

What's in performance? Alternatives to incorporate environment outputs into productivity measurement

Bernhard Brümmer 172nd EAAE Seminar, Brussels May 28 – May 29, 2019

Outline

- 1. Introduction the need to incorporate environmental outputs into productivity measurement
- 2. Some concepts
- 3. Some problems
- 4. The road ahead

COMMON AGRICULTURAL POLICY

post-2020

the new green architecture

New objectives for Ag Policy

- GHG emission:
- Nutrient cycling
- Biodiversity
- Water
- Soil quality
- Animal welfare

•

Implications for productivity analysis: What drives observed technical change?

Graphical illustration

Implications for productivity analysis

- Comprehensive analysis of all outputs and inputs
 - Including environmental goods and bads
 - Including quality differentiation
 - Decomposition of TFP growth into its sources
 - Technical change
 - Technical efficiency change including environmental goods and bads
- Straightforward idea: Estimate production of societally desirable non-market goods by amount of subsidies (???)
- Better: farm-level data on production of non-market goods (heterogeneity is taken into account)
- Environmental efficiency analysis / Total Resource productivity

Classification of economic approaches

Technology modelling / efficiency

- Treat environmental bad as an input: Hyperbolic efficiency measure (Färe et al, 1986)
- Treat EB as a weakly disposable output: Directional distance function-based measure (Färe et al., 2005)

Directional output distance function

- Output set with weak disposability for bad output(s)
- Discarding bad output might be costly

Non-radial efficiency measurement

$$\overrightarrow{D_O}(x,q,b; \vec{g}) = \max \{\theta: ((q,b) + \theta \vec{g}) \in P(x)\}$$

But what about materials balance?

Classification of economic approaches

Technology modelling / efficiency

- Treat environmental bad as an input: Hyperbolic efficiency measure (Färe et al, 1986)
- Treat EB as a weakly disposable output:
 Directional distance function-based measure (Färe et al., 2005)
- Treat EB as byproduct of the production process: Technology as the intersection of production and pollution technology (Murty et al., 2012)
- Special case: Materials balance (Pethig, 2006)

Productivity ≠ Efficiency

- Total resource productivity growth = total factor productivity plus (TFP+)
- Set of outputs or inputs extended by relevant environmental dimensions
- E.g., outputs: ecosystem services and disservices inputs: natural capital, pollutants
- Malmquist, Hicks-Morsteen, Luenenberger Productivity index, ...
- Excellent theoretical foundations

Problems with environmental goods or bads

Data

Quite a few agri-environmental indicators
 (EU, US, OECD, FAO)

Means, standard deviations, and correlation is identical across all three datasets (R datasauRus package)

Problems with environmental goods or bads

- Environmental productivity measurement requires intensive modelling of the complete technology
- Partial productivity measures likely to be even more misleading
- New layer of issues: scaling (aggregation, heterogeneity, upscaling)

The road ahead

- More farm-level data needed FADN as a basis?
- Big data, community-based data, monitoring data from new CAP?
- Interdisciplinary approach inevitable
- Modelling techniques quite well developed
- Communication of results?

Thanks a lot for listening!

Comments, questions, differing opinions are highly welcome!

Thanks for funding from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project no. 192626868 – CRC 990

Selected references

- Färe, R., S. Grosskopf, C. Pasurka (1986). Effects of relative efficiency in electric power generation due to environmental controls, Resources and Energy 8: 167–184.
- Färe, R., S. Grosskopf, D.-W. Noh, W. Weber (2005). Characteristics of a polluting technology: theory and practice, Journal of Econometrics 126: 469–492
- Murty, S., R. R. Russell, S. Levkoff (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management 64: 117–135.
- Pethig, R. (2006). Non-linear production function, abatement, pollution and materials balance reconsidered. Journal of Environmental Economics and Management 51: 185–204.