

The POTEnCIA model

Dr. Leonidas Mantzos

Brussels, 11 Oct 2017

POTENCIA

Policy
Oriented
Tool for
Energy and
Climate change
Impact
Assessment

Actuality is to potentiality, Aristotle tells us, as "someone waking is to someone sleeping, as someone seeing is to a sighted person with his eyes closed, as that which has been shaped out of some matter is to the matter from which it has been shaped" (1048b1-3). http://plato.stanford.edu/entries/aristotle-metaphysics/#ActPot

El ser no sólo se toma en el sentido de sustancia, de cualidad, de cuantidad, sino que hay también el ser en **potencia** y el ser en acto, el ser

relativamente a la acción.(Aristóteles, Metafísica, libro IX, 1). http://www.webdianoia.com/aristoteles/aristoteles meta 4.htm

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

Policy assessment

THE TOOL

POTEnCIA is a mathematical model designed to represent the economically driven functioning of the European energy markets

- Assessing the impacts of strategic EU energy-related policy options while dealing with the radical changes and new challenges experienced
- Coping with the increasingly complex structure of the energy market and related policies

The methodological approach

- Hybrid partial equilibrium
 - behavioural decisions
 - detailed techno-economic features
- Discrete choice modelling applies for energy actors decisions

THE CURRENT STATUS

Geographical coverage

EU Member States

Time horizon

2050 (and beyond) in annual steps

Validation

- Technical peer review exercise (documents available in the POTEnCIA website)
- Stylised policy scenarios developed and analysed within the Commission Services
 - Testing the model properties
 - Analysing the quality and robustness of results

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

Policy assessment

THE QUESTIONS

How does the policy framework affect

... the way in which energy is used

... the investment decisions in new energy equipment

... technology progress

... the role of non-energy using equipment options

... and thus the amount of energy used, related CO₂ emissions and costs

THE CHALLENGES

Identifying the domain for **policy action**

Capturing **technology dynamics**

Addressing radical changes

Dealing with increasing complexities

Reflecting uncertainties

... while fully accounting for **behavioural responses**

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

Policy assessment

An industrial
product
Mobility
Indoor
temperature

An industrial Economy **DRIVERS** product Behaviour Mobility Achieved Indoor comfort level temperature

An industrial Economy **DRIVERS Energy demand** product Behaviour Mobility Achieved Indoor comfort level temperature

An industrial Economy **DRIVERS** Policy Context **Energy demand** product Behaviour Equipment Mobility Achieved type Indoor comfort level characteristics temperature size Use equipment • preferences European Commission

How the Policy Context affects Energy Demand

Energy equipment limits flexibility

- Technology types
- Vintage specific characteristics

Number of individual units explicitly identified

Operation of equipment may deviate from optimality

- Size forms a constraint
- Response to policy dependent on equipment and purpose of service
 - > multiple decisions

Enhanced **economic** response mechanisms

- Investment in non-energy equipment
- Premature replacement of equipment
- Structural responses

Explicit accounting for incurred stranded costs; idle stock; scrapped equipment

We **invest** to meet our service needs

- Explicit number of units identified
- Combined to non-energy using options
 reflected on size of energy equipment

Technology dynamics

- depend on the existing equipment stock (structure and age)
- relate to the need for new equipment
- link to prevailing policy conditions

through

- level of deployment
- pace of progress
- technical/physical limits

Technology characteristics are country specific Related costs link to projected dynamics

MODEL DETAIL IN THE DEMAND SIDE

Industry

11 sectors 21 subsectors +agriculture

6 to 11 processes per subsector

~14 end-uses ~44 technology options per subsector

Residential

9 household types9 appliances types

43 combined space and water heating types

135 technology options

Services

4 thermal uses 6 appliances types

47 technology options

Transport

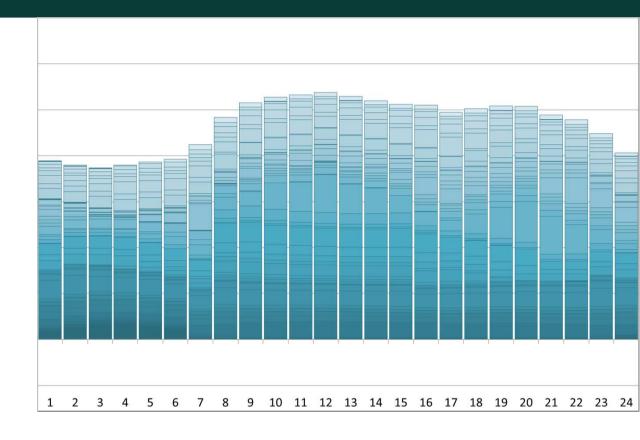
4 modes +pipelines;+bunkers 16 transport means

2 to 5 engine types6 to 27 technology optionsper mean

Brief description and current status

Motivation and main features of the tool

Demand side


Power sector

Behavioural aspects

Policy assessment

Chronological load curve derived from almost 300 energy uses with specific load profiles dynamic evolution of shape fully capturing policy effects



