital.

In addition, sample bias can also have deep societal roots. Especially minorities
are often vulnerable to being underrepresented in relevant datasets. This point has
also been made by Lerman (2013) as he discusses the problem of “the nonrandom,
systemic omission of people who live on big data’s margins, whether due to poverty,
geography, or lifestyle, and whose lives are less ‘datafied’ than the general popula-
tion’s." Crawford (2013) also illustrates another case of under-representation in data
related to the smartphone app ’Street Bump’. The app detects potholes when people
drive over them. This information has been used to allocate city resources in the fix-
ing of potholes to areas with high prevalence of potholes. However Crawford (2013)
points out that the distribution of signals from the app might be biased as many peo-
ple from lower income neighbourhoods might not be able to afford a smartphone
(note that this paper was written in 2013 and the app was used prior to this).

Kallus and Zhou (2018) address the problem of misrepresentation in the context
of Police stop-and-frisk, where biased police behaviour leads to over-proportional
stopping of racial minority group. They also show that adjusting a classifier for fair-
ness while ignoring sample bias still leads to discriminatory classifications. That is,
simple fairness adjustments to not account for biased data.
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Finally, a dataset might induce bias in an algorithm if it is trained on proxy vari-
ables, i.e. features that are highly correlated with the protected group feature. We
have discussed the practice of “blindness to sensitive attributes” in Section 2.3 and
argued for the conscious accounting of sensitive attributes in the training data. Still,
including these variables in the training of the classifier can lead to unfair outcomes.
In this case we face the tradeoff that the criteria that are useful in making good clas-
sifications can also be very likely to induce discrimination across protected group
features (Barocas and Selbst, 2016). This can be addressed, either by conducting a
counterfactual analysis Kilbertus et al. (2017) and Kusner et al. (2017) (which would
require a creative identification strategy) or by bayesian estimation techniques and
the assumption that the prediction of the classifier is independent of the protected
group feature if we condition on observed features (Jung et al., 2018a).

3.2 Bias in algorithm development

In addition to data bias as a source of unfairness, there are also biases introduced
by wrong practices during the training of the algorithm. Throughout the develop-
ment of a (fair) algorithm, researchers are faced with numerous decisions that could
lead the outcomes to very different directions, e.g. the selection of the dataset, the
selection and encoding of features selected from the dataset, the selection and en-
coding of the outcome variable, the rigour in identifying sources of bias in the data,
the selection and specification of specific fairness criteria etc.. Every decision made
contains an implicit assumption. Green (2018b) calls this “silent normative assump-
tions”. They are silent because they seem hidden behind an adherence to mathiness
and procedural rigour in the development of the algorithm (Green, 2018b). More-
over, in many cases the underlying assumptions can be normative. For instance,
Dwork et al. (2012) pursue the fairness idea that similar people should be treated
similarly but the function and feature that define similarity will have to be deter-
mined in the development of the fair classifier.

Barocas and Selbst (2016) shows how choosing and specifying the outcome vari-
able relies on normative assumptions. This is also manifested in the specification of
the “omitted payoff bias” in Kleinberg et al. (2017). The point here is that ADM sys-
tems for judges, like COMPAS, only evaluate the case along one dimension, namely
re-offense risk. On the other hand, judges may aim to satisfy multiple goals in their
ruling, such as preventing further crimes by the offender, deterring others from com-
mitting similar crimes, rehabilitating offenders, appropriate punishment, societal
costs etc.. Thus, replacing a human decision maker by an ADM system could reduce
the normative dimensions of rulings in criminal justice to a single goal causing a
shift in the value grounds of the criminal justice system. This might go unnoticed if
these ‘silent’ assumptions are not made open to relevant stakeholders for discussion
(Green and Hu, 2018).

The overall procedure of developing algorithms that are adjusted to any one of
the definitions of algorithmic fairness can be criticized as biased if it does not take
into account the social and moral context of the decision made. For instance, the
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above mentioned Northpointe and ProPublica dispute due to the incompatibility of
the respective fairness criteria (calibration and error balance) is rooted in the fact
that black offenders have a higher re-offense risk than white offenders. Taking this
fact as given when developing the algorithm would however ignore a long history of
societal and institutionalized racism that has led to the present situation (Green and
Hu, 2018).

