

2019 IACS workshop

10-11 April 2019, Valladolid, Spain

The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no 730074

- Produce prototypes for improved and novel Copernicus upstream services combining
 Copernicus Sentinel-1 radar with Sentinel-2 optical and in-situ data, to develop new
 EO applications for the European agricultural sector
- Validate delivered services and establish service demonstration cases to show the large application potential of the new upstream data products

UNIVERSITÉ

Sentinels Synergy for Agriculture H2020 EO-3-2016: Evolution of Copernicus services GA 730074 Start: Nov 2016 End: Oct 2018

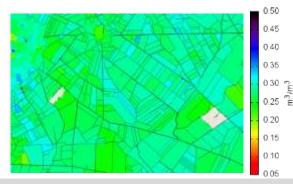
VNIVERSITAT

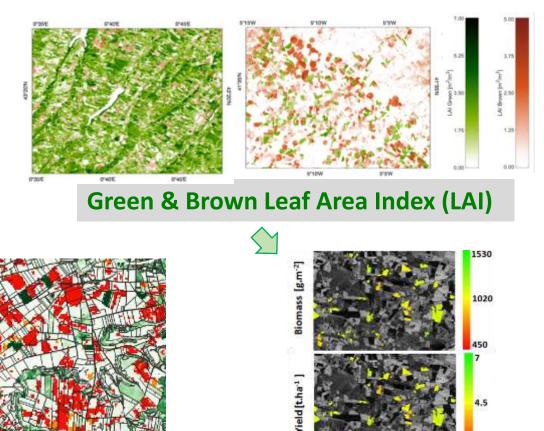
SENSAGRI team

Three Research centers with solid background and previous developments (SMOSAR, ARTMO, Sen2Agri)

Junta de Castilla y León Consejeria de Agricultura y Ganaderia

- Three technological centers with experience in EO applications in agriculture and tight links with stakeholders
- One CAP paying agency


>



SENSAGRI services

Targeted for agricultural applications (CLMS Pan-European)

Soil Surface Moisture (SSM)

HORIZON 2020 Opernicus 2019 IACS Workshop - Valladolid 10/04/2019

Tillage change

Biomass / Yield model

SENSAGRI services – Seasonal Crop Map

- Integrating Sentinel-1 and Sentinel-2 data
- Binary crop mask and crop type map
- 2 or 3 times per year
- Tested with **different training datasets** (including LPIS-IACS and ancillary data)
- Early in the season map based only in information from previous year(s)

France 2017 Crop Mask

France 2017 Crop Type

Spain 2018 Land cover map

Four European agricultural test sites

Spain: ITACYL - Duero River-basin France: UPS-CESBIO - OSR Auradé and Lamasqère Italy: CREA/CNR - Apulian Tavoliere Poland: IPP/NRI – Winna Góra

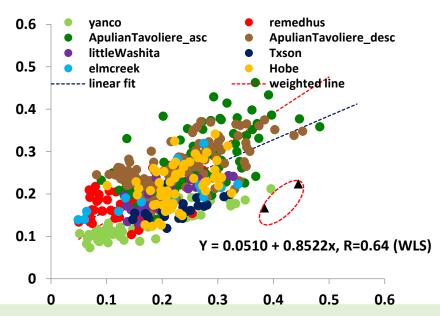
VNIVERNITAT

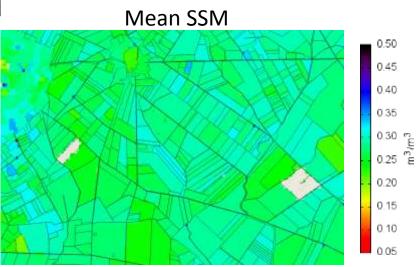
Services	Ground Variable	Time		
SSM	Volumetric Soil Moisture at 0-5 cm depth	 Continuous monitoring 3 measurement campaigns at critical stages and during irrigation season 		
LAI	Leaf Area Index, with LAI-2000 Plant Canopy Analyzer	3 measurement campaigns at critical stages and during growing season		
Seasonal Crop Mapping	Crop types	3 measurement campaigns in March, June and September		
Irrigated areas	Irrigated and not irrigated fields	3 measurement campaigns in March		
Tilled areas	Tilled and not tilled fields	June and September		
Yield	Commercial yield	1 measurement campaign at crop harvest		
Intermediate crops	Crop types	2 measurement campaigns in Marcl and July		

