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Earth system modelling is currently experiencing
disruptive changes offering great opportunities.




1980-2020: The quiet revolution
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Abstract

R Advances in numerical weather prediction represent a quiet revolution because they have
resulted from a steady accumulation of scientific knowledge and technological advances over

AR many years that, with only a few exceptions, have not been associated with the aura of
fundamental physics breakthroughs. Nonetheless, the impact of numerical weather

30.0 / prediction is among the greatest of any area of physical science. As a computational problem,

1985 1940 1945 2000 2005
global weather prediction is comparable to the simulation of the human brain and of the
c ECMWF evolution of the early Universe, and it is performed every day at major operational centres

across the world.




2015-today: The digital revolution
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atmosphere and the effects on the climate system have been

documented and explained by a vast resource of scientific
publications, and the conclusion—that anthropogenic greenhouse
gas emissions need to be drastically reduced within a few decades
to avoid a climate catastrophe—is accepted by more than 97% of the
Earth-system science community today'. The pressure to provide
skillful predictions of extremes in a changing climate, for example,

| he human impact on greenhouse gas concentrations in the

heatwaves and drought co-occurrence, is particularly high because
the present-day impact of natural hazards at a global level is stag-
gering. In the period 1998-2017, over 1 million fatalities and several
trillion dollars in economic loss have occurred’. The years between
2010 and 2019 have been the costliest decade on record with the
economic damage reaching US$2.98 trillion—US$1.19 trillion

higher than 2000-2009". Both extreme weather and the potential

The digital revolution of Earth-system science
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Computational science is crucial for delivering reliable weather and climate predictions. H despite decades of
high-performance computing experience, there is serious concern about the sustainability of this appllclhon inthe post-Moore/
Dennard era. Here, we discuss the present limitations in the field and propose the design of a novel infrastructure that is scal-
able and more adaptable to future, yet unknown computing architectures.
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commodity parallel processing. Moore's law drove the economics of
computing by stating that every 18 months, the number of transis-
tors on a chip would double at approximately equal cost. However,
the cost per transistor starts to grow with the latest chip genera-
tions, indicating an end of this law. Therefore, in order to increase
the performance while keeping the cost constant, transistors need to
be used more efficiently.

In this Perspective, we will present potential solutions to adapt
our current algorithmic framework to best exploit what new digital
technologies have to offer, thus paving the way to address the afore-
mentioned challenges. In addition, we will propose the concept of
a generic, scalable and performant prediction system architecture
that allows advancement of our weather and climate prediction
capabilities to the required levels. Powerful machine learning tools
can accelerate progress in nearly all parts of this concept.
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2015-today: The digital revolution to allow for km-scale models
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¢ GEMS

£ ECMWEF Global km-scale models improve realism of simulations
significantly and are now becoming available.
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And there is machine learning...

Can we also build entire forecast models with machine learning?




2022 -today: The machine learning revolution
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GraphCast from Google Deepmind, Fourcastnet from NVIDIA
and Pangu-Weather from Huawei are beating conventional
weather forecast model in deterministic scores and are orders
of magnitudes faster.

But how do these models actually work?

In 2023 we still had many questions:

Can they avoid the smearing out for long predictions?

Can they learn uncertainty?

Can they extrapolate and faithfully represent extreme events?
Can they represent physically consistent forecasts?

Can they do data assimilation?

Images from Keisler (2022)



2022-today: The machine learning revolution
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Lang et al. ECMWF Newsletter 2024 and the AIFS team
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Next step: Machine learned climate simulations?
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WeatherGenerator — A foundation model for weather and climate
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What about a unification of the machine
learning applications via a Foundation
Model for Earth system science?

Aim: This project will build the
machine-learned WeatherGenerator — the
world’s best generative Foundation Model
of the Earth system — that will serve as a

We will not start from scratch as we have Digital Twin in Destination Earth

AtmORep (LGSSIg etal. 2023) and other https://www.eemm%out/media—centre/news/2024/weathergenerator—project—aim
research initiatives. s-recast-machine-learning-earth-system




WeatherGenerator — A foundation model for weather and climate
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Next steps: Foundation models for weather and climate
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2022-today: The machine learning revolution — A timeline

2018 - Machine learned modes used for tests in weather and climate
019 - Machine learned models used in hybrid approaches
021 - Machine learned models used for nowcasts
2022 - Machine learned models beat deterministic forecast models
2023 - Machine learning models beat ensemble forecast models

Machine learning models can do AMIP simulations

2024 - Machine learning models can do data assimilation
2025 — Machine learning models can do Earth system modelling with ocean/sea-ice/lwaves/land

2026 — Machine learning models can do climate simulations
Machine learning models are run as foundation models




What have we learned?

The quiet revolution (1980-2020):
« Steady investment into Earth system modelling and Earth system observations made a difference.

The digital revolution (2015-today):
« Conventional models need to be made future proof via new software and hardware standards.
« Large projects such as DestinE make km-scale models possible today and will make a difference.

The machine learning revolution (2022-today):

« Models such as AIFS can beat physics-based models for deterministic and ensemble predictions.
« There is loads of interesting science to explore regarding hybrid models and predictability.

« \We may soon see machine learning models that can do data assimilation and climate modelling.

The next step: Models will be better, tools will be easier, and data/HPC will be federated

« We will build a European Earth system and a European foundation model for Earth system science.
« To achieve this needs programmes such as Destination Earth.

Many thanks! Peter.Dueben@ecmwf.int
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