IACS Workshop 2019, Valladolid-Spain, 10-11 April

What kind of hints?

- Automated marker detection though phenology
- Monitoring of small parcels extended study
- Others
 - FOI tracking through spatial markers
 - Testing measurements using a smartphone with a dualfrequency GNSS receiver

Automated marker detection

The Prestige (movie): labutacadearni.wordpress.com

3 stages of the magic trick

- The Pledge
- The Turn
- The Prestige

The Prestige (movie): Nikola Tesla's machine, Funnyjunk

Poster design: Adam Rabalais

The Pledge

The Turn

The Prestige

Observable Event	Signal	Threshold (sd/dt)	Days of the year
Bare soil	NDVI	< 0.2	213 (Y-1) - 90 (Y)
Crop presence	NDVI	> 0.5	135-170
vegetation removal	NDVI	> 0.5 - < 0.2	171 - 212

Winter Wheat/
Ploughing
Seeding
Harvesting

Magic explained: Marker Parametrization Workflow

The two parts of the "Tesla machine"

Basics of Machine Learning

Consistent training set

Neural network design

Minimization of the cost function

$$C(w,b)\equiv rac{1}{2n}\sum_x \|y(x)-a\|^2.$$

Concept of Curve Fitting

 Parametric Double Hyperbolic Tangent (PDHT) model to simulate a single growing season

$$f_{\text{PDHT}}(t) = a_0 + a_1 \{ \tanh[(t - a_2)a_3] + 1 \} / 2 + a_4 \{ \tanh[(t - a_5)a_6] + 1 \} / 2 - a_4 \}$$

Phenology indicators of growing season characteristics

SOS	(Start of season) Timing of the start of the growth phase	The growth phase is deemed to start whenever the value of the modelled time series exceeds the initial base value a_0 (asymptotic model value before the growth phase) plus 20% of the amplitude a_1 .
EOS	(End of season) Timing of the end of the decay phase	The decay phase is deemed to end whenever the value of the modelled time series drops below the final base value (asymptotic model value after the decay phase) plus 20% of the amplitude a_4 .
LGS	Length of the growing season	The length of the period between the SOS and EOS.

Phenological analysis

Parametrization using phenological modelling

Objective of the test

Understand if winter crops, having similar NDVI profiles, could be separated using phenological data

Evaluate if automatically retrieved phenological indicators (SOS, LGS, EOS) can be used as markers in CbM

Method

Run the pheno-algorithm (PDHT curve fitting) on 2017 Sentinel-2 L1C data and declaration data with confirmed crops

Input data and issues

- Unbalanced data sample (279 wheat, 64 barley, 69 rapeseed)
- Possible poor cloud screening and no atmospheric correction
- Very few S2 observations during green-up phase (snow in Jan-Feb)

The Plegde: NDVI time series as input data

average NDVI values of Sentinel 2 level 1C, per parcel, 10.2016-11.2017

The Turn: Winter crop fitted curves

Winter wheat

The Turn: NDVI Drop due to S2 geometric shift

The Prestige: Preliminary results 1/2

End of season (EOS20) somehow different in 2017 Start of season (SOS20) uninformative

The Prestige: Preliminary results 2/2

Ready for the markers?

Well, not yet, but close...

winter wheat - soft — winter rapeseed — winter barley

Length of season (LSG20) different, but affected by poor SOS20 Senescence slope doesn't tell anything

Dealing with atmosphere effects

Commission

Dealing with weather variations

Source: T Marinova, K Malcheva, L Bocheva, L Trifonova, 2017: Climate profile of Bulgaria in the period 1988-2016 and brief climatic assessment of 2017. Bulgarian Journal of Meteorology & Hydrology: 22/3-4 (2017), 2-15.

Thermal time

Thermal time - minimum <u>accumulation of temperature</u> required for a phenological phase to be completed [degree days (°Cd)]

Development of short duration wheat

First conclusions

- Phenological indicators are good promising candidates for markers
 - Marker parameters can be derived automatically
 - Values are normalized (relative to parameters of the model)
- End of season provides better crop discrimination than the start of season
 - However, EOS info comes only late (around 15 July)
- Sentinel Level 2A data preferred over L1C
 - Less noise, more truthful NDVI, better SOS estimation
- Thermal time could be better parameter than calendar time
 - Allows "calibration" of the marker parameters to the region/year-specific (weather) characteristics
 - 2017 EOS -> 2018 EOS (if expressed in °Cd?)

End of the show? Not quite!

Photo courtesy of Berger/Conser Photography

Monitoring of small parcels - update

- Study extended to approx. 1000 parcels
- Results confirm that $\sim 10\%$ of small parcels (< 0.5 ha) require data other than Sentinel-2
- Confirmation of the Sentinel-2 limit parameters (8 pure pixels) is pending (reporting in pipeline).

Findings

Lessons learnt

- Geolocation performance of S2B has not been yet stabilized, some noise observed
- Crops of adjacent parcels have an influence on NDVI time series
- Permanent grassland worst performance
- S2 exceeded the expectations, in 92% of cases able to correctly identify required markers

Hints based on the case study results

Sentinel-2 starts to have a difficulty compared to an HHR sensor when:

- Parcel contains less than 8 full pixels
- Percentage of S2 pixels lost after application of 5m negative buffer is higher than 60%

Other ongoing and planned activities

- Exploring potentials of the "spatial markers" for FOI tracking
- Evaluation of a smartphone with a dual-frequency GNSS chipset for point, line and area measurements
- Use of temporal synthesis (composites) of signal to overcome gaps and noise

Composite of NDVI from 3 different dates

Source: Google Earth Engine

