Quantifying hydrogeomorphic and climatic controls on soil erosion and sediment dynamics in large Himalayan basins

(somil.Swarnkar@gmail.com)
Indian Institute of Science Bangalore
India

Dr Shivam Tripathi
Indian Institute of Technology Kanpur
India

Dr Rajiv Sinha
Indian Institute of Technology Kanpur
India

Introduction

Research Questions

- Sediment production and transport rates are relatively higher in the Himalayan basins compared to other similarsized river basins in the world
- Very few studies have quantified the soil erosion and sediment yield in the Himalayan basin
- Calibrations using ground observed values are rarely done

- To quantify the soil erosion and sediment yield in two hydrogeomorphologically diverse Himalayan River basins
- To calibrate and validate the estimated sediment yields using ground observations
- To propose region-specific equations for sediment yield quantification
- To apply the uncertainty method for assessing the precision of modelled results

Approach and Methodology

Methodology

$$SE = R K L S C P$$

$$\frac{\delta \text{SE}}{\text{SE}} = \sqrt{\left(\frac{\delta R}{R}\right)^2 + \left(\frac{\delta K}{K}\right)^2 + \left(\frac{\delta \text{LS}}{\text{LS}}\right)^2 + \left(\frac{\delta \text{CP}}{\text{CP}}\right)^2}. \quad \text{SY} = \text{SE} \times \text{SDR}$$

$$SDR = aA^b$$

$$SY = SE \times SDF$$

Results

SE – Soil Erosion Rates (t/ha/y); R – Rainfall Erosivity; K Soil Erodibility; LS – Topographic Steepness; CP – Crop Practice Factor, SY – Sediment Yield (Mt/y)

Study Regions – Ganga basin (west) and Kosi basin (east)

Soil Erosion Estimates

Model Calibrations and Intra basin Comparison

Conclusions

- LS and R factors primarily govern the soil erosion rates in the mountainous regions
- CP and K factors influence the soil erosion rates in the alluvial plains regions
- Sediment yield from the mountain exit and alluvial plains are relatively higher for the KB than the GBA
- There is strong role of dams and reservoirs in the sediment transport behavior of the GBA

Please Click here for full manuscript

Swarnkar, S., Tripathi, S., & Sinha, R. (2021). Understanding hydrogeomorphic and climatic controls on soil erosion and sediment dynamics in large Himalayan basins. *Science of The Total Environment*, 795, 148972.