Chronological load curve derived from almost 300 energy uses

Trade of electricity takes place as to optimise the power system

Simultaneous imports and exports of electricity across countries

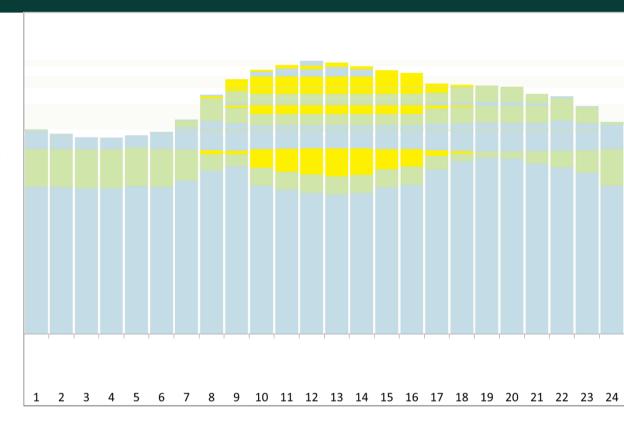
Interconnection constraints fully respected

Chronological load curve derived from almost 300 energy uses

Trade of electricity takes place as to optimise power generation

Power plants operation addressed at the level of units

Dispatching in multiples of unit sizes


Capturing operation related effects

Integrating high shares of variable renewable energies

Accounting for opportunity costs induced across competing technologies

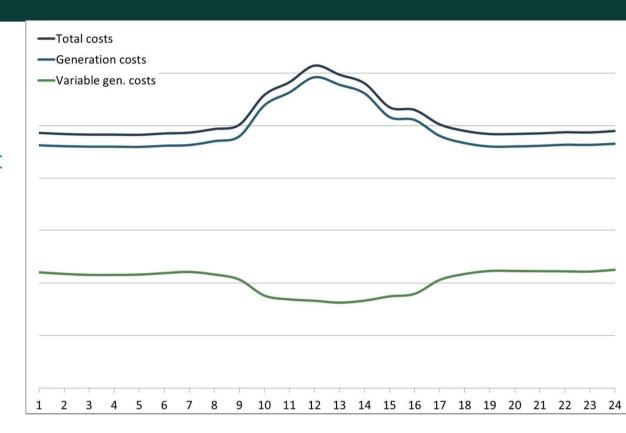
Respecting resources availability constraints

Addressing system stability

Addressing power sector's complexity

Chronological load curve derived from almost 300 energy uses

Trade of electricity takes place as to optimise power generation

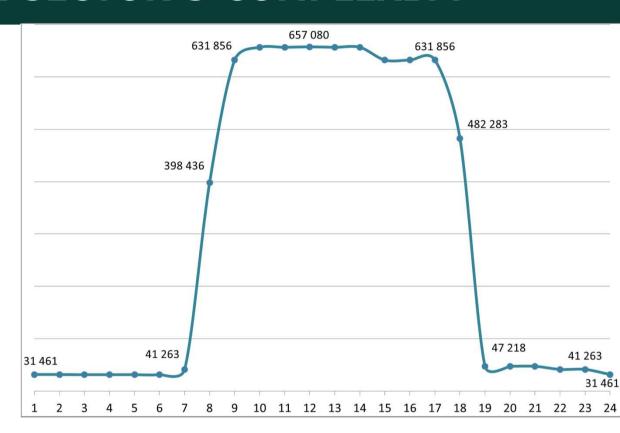

Power plants operation addressed at the level of units

Capturing **generation cost fluctuations**

Average and marginal cost on hourly basis

Correctly identifying the cost of different uses

Identifying the scope for Demand Side Management


Chronological load curve derived from almost 300 energy uses

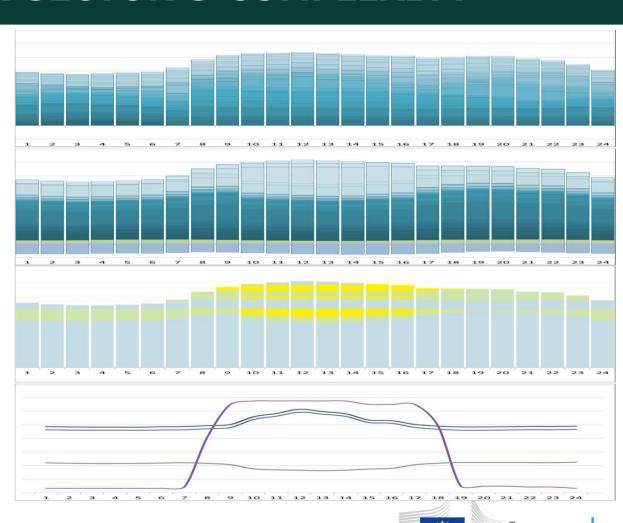
Trade of electricity takes place as to optimise power generation

