

CAP monitoring approach – Technology meets Policy

Sen4CAP Objectives

- Provide evidence how Sentinel derived information can support the modernization and simplification of the CAP in the post 2020 timeframe
- Provide validated algorithms, products, workflows and best practices for agriculture monitoring relevant for the management of the CAP

2017 ag. season – local sites

Use cases & Bench-Malgo development marking

Use case demo & training

Use case season – 6 national cases 2019 ag. season – 6 NRT national demo Validation & Assessment

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 2

2019 Sen4CAP processing just started for 6+1 Paying Agencies running on distinct DIAS VMs along the agricultural season

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 3

User Requirements in terms of IACS use cases

Use cases

Crop diversification

Permanent grassland monitoring

EFA-Land lying fallow

EFA-Catch crops

EFA-Nitrogen-fixing crops

Land abandonment

Interactive visualization

LPIS update

Claimless system

ESA UNCLASSIFIED - For Official Use

ESA | 10/0., J19 | Slide 4

Sentinel-derived indicators and markers – crop type

Large dataset from Sentinel-1 & 2 for a national coverage Sen4CAP system to process full time series on the cloud for 6 Paying Agencies

esa

Sentinel-2 using LPIS (min. field size: 3 10-m pixels) 22 object-based metrics every 10 days

Sentinel-1 using LPIS (min. field size : 1 pixel)
5 weekly object-based metrics + temporal features

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 6

2018: National crop type mapping over 6 countries

Example - Romania (100+ crop types)

ESA | 10/04/2019 | Slide 15

2018: National crop type mapping over 6 countries Romania (100+ crop types)

2018: National crop type mapping over 6 countries Example over Romania

2018: National crop type mapping over 6 countries

Synthesis of preliminary performances of crop type identification in different EU agricultural landscapes for 2018

- 16 millions of parcels assessed for 600 000 sq.km²
- Overall accuracies from 71 % to 95 % (all > 70 %, 3 countries > 80%)
 - ⇒ **Possible improvements identified** (refined crop type list, better selection the calibration dataset, exclusion of poorly defined classes, stratification,...
- Limited impact of parcel size and shape on the assessed areas (0,3 % to 8 %)

Country	Intry Area Of Interest				Parcels no	ot assessed (%)	Parcels n because	Overall	
		input	(km²)	(nr)	Nr	Area	Nr	Area	Accuracy
NLD	100 % country	S2 + S1	42508	802217	17,27%	4,49%	9,25%	1,03%	94,95%
CZE	100 % country	S2 + S1	78873	593787	14,11%	1,71%	8,40%	0,30%	82,75%
LTU	100 % country	S2 + S1	64897	1153796	19,63%	3,17%	16,16%	1,46%	78,74%
ITA	100 % of the AOI (5 Regions)	S2 + S1	67270	8527409	78,60%	36,12%	33,94%	15,49%*	72,37%
ESP	100 % of the AOI (Castilla Y Leon)	S2 + S1	94226	3540880	35,71%	28,62%	34,60%	27,78%*	81,83%
ROU	100 % country	S2 + S1	238369	6127057	38,22%	10,96%	35,77%	8,34%	71,16%

^{*} Not to be considered because of parcel duplicate

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 19

Sentinels indicators and markers – veg. indicators

Sentinel-based vegetation indicators as auxiliary data Czech Republic

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 21

Sentinels indicators and markers – grassland mowing CSa

Mowing detection based on the detection of S2 Vegetation Indices decrease and S1 coherence increase

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 22

S2 mowing detection by VIs decrease wrt expected model CSa

Detection of **VIs decrease with respect to the expected model** of unmowed grassland for that area

Grassland mowing detection – detection attributes

 Grassland mowing product contains, for each parcel, information about number and temporal intervals of mowing events detected

