

VECTO Updates | VECTO更新

Dr Dimitrios SAVVIDIS
European Commission
DG CLIMA
Unit: Road Transport

Dimitrios SAVVIDIS博士 欧盟 DG CLIMA 单位:道路运输

4th Sino-EU Workshop on New Emissions Standards and Regulations for Motor Vehicles 3 - 5 March 2021

第四届中欧机动车辆新排放标准和法规研讨会,2021年3月3-5日

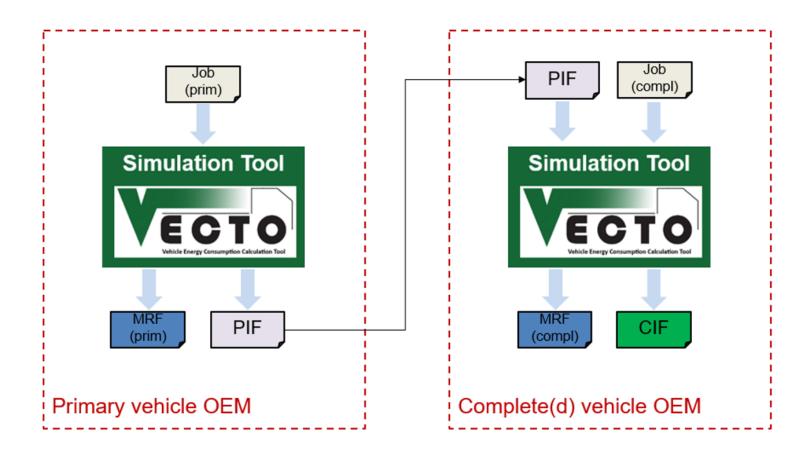
Introduction to VECTO 介绍 VECTO

What is VECTO? 什么是VECTO?

Simulation tool to calculate both, fuel consumption and CO_2 emissions from the <u>whole</u> vehicle

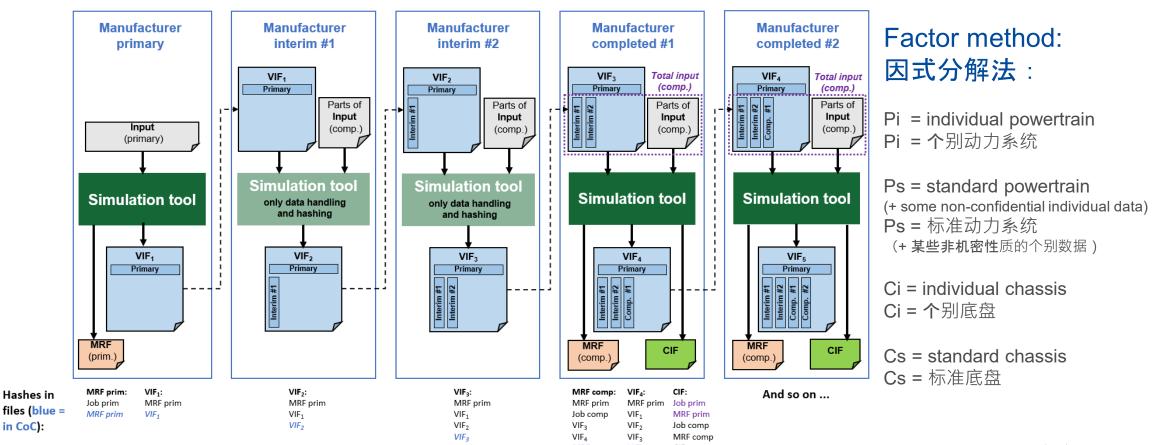
用于计算整车燃料消耗量与CO₂排放量的仿真模拟工具

| Where to go — To Do's | 发展方向——行动措施:



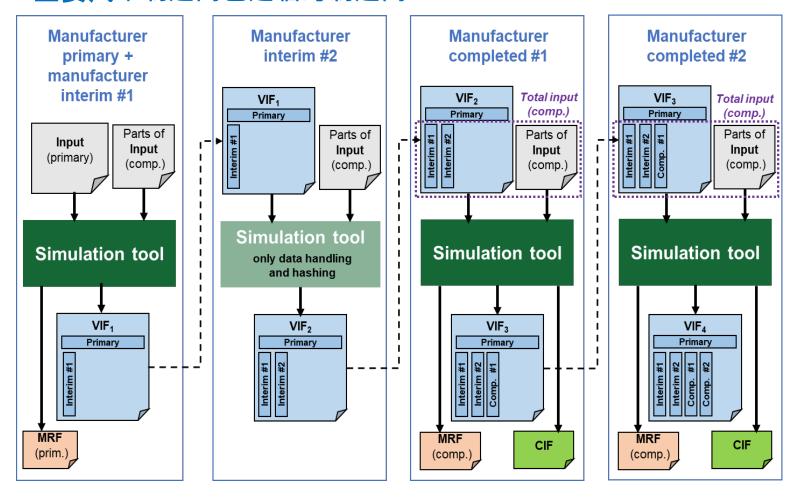
To-Do's: CO₂ emissions certification of vehicles 行动措施:车辆的CO₂排放证书