UNIVERSITE TOULOUSE IN

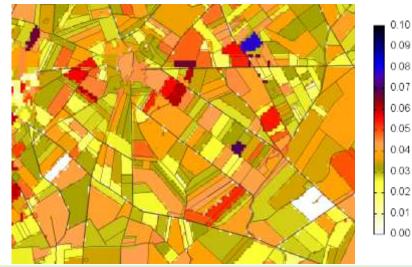
CLC agricultural classes. Source: EEA

<u>Three non-European test sites</u> Argentina: INTA – Hilario Ascasubi Two JECAM sites (South Africa and Ukraine)



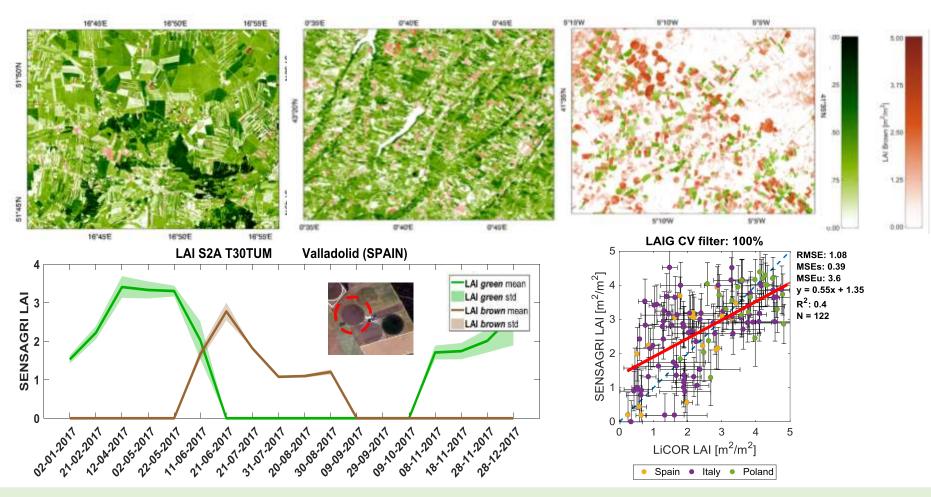


Soil Surface Moisture (SSM)


- SMOSAR processor. Algorithm based on Short Term Change Detection (STCD) approach using S1
- S2 (NDVI) allows masking abrupt changes (harvest, fire...)
- At 1 km spatial resolution. Up to 100 m or higher if parcel map is available

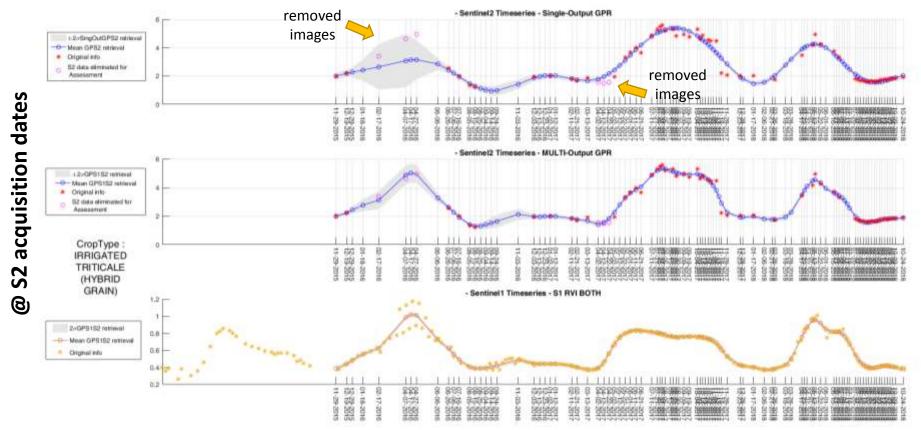
Retrieved vs observed SSM [m3/m3] at site scale

Related standard deviation


HORIZON 2020 Opernicus 2019 IACS Workshop - Valladolid 10/04/2019

LAI (green & brown) processor based on Gaussian processes regression (GPR)