R III			100	No les	V 30	11	1	-		121	- 1	100	- 64	188	No.	Duaduat info for
parcel_id	crop_code	mow_n	m1_dstart	m1_dend	m1_conf	m1_mis	m2_dstart	m2_dend	m2_conf	m2_mis	m3_dstart	m3_dend	m3_conf	m3_mis	m4_dst	
31.0000002869728.001	265	3	2018-05-08 00:0	2018-05-21 00:0	0.554000	S2	2018-07-12	2018-07-20	0.55300	S2	2018-08-24	2018-09-18	0.518	S2	0	✓ Parcel identifier each parcel
31.0000002869729.001	265	3	2018-05-08 00:0	2018-05-21 00:0	0.522000	S2	2018-07-07	2018-07-12	0.50200	S2	2018-08-24	2018-09-13	0.517	S2	0	• Parcer identifier
31.0000002869730.001	265	3	2018-05-08 00:0	2018-05-21 00:0	0.519000	S2	2018-07-07	2018-07-12	0.50700	S2	2018-08-24	2018-09-13	0.517	S2	0	✓ Grassland Crop type
31.0000002811919.002	265	3	2018-05-08 00:0	2018-05-11 00:0	0.777000	S2	2018-05-21	2018-06-20	0.71200	S2	2018-08-06	2018-08-26	0.712	S2	0	Grassiana crop type
31.0000002869731.001	265	1	2018-09-08 18:0	2018-09-14 18:0	0.486000	S1	0	o	0.00000	0	0	0	0.000	0	0	✓ Number of mowing events (maximum 4)
31.0000002811948.002	265	1	2018-08-09 18:0	2018-08-15 18:0	0.448000	S1	0	0	0.00000	0	0	0	0.000	0	0	,
31.0000002869732.001	265	0	0	0	0.000000	0	0	0	0.00000	0	0	0	0.000	0	0	✓ For each mowing event (up to 4):
31.0000002812236.002	265	3	2018-05-03 00:0	2018-05-06 00:0	0.632000	S2	2018-06-07	2018-06-27	0.74700	S2	2018-08-14	2018-09-13	0.641	S2	0	
31.0000002869733.001	265	0	0	0	0.000000	0	0	0	0.00000	0	0	0	0.000	0	0	 Temporal interval in which the mowing
31.0000002869734.001	265	1	2018-09-08 18:0	2018-09-14 18:0	0.422000	S1	0	0	0.00000	0	0	0	0.000	0	0	event occurred (t_start and t_end)
31.0000002869735.001	265	0	0	0	0.000000	0	0	0	0.00000	0	0	0	0.000	0	0	Confidence level in terms of
31.0000002869736.001	265	0	0	0	0.000000	0	0	0	0.00000	0	0	0	0.000	0	0	o Confidence level in terms of
31.0000002813128.002	336	0	0	0	0.000000	0	0	o	0.00000	0	0	0	0.000	0	0	probability of right mowing (conf)
31.0000002869737.001	265	0	0	0	0.000000	0	0	0	0.00000	0	0	0	0.000	0	0	o Satellite mission data used for
31.0000002826797.002	265	4	2018-04-21 00:0	2018-05-06 00:0	0.536000	S2	2018-05-26	2018-06-07	0.62500	S2	2018-07-02	2018-07-12	0.609	S2	2018-08-	
31.0000002869738.001	331	1	2018-08-09 18:0	2018-08-15 18:0	0.171000	S1	0	0	0.00000	0	0	0	0.000	0	0	detection of mowing (Si, S2 or both)
31.0000002826801.002	265	3	2018-05-26 00:0	2018-06-07 00:0	0.560000	S2	2018-07-12	2018-07-15	0.53100	S2	2018-08-21	2018-09-13	0.616	S2	0	 Compliancy level
31.0000002869739.001	331	0	0	0	0.000000	0	0	0	0.00000	0	0	0	0.000	0	0	o compliancy level

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 24

2018 Grassland mowing events detection

Sentinels indicators and markers – ag. practices (EFA) esa

Sentinels markers for ag. practices (EFA monitoring) **CSA**

10 markers related to vegetation state or vegetation change on a parcel

	MARKERS F	OR HARVEST
M1	M1: Presence of vegetation in the main vegetation season (pre-requisite)	High values of NDVI
M2	M2: Loss of vegetation	Break in NDVI (decrease)
M3	Loss of vegetation	Break in backscatter ratio (increase)
M4	Low/no vegetation	High values of backscatter ratio
M5	Low/no vegetation (stable conditions)	Break in VV Coherence (increase) or high values of VV Coherence
	MARKERS FOR DE	ECLARED PRATICES
M6	Presence of vegetation	High values of NDVI
M7	Growth of vegetation	Break in NDVI (increase)
M8	No loss of vegetation	No break in NDVI (decrease)
M9	No loss of vegetation	No increase of the backscatter ratio
M10	Presence of vegetation (dynamic conditions)	No Break in VV Coherence (increase) and no high values of VV Coherence
INCLACCIFIED	For Official Lloo	FCA 10/04/2010 Clide 2

