The European Commission's science and knowledge service

32

·

Joint Research Centre

de.

The POTEnCIA modelling tool Overview and process Key features and structure

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL

Brussels, 26 February 2018

POTENCIA

Policy Oriented **T**ool for **En**ergy and **C**limate change Impact Assessment

Actuality is to potentiality, Aristotle tells us, as "someone waking is to someone sleeping, as someone seeing is to a sighted person with his eyes closed, as that which has been shaped out of some matter is to the matter from which it has been shaped" (1048b1–3). http://plato.stanford.edu/entries/aristotle-metaphysics/#ActPot

El ser no sólo se toma en el sentido de sustancia, de cualidad, de cuantidad, sino que hay también el ser en potencia y el ser en acto, el ser relativamente a la acción.(Aristóteles, Metafísica, libro IX, 1). <u>http://www.webdianoia.com/aristoteles/aristoteles_meta_4.htm</u>

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

THE TOOL

POTEnCIA is a mathematical model designed to represent the economically driven functioning of the European energy markets

- Assessing the impacts of strategic EU energy-related policy options while dealing with the radical changes and new challenges experienced
- Coping with the **increasingly complex structure** of the energy market and related policies
- Accounting for **behavioural responses** to policy context

The methodological approach

- Hybrid partial equilibrium
 - behavioural decisions
 - detailed techno-economic features
- Discrete choice modelling applies for energy actors decisions

THE CURRENT STATUS

Geographical coverage

• EU Member States

Time horizon

2050 (and beyond) in annual steps

Validation

- Technical peer review exercise (documents available in the POTEnCIA website)
- Stylised scenarios developed and analysed within the Commission Services
 - Testing the model properties
 - Analysing the quality and robustness of results

High-level launch event of POTEnCIA (Oct 11 2017)

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

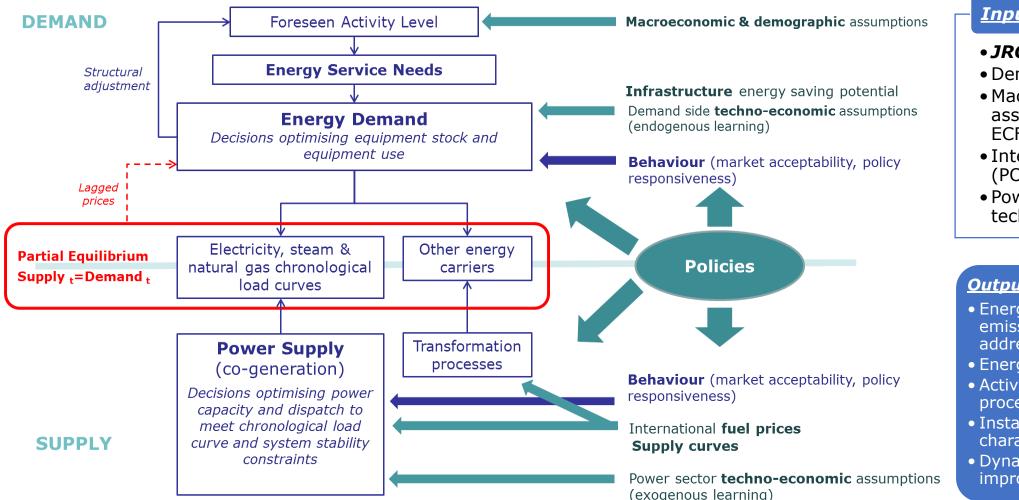
THE QUESTIONS

How does the policy framework affect

- ... the way in which energy is used
- ... the investment decisions in new energy equipment
- ... technology progress
- ... the role of non-energy using equipment options

... and thus the amount of energy used, related CO₂ emissions and costs

THE CHALLENGES


Identifying the domain for **policy action**

- Capturing **technology dynamics**
- Addressing radical changes
- Dealing with increasing complexities
- Reflecting **uncertainties**

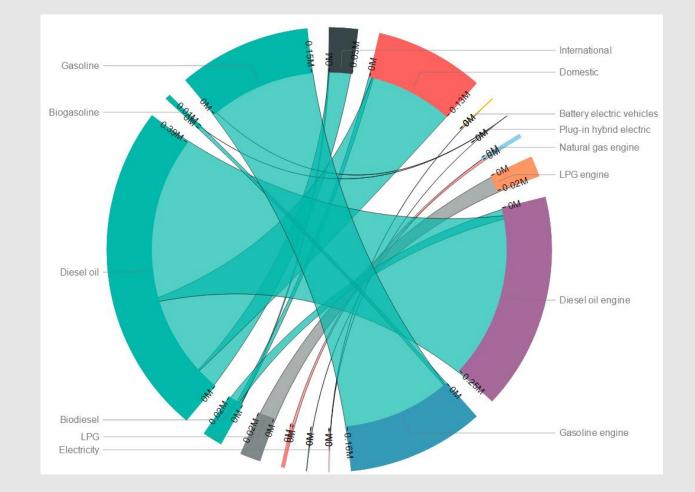
... while fully accounting for **behavioural responses**