Finally, we should take into account feedback and equilibrium effects. Feedback
occurs when we change decision making processes and outcomes (e.g. through the
implementation of ADM systems) which yields consequences that are not reflected
in the data (of past decisions) that we use to train the ADM system on. Equilibrium
effects are present when decisions on individuals also affect the composition of the
group that the individual operates in (Barocas et al., 2018b). For instance, the deci-
sion of granting a loan has consequences on the person that is object to the decision
and the people in its environment. This person can use this loan to open a success-
ful business which will affect her credit score in the future. This might also affect the
people in the environment of the business or the credit score of other individuals
with the same characteristics (Liu et al., 2018). A jailed person will have a dent in its
criminal history and consequently a harder time reintegrating into society after the
jail sentence is served. A person that never gets a loan for a planned business might
have a harder time improving its financial situation and will consequently most likely
be denied credit in the future, too. Not taking these consequences and group effects
into account will lead to a reinforcement of historical and group discrimination.

3.3 Representational harms

We have discussed sources of bias in the data as well as in the development of the al-
gorithm in the previous sections. There are other forms of bias that are more difficult
to sort into either one of these categories as they do not immediately lead to measur-
able unequal treatment or unequal outcomes for protected groups. This type of bias
is more inherent in algorithms that affect our everyday lives, such as image search
engines, translation tools or autocomplete algorithms for text messengers. For in-
stance, Kay et al. (2015) provides evidence how image search results for occupation
terms such as ‘CEO’ reflect (and even perpetuate) prevailing stereotypes and prej-
udices about the gender and race composition of such occupations. That is, search
results for ‘CEO’ or ‘Software developer’ show mostly men. Another example is given
by google translate. Translating the sentences “She is a doctor. He is a nurse.” into a
(in this case) gender-neutral language such as Turkish and then translating it back to
English yields the result “He is a doctor. She is a nurse.”. This mirroring of prejudices
in algorithms that we use every day is termed ‘representational’ harms (Crawford,
2013). The problem with these harms is that these algorithms affect the environment
we experience in our everyday lives causing us to assume that these stereotypical and
prejudiced notions are the norm. The harms from this are more long-term and more
subtle but they reinforce maltreatment and subordination of protected groups.
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4 Challenges and research directions in algorithmic fairness

Research on fairness in machine learning still faces many challenges. In the formal-
ization of fairness we face the problem that different definitions are useful in differ-
ent contexts. These definitions cannot be unified in one generic framework as we
face tradeoffs between individual definitions. We deal with these tradeoffs by em-
bedding the fairness aspects of decisions that we want to address algorithmically in
societal, institutional, legal and ethical frameworks on a case-by-case basis. We have
to accept that there is no general once-size-fits-all solution to fairness in algorithms.
Therefore, ADM system developers will have to collaborate with domain experts.
For this purpose, ADM systems also have to be explainable.

There are two promising ways to avoid unfairness due to biased data. One is to
fully understand the data used. The other is to improve the quality of the data used.
Methods of causal inference will become more relevant in order to understand the
underlying mechanisms of a decision process as well as identify sources of bias in
data (Kleinberg et al., 2017; Jung et al., 2018a). This goes in line with improving the
knowledge of researchers on the data used as well as increasing awareness for the
importance of understanding the data-generating process (Gebru et al., 2018). In
addition, a focus on data diversity is crucial to address problems of discrimination
against minorities (Drosou et al., 2017).

Implementing dynamic feedback and equilibrium effects into models of decision
making is necessary to understand the consequences of changing decision processes
(Liu et al., 2018; Corbett-Davies and Goel, 2018). Further research on real world ap-
plications of ADM systems is necessary to understand how human decision makers
interact with machine support (Green, 2018a). This also means that algorithms will
have to undergo frequent reevaluations. No algorithm can be fair forever without
readjustments. Again, increased diversity becomes crucial when it comes to subtle
representational harms. In this case, not only the diversity in the data is important
but also diversity in the group of ADM system developers (Crawford, 2017).

5 Conclusion

This report reviews the literature on fairness in machine learning. Fairness in algo-
rithmic decision making is crucial as algorithms affect more and more sensitive ar-
eas where decisions affect individual lives and society in general. We discuss formal
specifications of algorithmic fairness, their strength and weaknesses as well as the
tradeoffs among them. Ensuring fairness in machine learning is no trivial task. This
is because we are trying to implement a complex social construct into a metric that
is understandable to machines. Ignoring the complexities of fairness that cannot be
expressed in metrics is doomed to end up in unfairness. Finally, we discuss future
research directions that seem promising in addressing the problems that arise in the
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development of fair algorithms. It is apparent that there will never be a simple one-
size-fits-all solution to this. Research must increasingly and explicitly take into ac-
count the social and institutional context and keep track of the consequences that
arise from the implementation of the algorithm. (Gomez, 2018)

This is costly but there is also a merit in this as it ensures that decisions become
accountable and it forces the discussion on fairness in decision making to become
transparent. Thus, transparency, which is not mere access to source code but a de-
gree of algorithmic explainability that enables humans to understand and challenge
algorithmic decisions"(Gomez, 2018) is crucial to achieve fairness in algorithmic de-
cision making.
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