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 27

Agricultural Practices Monitoring Detection of catch crop - NLD

ORIG_ID	FIELD_ID	COUNTRY		MAIN_CR OP	VEG_START	H_START	H_END	PRACTICE	P_TYPE	P_START	P_END
									CatchCrop		
1003XXX-XXXX-XXX	118005	NL	2018	236	2018-05-01	2018-05-15	2018-10-15	CatchCrop	_1	2018-08-06	2018-09-30

ı	M1	M2	M3	M4	M5	H_WEEK	M6	M7	M8	M9	M10	C_INDEX
l	TRUE	TRUE	TRUE	TRUE	TRUE	32	TRUE	TRUE	TRUE	TRUE	TRUE	STRONG

W_GAPS	S1PIX	H_W_START	H_W_END
0	225	2018-08-06	2018-08-12

Farmer interview:

Declared crop Sow crop Harvest crop Sow catch-crop

Barley, summer- 17.4.2018 27.7.2018 20.8.2018

118005 | 31.0000002670293.001 | Barley, summer- | CatchCrop_1 | 225

ESA UNCLASSIFIED - For Official Use

Synthesis of preliminary performances for ag. practices esa in different EU agricultural landscapes for 2018

All parcels in 6 countries having at least 1 S1 and 3 S2 pixels:

- Harvest detection for 4 472 852 parcels
- EFA practices monitored : catch crops (4 PAs)
 fallow land (4 PAs)
 nitrogen fixing crops (5 PAs)
- **EFA practices : 994 388 parcels assessed**With different degree of compliancy based on diverse national rules and nbr of markers
- · Validation:
 - Farmer interviews
 - Planet data visual interpretation

FC 4	LINICI	A C C T E T E D		O.C	
ESA	UINUL	ASSIFIED	- For	Official	USE

AGRICULTURAL PRACTICES SUMMARY									
COUNTRY	NUMBER OF HARVEST/CLEAR ANCE PARCELS PROCESSED	EFA PRACTICES	NUMBER OF EFA PARCELS PROCESSED						
Czechia	148 342	Catch crops (2), Fallow land, Nitrogen fixing crops	26 282						
Spain	1 208 102	Fallow land, Nitrogen fixing crops	464 443						
Lithuania	437 039	Catch crops (2), Fallow land (2), Nitrogen fixing crops	44 734						
Netherlan ds	157 317	Catch crops (3)	46 971						
Romania	2 063 990	Catch crops, Nitrogen fixing crops	127 163						
Italy	458 062	Fallow land, Nitrogen fixing crops	284 795						

Use Cases: Sentinels to support payment decisions

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 30

From crop type mapping to crop diversification Combining assessments at parcel- and holding-level

Parcel-level

Assess if the crop type declared by the farmer is confirmed by the satellite signal

Holding-level

Assess the compliancy of the holding with regard to the crop diversification rules

Crop diversification compliance analysis at holding level

2-day trainings in each 6 PAs premisses (Feb.- Apr.19)

Lessons learned from 2018 demonstrations

Paying Agencies feedback

Better understanding by PAs of Sen4CAP markers, products and methods Further validation needed for the 2018 outputs Identification of necessary improvements prioritized for 2019

Main recommendations for 2019

National adaptation required – fine-tuning the regulation implementation On-the-job training of PAs for local sites on Virtual Machines running on DIAS Continuous support for customization and adaptation

Dedicated in-situ data required for validation – building confidence

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 34

Working hand-to-hand with Paying Agencies Specific effort to get validation data

Farmers interviews conducted by PAs for grassland mowing and **EFA** practices

Access granted to Planet data

7 May 2018

9 May 2018

ESA UNCLASSIFIED - For Official Use

ESA | 10/04/2019 | Slide 35

Sen4CAP System overview – open source code

ESA UNCLASSIFIED - For Official Use ESA | 10/04/2019 | Slide 36

Visualisation tool to access all products at the parcel-level esa As a web application or as WMS in QGIS

Sen4CAP: an collaborative effort to prepare for CAP2020

- CAP monitoring evidence provided based Sentinels **prototype** products
- **2018 national demonstration** with wall-to-wall coverage
 - 6 countries (1.2 Mkm²) with diverse cropping systems, LPIS, landscapes, etc.
 - good to very good performances but still to be improved by specific fine tuning
 - critical importance to work hand-to-hand with Paying Agencies
- Sen4CAP training completed for 6 Paying Agencies at their premises and VMs available to each for testing

ESA | 10/04/2019 | Slide 38