THE MODEL STRUCTURE

Input

• JRC-IDEES

- Demographics (EUROSTAT)
- Macroeconomic assumptions (GEM-E3, DG ECFIN)
- International fuel prices (POLES)
- Power generation technology characteristics


Output

- Energy balances and related CO₂ emissions (ETS explicitly addressed)
- Energy system costs and prices
- Activity indicators and related process CO₂ emissions
- Installed equipment capacities, characteristics and rate of use
- Dynamic technology improvements

JRC-IDEES

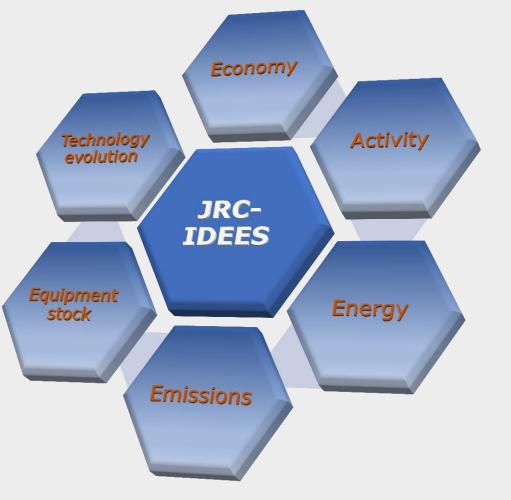
Integrated Database of the European Energy System

MOTIVATION

All modelling tools need to put together the statistical data that they use Decomposition of data applies as to match the level of detail represented in the model structure

JRC-IDEES forms an integral part of the POTEnCIA model

- reflecting the current structure and properties of the energy system
- *identifying existing equipment vintages and characteristics*
- capturing behavioural aspects with regards to the use of equipment



JRC-IDEES DATABASE

An **open source** complete database of the energy system and all associated factors

- EUROSTAT compliant
- Time horizon: 2000-latest statistical year on an annual basis (currently: 2015)
- Geographical coverage: EU Member
 States

FIRST-OF-ITS-KIND

WHAT FOR?

Analysing the main energy system related policy pillars:

Energy efficiency	Renewable energies	Climate change	Market integration			
through						
Price signals	Subsidies; premium tariffs	Technology standards	<i>Eco-design, CO₂ standards for vehicles</i>			
Quantity constraints	<i>Renewables quota; ETS cap; minimum fuel blending</i>	Non-energy measures	Building codes			
Behavioural policies	Labelling; Awareness campaigns	Market conditions	Liberalisation; decentralisation			
Constrained by						
Sectoral detail	Time step	Policy impacts on the economy	Spatial dimension			
<i>engineering analysis performed at the level of technology groups</i>	fractions of an annual step addressed through snapshots	<i>link to appropriate modelling tools</i>	network related volumes and costs still captured European Commission			

ANALYSING POLICIES WITH POTENCIA

POTEnCIA is designed to perform **comparative** analysis of scenarios

"Projections are not forecasts"

A "central" scenario needs to be

defined

- Reflecting a plausible evolution of the energy system, while
- incorporating policies and measures in place

The internal coherence of the model enhances robust scenario analysis *minimising the need for exogenous interventions* Assessment of the impact of specific (policy) assumptions with respect to the "central" scenario

- POTEnCIA can address both explicitly defined policies and those that are met through policy signals
- Different ways of representing policies and targets
 - Year specific and/or cumulative
 - Quantity based and/or cost based
- Multiple targets can be addressed simultaneously
 Involving "equivalent" effort or prioritising scopes
- The geographical/sectoral scope is also flexible

From sector and country specific to simultaneous EU wide solutions

POLICY ANALYSIS WITH A MODELLING TOOL

... requires continuous interactions

between European Commission and Member States' experts

 Understanding and correctly reflecting the past

JRC-IDEES database

- \rightarrow Exchanges with national experts on-going
- Agreeing in key future assumptions
 - \rightarrow macro-economy and demographics
 - \rightarrow international fuel prices
 - \rightarrow technology characteristics
 - \rightarrow envisaged activity levels