- Buses, coaches, smaller trucks (TPMLM < 7,5 t) to be included 须包括公共巴士、长途巴士、小型卡车(TPMLM < 7.5 t)
- Energy efficiency of (semi-)trailers to be determined
 须确定(半)拖车的能源效率
- Vehicles with electrified powertrain (pure and hybrid electric)
 电动汽车(纯电动和混合动力)
- Hydrogen HDVs (fuel cell and internal combustion engine)
 氢燃料HDV车辆(氢燃料电池和内燃机)
- Coverage of various new technologies: WHR, ADAS, automated driving, platooning, catenary,...
 - 各种新型技术概述:WHR、ADAS、自动驾驶、车队、接触网


VECTO and "multi-stage" heavy buses (currently) VECTO与"多级"重型巴士(现有)

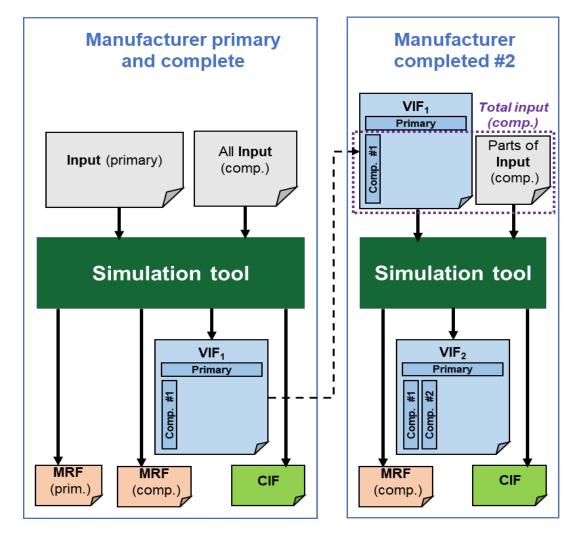
VECTO and "multi-stage" heavy buses (general)* VECTO与"多级"重型巴士(通用)

 $CO_{2completed}$ = (Primary manufacturer's part) x (Completed manufacturer's part) = $CO_{2Pi,Cs}$ x ($CO_{2Ps,Ci}$ / $CO_{2Ps,Cs}$) CO_{2 已完成} = (主要制造商的部分) x (已完成的的制造商部分) = CO_{2Pi Cs} x (CO_{2Ps Ci} / CO_{2Ps Cs})


* same approach to be applied to rigid lorries when simulated with their real bodywork * 同样的方法也适用于整体式车架卡车的真实车身模拟

in CoC):

VECTO and "multi-stage" heavy buses (case 1) VECTO与"多级"重型巴士(案例1)


Primary vehicle manufacturer also interim manufacturer 主要汽车制造商也是临时制造商

VECTO and "multi-stage" heavy buses (case 2) VECTO与"多级"重型巴士(案例2)

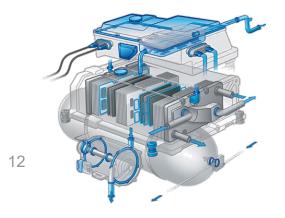
Complete vehicle | 整车

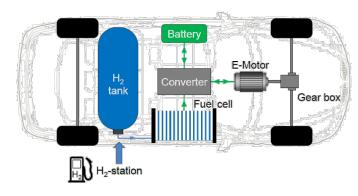
VECTO and hydrogen vehicles VECTO与氢燃料车辆

Propulsion technologies based on hydrogen fuel shall be introduced into VECTO and the component testing procedure of COM Regulation (EU) 2017/2400 基于氢燃料的推进技术应引入到VECTO和COM法规(EU)2017/2400的部件测试程序中

- Fuel cell electric vehicles (FCEV)
 燃料电池电动汽车 (FCEV)
- Internal Combustion Engines (partly) operated with hydrogen fuel (部分) 采用氢燃料运转的内燃机