Fused LAI retrieval algorithm using Sentinel-1

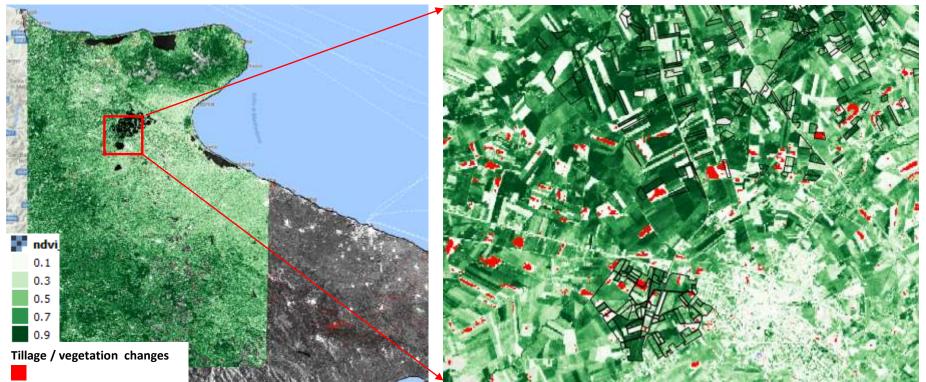

- Time series reconstruction from the synergy S1 + S2 data
- Multi-Output Gaussian Process¹ Gap-filling
- LAIG temporal profile reconstruction over a homogeneous crop

VNIVERNITAT

UNIVERSITE

crea

¹ M.A. Álvarez, L. Rosasco, N.D. Lawrence, "Kernels for Vector-Valued Functions: a Review, Foundations and Trends in Machine Learning 4, pp 195-266. Library available at https://github.com/SheffieldML/GPy

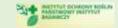


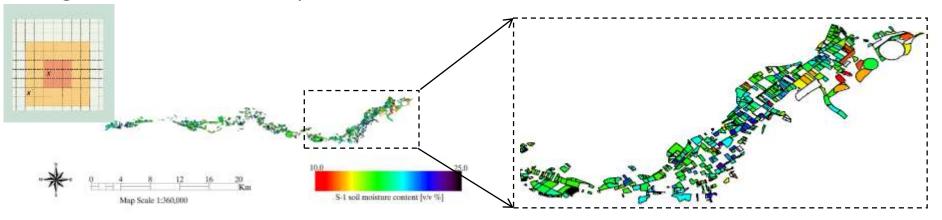
Stoulousein Crea

Tillage change detection

- Multiscale thresholding approach applied to the temporal change of VH S1 backscatter of bare or scarcely vegetated fields (i.e. S2 NDVI < 0.3)
- 40 m spatial resolution

Left panel: overview of the cloud masked- NDVI map from S-2 on 18/05/2017, the VV S-1 image and the tillage or vegetation abrupt changes from VH S-1 changes (12-20/05/2017) at 40m. Right Panel: details over the Capitanata plain.

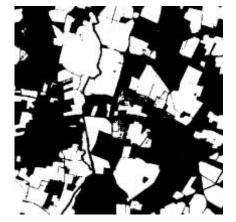




Irrigated/not irrigated area

• Based on the exploitation of local statistics computed, at different scales, for each high resolution SSM map.

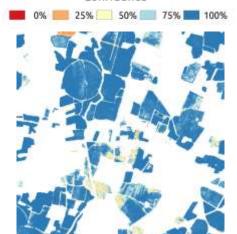
Example of irrigated/not-irrigated map obtained on the Riaza district on 9th April 2017.



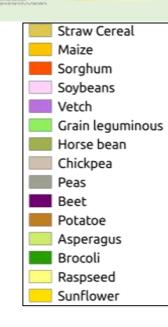
Crop map Products

• Two products : A **binary crop mask** and a **crop type map**

VNIVERŠITAT DOVALENCIA


- Spatial resolution 20m (10m resolution)
- Confidence map
- Temporal resolution 2 or 3 times per year
- Pan-European hierarchical nomenclature based on JECAM

France 2017 Crop Mask


France 2017 Crop Type

Confidence

UNIVERSITÉ

France 2017 Crop Type confidence

France 2017 Crop Mask (Vector format)

Comparison between exisiting Sentinel's classification system

- S12 : The crop type map product produced by SenSAgri
- S2A: The ESA S2Agri crop classification processing chain by incorporating Sentinel-1 as input feature

