European Commission Benford's Law Conference Stresa, Italy July 10-12 2019

Benford's Law and Detection of Anomalies in Data \} $\int^{7} 3^{9} \quad 46^{8}$

Dr. Ted Hill

School of Mathematics, Georgia Tech California Polytechnic State University

Outline

- Brief History of Benford's Law (BL)
- Use of BL to Detect Anomalies in Data
- Fraud
- Other anomalies
- Seven Basic BL Probability Theorems
- Common Errors related to BL
- How to win $€$ from your friends

BL Fraud Detection (Key Idea by M. Nigrini 1990's)

Tax (individual, corporate, governmental)
Clinical and drug trials
Survey data
Environmental
Voting
Health Insurance
Scientific papers
Fingerprint forgeries

Empirical Evidence of BL Today

Diaconis\&Freedman 1979:
$\frac{18}{335}$ rounds to $\mathbf{5 . 4 \%}$ and $\frac{19}{335}$ rounds to 5.7%

D	Newspapers	30.0	18.0	12.0	10.0	8.0	6.0	6.0	5.0	5.0

Spectroscopic analysis (e.g., MRI's)

(b)

Steganography (hidden images)
Natural vs. artificial images
Image alterations

Seven Basic BL Probability Theorems

Thm 1. $B L$ is the unique scale-invariant probability distribution on significant digits.
Ex. If a financial dataset X is Benford in $€$ it is also B in $\$$ If X is not Benford in $€$ it is also not Benford in \$
Ex. If distances to galaxies in light years follow BL, they will also follow BL measured in inches, centimeters, miles, and every other unit.

Thm 2. $B L$ is the unique continuous base-invariant probability distribution on significant digits.

Thm 3. $B L$ is the unique sum-invariant probability distribution on significant digits (Nigrini, Allaart).

BL Probability Theorems (cont’d)

Thm 5. If X is a random variable with a density, then
$X, X^{2}, X^{3}, X^{4}, \ldots$ is Benford with probability 1. (Berger-H).
Thm 6. If $X_{1}, X_{2}, X_{3}, X_{4}, \ldots$ are i.i.d. random variables with a density, then

$$
X_{1}, X_{1} X_{2}, X_{1} X_{2} X_{3}, \ldots \text { is Benford with probability 1. (Berger-H). }
$$

BL Probability Theorems (cont'd)

Thm 4. If X is a Benford random variable, then so are

$$
X^{2}, 1 / X, \text { and } X Y \text {, }
$$

where Y is any positive random variable independent of X.

Ex. If a financial dataset X is Benford in $€$ per stock, it is also Benford in stock per $€$.

Ex. If $X_{1} \times X_{2} \times X_{3} \times X_{4} \times \ldots \times X_{n}$ are independent positive random variables (e.g. interest rates), then if any X_{i} is Benford, then the whole product is Benford and remains Benford forever.

BL Probability Theorems (cont'd)
Mixing Data from Different Distributions
Thm 7. Combining random samples from unbiased random distributions yields a Benford distribution in the limit (with probability 1).

Ex.

Three Common Errors

1. Not all exponential sequences a, a^{2}, a^{3}, \ldots are Benford.

Ex. If $\mathrm{a}=\sqrt{10}$,
then the first digits of a, a^{2}, a^{3}, \ldots are $3,1,3,1,3,1, \ldots$
2. No sequence $a, 2 a, 3 a, 4 a, \ldots$ (or sums of $\boldsymbol{i i d}$ random variables) are Benford.
3. A BL distribution need not cover many orders of magnitude.

Ex. If \mathbf{U} is a Uniform($\mathbf{0}, 1$) random variable, then

$$
X=10^{\mathrm{U}} \text { is exactly Benford, and } 1 \leq X<10 \text {. }
$$

Online Resources

Free searchable Benford Online Bibliography:

http://www.benfordonline.net/

BENFORD ONLINE BIBLIOGRAPHY

Open-access monograph: A basic theory of Benford's law
(Berger-H, 2011, Probability Surveys 8, 1-126)
http://www.i-iournals.org/ps/viewissue.php? id=11\#Articles

Mathworld
http://mathworld.wolfram.com/BenfordsLaw.html

A Widespread Error

4. Regularity and large spread do not imply BL.

Normal (Gaussian) distributions
$N(7,1)$
$N(70,100)$

Uniform distributions

Thank you, European Commission!

And especially the organizers:
Domenico Perrotta, European Commission,
Joint Research Centre, Italy (Chair)
Andrea Cerioli, Università di Parma, Italy
Lucio Barabesi, Università di Siena, Italy

How to Win € from Friends

(Morrison, Ravikumar)
Players I and U each choose a positive integer.
Let $X=$ product of the two integers.
I win if X begins with $1,2,3$
U win if X begins with $4,5,6,7,8$, or 9

We play 20 times -
winner gets $€ 10$ from loser each time.