Power plants operation addressed at the level of units

Capturing **generation cost fluctuations**

... while quantifying the number of units in operation

Chronological load curve derived from more than 300 energy uses


Trade of electricity takes place as to optimise power generation

Power plants operation addressed at the level of units

Capturing **generation cost fluctuations**

... and identifying the number of units in operation

... as to better mimic real life power plants operation

Commission

INVESTMENT DECISIONS IN THE POWER SECTOR

Respecting system and power plants factual characteristics

Investments take place in typical sizes of units

System stability accounted for

Different types of investors considered

From small power generators that act primarily towards satisfying their own needs ...

to large utilities that seek to optimise the operating characteristics of the overall system Coping with uncertainties

No perfect foresight

Recursive myopic foresight

Divergent future expectations

Failures in meeting capacity needs may occur

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

Policy assessment

ACCOUNTING FOR BEHAVIOURAL RESPONSES

We do not behave in the same way

Our decisions are characterised by suboptimality

- the economic environment
 - access to capital and/or
 - budgetary constraints
- rationality

Our **rationality** is defined by our

- Perception (understanding)
- Preferences

Policies can increase our rationality

- fostering economic awareness
- removing asymmetric information
- improving risk perception

but also through

- exploiting learning-by-adopting effects
- influencing individual preferences
- triggering collective "societal" appreciation / collective behaviour effects

Modelled through a dynamic non-linear formulation that allows endogenously shifting

- from a portfolio of (suboptimal) decisions
- towards the economically optimal one

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

Policy assessment

WHAT FOR?

Analysing the main energy system related policy pillars:

Energy efficiency

Renewable energies

Climate change

Market integration

through

Price signals

Subsidies; premium tariffs

Technology standards

Eco-design, CO₂ standards for vehicles

Quantity constraints

Renewables quota; ETS cap; minimum fuel blending

Non-energy measures

Building codes

Behavioural policies

Labelling; Awareness campaigns

Market conditions

Liberalisation; decentralisation

Constrained by

Sectoral detail

fractions of an annual step addressed through snapshots

Time step

Policy impacts on the economy

link to appropriate modelling tools

Spatial dimension

network related volumes and costs still captured

European Commission

engineering analysis performed at the level of technology groups

ANALYSING POLICIES WITH POTENCIA

POTEnCIA is designed to perform **comparative** analysis of scenarios

"Projections are not forecasts"

A "central" scenario needs to be defined

- Reflecting a plausible evolution of the energy system, while
- incorporating policies and measures in place

The internal coherence of the model enhances robust scenario analysis minimising the need for exogenous

interventions

Assessment of the impact of specific (policy) assumptions with respect to the "central" scenario

- POTEnCIA can address both explicitly defined policies and those that are met through policy signals
- Different ways of representing policies and targets
 - Year specific and/or cumulative
 - Quantity based and/or cost based
- Multiple targets can be addressed simultaneously
 Involving "equivalent" effort or prioritising scopes
- The geographical/sectoral scope is also flexible

From sector and country specific to simultaneous EU wide solutions

DEVELOPING THE "CENTRAL" SCENARIO

... requires continuous interactions

between JRC, policy DGs and Member States experts

- decomposition of historical data (JRC-IDEES database)
- incorporation of country specific policies in place
- inclusion of on-going investments plans
- reflection of envisaged evolution of national energy systems in a European wide context
- agreeing in key future assumptions (macro-economy, demographics, policy context)

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

Policy assessment

NEXT STEPS

Interactive process initiated

- validation of the JRC-IDEES database
- technical workshops on POTEnCIA model
- establishment of contact links between Member States, the policy DGs and the POTEnCIA team

First priority: the development of the "central" scenario

which will be initially used as to

- to assess the combined impact of Member States' National Energy and Climate Plans (NECPs)
- policy assumptions captured in the NECPs to be discussed with Member States and policy DGs

ENSURING TRANSPARENCY AND ACCESSIBILITY

An online platform to be established that will eventually allow access to

- Documentation on POTEnCIA
- POTEnCIA input database
- Detailed results of selected (and agreed upon with the policy DGs) scenarios
 enhanced by visualisation tools
- The tool will be made accessible including the model code

POTENCIA SCENARIO OUTPUT

Model assumptions

- Macroeconomic drivers
- Demographics
- International fuel prices
- Policy assumptions

Activity levels and use of stock

- Industrial production levels, transport activity by mode, etc.
- Rates of use
- Investment in new equipment
- Idle equipment
- Prematurely replaced equipment

Techno-economic characteristics of installed equipment

Distinguishing per vintage

- Typical sizes
- Efficiencies
- Costs (capital, fixed, variable)

Energy use and CO₂ emissions

- from aggregates at sectoral level to end-use specific
- fuel disaggregation in line with EUROSTAT nomenclature

Cost elements

Energy system costs

- Energy equipment related
- Policy related
- Stranded costs
- Infrastructure related

Fuel prices

- Sector specific
- Production, transmission and distribution costs accounted for
- Price elements considered
- pre-tax prices, excise taxes and VAT, end-user prices

Thank you for your attention

JRC Science Hub -POTEnCIA: ec.europa.eu/jrc/POTEnCIA

Contact:

JRC-C6-POTENCIA@ec.europa.eu