	1-Mar			5-Jul			2-Nov					
Class	S1	S2	S12	S2A	S1	S2	S12	S2A	S1	S2	S12	S2A
Straw Cereal	76.8	87.7	89.9	84.9	97.2	97.1	97.7	97.1	97.3	97.3	98.0	97.7
Maize	79.7	79.1	82.8	78.2	92.9	95.5	95.9	95.1	95.6	96.9	97.3	96.2
Sorghum	18.8	14.9	17.5	13.2	68.5	66.5	75.4	64.9	72.9	81.7	82.9	75.6
Soya beans	10.0	7.5	9.6	9.6	33.4	37.8	44.7	39.7	68.1	78.1	79.8	70.4
Peas	34.1	33.8	40.6	34.6	90.2	87.7	91.1	88.8	90.8	86.7	91.5	88.7
Rapeseed	64.2	74.0	81.2	68.7	96.9	91.6	97.3	95.9	96.9	91.0	97.2	95.5
Sunflower	57.4	68.3	71.6	67.2	92.9	93.1	94.7	94.3	95.6	96.5	96.7	96.3
OA	67.8	74.0	77.9	72.0	92.3	93.3	94.6	93.1	94.8	95.7	96.5	95.2
95 CI	0.53	0.45	0.55	0.86	0.41	0.34	0.38	0.38	0.32	0.28	0.28	0.29

crea

Application in Castile and Leon

Classification land cover map 2017 Total area: 94,422 km² Permanent Crope Arabia Crope Wheat Wheyard Barley E Fruit Com Full peel Other cereals Civar Sontiower Rope seeds Forest and Seminatural Area Creen pecs Officer grain legument

Accuracy metrics

2017	Jul	Dec	
Overall Accuracy	72.55	76.66	
Kappa index	0.67	0.72	

Pasture and Scrub Coniherout E Leaved deciduous Evergreen broadleaf Sheet of water Mathiata 🔤 Croat Bott soil

Accuracy metrics

2018	Jul	Dec	
Overall Accuracy	79.89	86.33	
Kappa index	0.75	0.83	

Very detailed legend and overall accuracy

Intense use of LPIS-IACS information

UNIVERSITÉ

Classification land cover map 2018

able Crops	Permanent Crops
Wheat	Vineyard
Borley	Clive groves
Maize	Nuts trees
Rye	Pear frees
Oah	Apple frees
Triticale	Cither fruit trees
Fallow	Forest and Seminatural Areas
Sunfower	Grasslands
Ropeseed	Scruth
Green peos	Coniferous forest
Vetches	Broad-leaved evergreen fore
Other grain leguminous	Broad-leaved deciduous fore
Alfalfa	Parks
Other forage crops	Othersen
Sugar beet	Other areas
Polatoes	Bodies of water
Poppy	Artificial surfaces
Onings	Bare rocks

Nogr Beet.

Voge/able

Aromatic plants

E Forode plants

Potato

Alfolia

Other industrial crops

Project status. April 2019

Improved versions of the algorithms combining S1 and S2

- S2 provides LAI / NDVI for masking S1 radar products (SSM, tillage, irrigation)
- S1 for gap-filling of S2-based time series
- S1 and S2 together in crop classification
- Comprehensive set of products over European test sites available
- Products accessible through web GIS (www.sensagri.eu)
- OGC WMS services to display the data in user GIS solution: <u>http://osr-cesbio.ups-tlse.fr/geoserver_sensagri/SENSAGRI/wms</u>
- Second year of validation campaigns finalized
- First validation of prototypes performed. Good overall results.

Perspectives for future exploitation

Two complementary directions for the potential exploitation of SENSAGRI prototypes:

Generation of pan-European layers

- General application and consistent products
- Homogeneous approach
- Similar accuracy and level of detail all throughout the European territory.

Response to the new monitoring requirements of the Common Agricultural Policy (CAP):

- Focus on agricultural practices and in markers of land use
- Requires more flexible and locally tuned methods
- Fits with the use of **DIAS** and with the **combination of several products** to derive added value data.

2019 IACS workshop

10-11 April 2019, Valladolid, Spain

The research leading to these results has received funding from the European Union's18Horizon 2020 Research and Innovation Programme, under Grant Agreement no 73007418