ICE (partly) operated with hydrogen fuel (部分) 采用氢燃料运转的内燃机


- Hydrogen internal combustion engines to be introduced into UNECE-R 49 pollutant emission type-approval (in particular PEMS test)
 氢燃料內燃机须引入到UNECE-R 49污染物排放类型审批之中(特别是PEMS测试)
- A component test procedure will be developed 将开发一个组件测试程序
- A vehicle simulation approach for ICE operated with hydrogen fuel will be developed in VECTO
 - 将在VECTO开发一种仿真模拟方法,以用于(部分)采用氢燃料运转内燃机的车辆
- Validation of the above-mentioned developments will take place in order to make sure that
 maximum accuracy in fuel consumption and CO₂ emissions has been achieved
 将对上述开发过程进行验证,以确保燃油消耗量和CO₂排放量达到最高精度



VECTO and Fuel cell electric vehicles (FCEV) VECTO与燃料电池电动汽车 (FCEV)

- Current fuel cell technologies (PEMFC, SOFC, HT-PEM) will be reviewed 将对现有的燃料电池技术 (PEMFC、SOFC、HT-PEM) 进行审查
- A component test procedure and a correlated simulation approach in VECTO to depict energy consumption and operation behavior of fuel cell components will be developed
 将在VECTO中开发一套组件测试程序及相关的仿真模拟方法,以描述燃料电池组件的能量消耗及运行模式
- Different fuel cell powertrain configurations (fuel cell dominant, mid-size and range extender) and their respective modularity will be analysed regarding their impact on a future CO₂ legislation based on VECTO.

将分析不同的燃料电池动力系统配置(燃料电池占主导地位、中型和增程车型)及其各自的模块性,分析其对基于VECTO的未来CO₂立法的影响。

Pantograph, catenary and connector systems 受电弓、接触网和连接器系统

- VECTO shall cover all relevant topics around in-use electric charging technologies as currently already established or under development for HDV applications
 VECTO应涵盖目前已确立或正在开发的、用于HDV应用的现役充电技术的所有相关主题
- Future expected charging systems will be also considered as technological horizon for 2030 **将来**预期的充电系统也将视为2030年技术范围
- A detailed review of in-use charging technologies will be performed and all necessary generic parameters will be implemented into VECTO
 将对现役充电技术进行详细审查,并且,所有必要的通用参数都将纳入VECTO中

Platooning and automated driving 车队和自动驾驶

Investigate the most prominent technologies currently proposed by industry and set out viable paths for their future integration in VECTO

调查业界目前提出的最突出技术,并可行的路径,以便于将来将它们集成到VECTO中

- Review the state of the art of the technologies and the influence of vehicle operation 审查这些技术的现状以及对车辆运行的影响
- Analyze the environmental, economic and social impacts
 分析环境、经济和社会影响
- Perform a feasibility assessment 进行可行性评估
- Explore options for implementation in VECTO 探索在VECTO中实现的各种选项

Electrified vehicles: xEV 电动车: xEV

- Vehicles with electrified powertrain (pure and hybrid electric);
 采用电力驱动系统的车辆(纯电动和混合动力);
- Regulatory key parameters are: CO₂ emissions, electric consumption and electric driving range;
 监管的主要参数如下: CO₂排放、电力消耗和电动续航里程;
- VECTO incorporates a limited (but expandable) set of xEV architectures (position of electric motor/(engine), parallel, serial,...); VECTO整合一套有限(但可扩展)的xEV架构(电机/(发动机)的位置、并联、串联...);
- VECTO uses an operational strategy optimising 'locally' xEV energy consumption (with changes of battery SOC rated depending on the total SOC); VECTO使用一种优化"本地"xEV能源消耗的运行策略(电池额定SOC根据总SOC的变化而变化);
- Technical challenges: 技术挑战:
 - specific xEV operational strategies (the generic VECTO strategy always being only an approximation)
 特定的xEV运行策略(一般的VECTO策略始终只是一个近似的策略)
 - accomodation of innnovative xEV architectures, in particular for hybrid vehicles;
 适应创新的xEV架构、尤其是混合动力车辆;
 - Certification of 'integrated components' (often manufactuer-specific)"集成组件"的认证(通常针对制造商)
- Hybrid electric vehicles:
 混合动力电动车
 - charge depleting/sustaining CO₂ emissions + electric driving range + utility factor 电量消耗/持续的CO₂排放 + 电动续航里程 + 利用系数
 - regulatory specific CO₂ emissions ⇔utility factor ⇔assumptions about charging scenarios 监管的特定CO₂排放 ⇔ 利用系数 ⇔ 充电场景假设
 - what are reasonable charging scenarios in long-haul operation? 长途运行过程中的合理充电场景包括哪些?

Keep in touch 联系我们

ec.europa.eu/

europeancommission

europa.eu/

@EuropeanCommission

@EU_Commission

EUTube

@EuropeanCommission

EU Spotify

European Commission

Thank you 谢谢!

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

