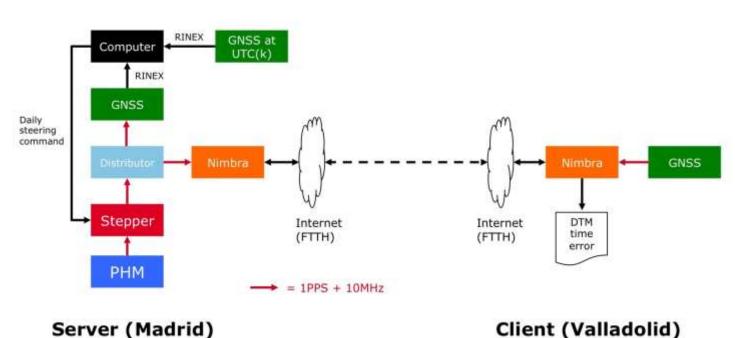
WANTIME4EC DEFIS/2020/OP/0007 **Alternative Position, Navigation and** Timing (AltPNT) technologies

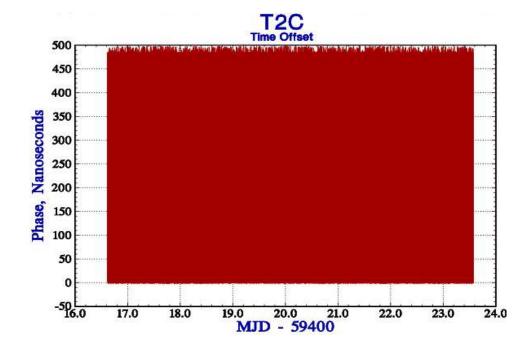
Demonstration Day at the JRC Ispra, Italy, May 18, 2022

Technologies

- Server:
 - ✓ Atomic clock (Passive Hydrogen Maser)
 - ✓ Frequency stepper
 - ✓ GNSS time transfer against UTC(k) labs
 - ✓ **DTM** (Nimbra box)
- Two links based on standard network services:
 - ✓ Spain: Fiber To The Home (FTTH), 130 km
 - ✓ Germany: MPLS, 300 km
- Client:
 - DTM (Nimbra box)
 - ✓ GNSS (*WANtime receiver*)
 - ✓ Time Interval Counter (TIC)

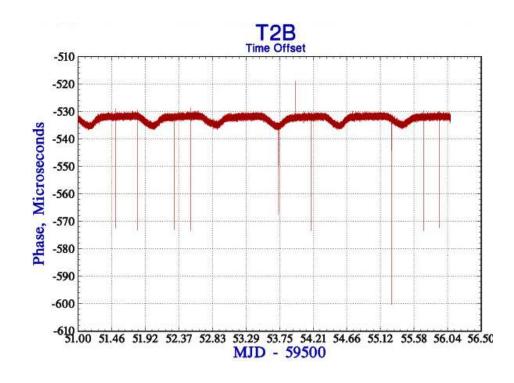


Test setup (example)



Test results highlights (1/3)

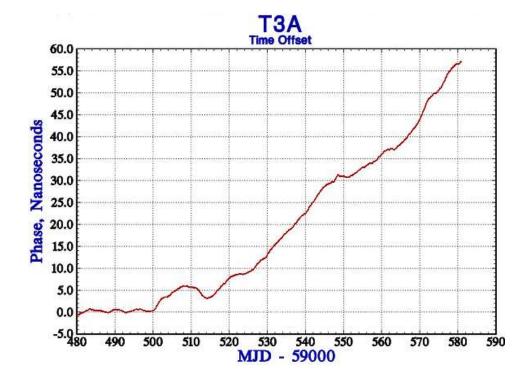
- □ **T2C: DTM over MPLS** (Germany, 300 km)
 - Excellent results over a moderately priced network service (MPLS)
 - √ Very good stability over many days
 - Maximum error of **500 ns** -> fully meets
 EC requirement of 1 μs at 3-sigma
 - Very small mean offset (240 ns) -> no need for link calibration
 - Jitter of **140 ns** (1-sigma)



Test results highlights (2/3)

□ **T2B: DTM over FTTH** (Spain, 130 km)

- Good general stability considering the inexpensive network service (FTTH)
- ✓ Jitter is **1 us** (1-sigma) over one day
- A "bump" is observed every day during the night
- Jitter outside bump is **150 ns** (1-sigma) -> meets EC requirement of 1 µs at 3sigma, but with an offset (see below)
- ✓ Occasional "loss of lock" (peaks)
- Large mean offset due to network asymmetry (unavoidable in FTTH) -> link calibration required
- Occasional jumps in the link after several days due to network reconfigurations (not shown in the figure)



Test results highlights (3/3)

□ T3A: long-term server holdover

- Excellent atomic clock holdover capabilities: **57 ns** after 100 days without GNSS
- ✓ Very robust against GNSS outages
- Could be eventually fully independent of GNSS by means of two-way time transfer (TWSTFT) to UTC(k) labs using geostationary satellites

Implementation plan

- □ A pan-European public time distribution system?
- General-purpose service or focused on critical infrastructure
- Different network services for different accuracy levels (FTTH, MPLS, dark fibre...)
- Many synergies with EGNOS and Galileo ground infrastructure
- Alternative means to distribute Galileo System Time (GST) or Galileo "UTC" via network
- □ Time servers at EGNOS RIMS
- GNSS or TWSTFT time transfer between servers and the two Galileo PTFs (in Italy and Germany)

Thank you!

Ricardo Píriz, Esteban Garbin, Raúl Nieto, Sofía Cilla, *GMV* Magnus Danielson, Javier González, *Net Insight*