- Understanding the model features and scope
 - → illustrative **"Entry-point"** stylised scenario
- Addressing country specificities
 - → incorporation of country specific policies in place
 - \rightarrow inclusion of on-going investments plans
 - → reflection of envisaged evolution of national energy systems in a European wide context

ENSURING TRANSPARENCY AND ACCESSIBILITY

An online platform has been established that will eventually allow access to

- Documentation on POTEnCIA
- POTEnCIA input database
- Detailed results of selected (and agreed upon with the policy DGs) scenarios enhanced by visualisation tools
- The tool will be made accessible
 - including the model code

POTENCIA MODEL OUTPUT

Model assumptions

- Macroeconomic drivers
- Demographics
- International fuel prices
- Policy assumptions

Activity levels and use of stock

- Industrial production levels, transport activity by mode, etc.
 - introduced as assumptions (envisaged levels)
 - revised endogenously as a function of the policy context (costs, technology dynamics etc.)
- Rates of use
- Investment in new equipment
- Idle equipment
- Prematurely replaced equipment

Energy use and CO₂ emissions

- from aggregates at sectoral level to end-use specific
- fuel disaggregation in line with EUROSTAT nomenclature

Cost elements

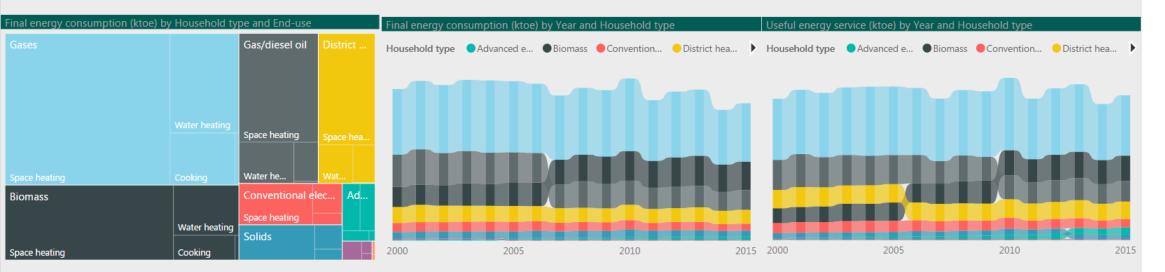
Energy system costs

- Energy equipment related
- Policy related
- Stranded costs
- Infrastructure related

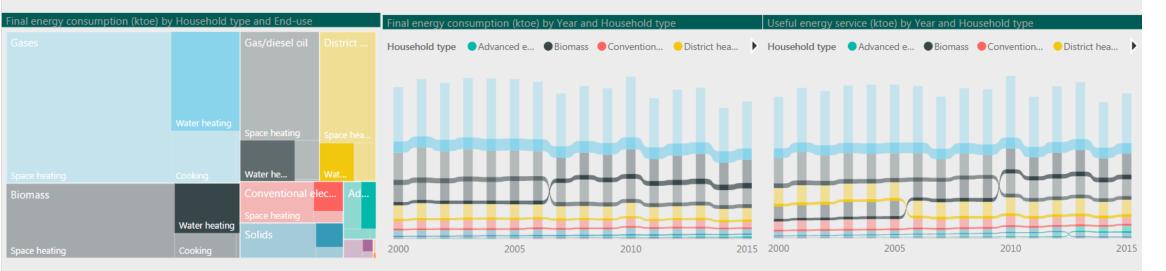
Techno-economic characteristics of installed equipment

Distinguishing per vintage

- Typical sizes
- Efficiencies
- Costs (capital, fixed, variable)

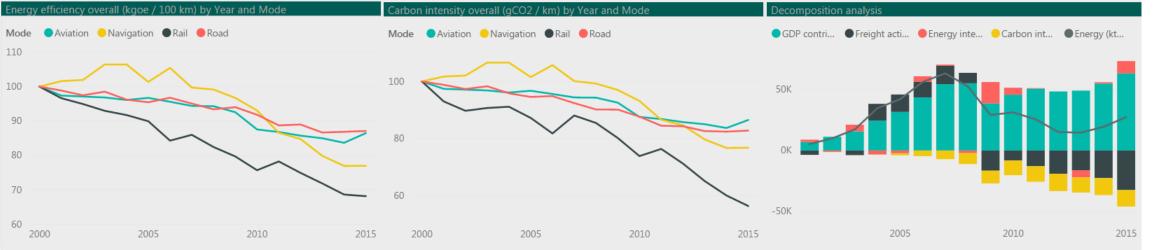


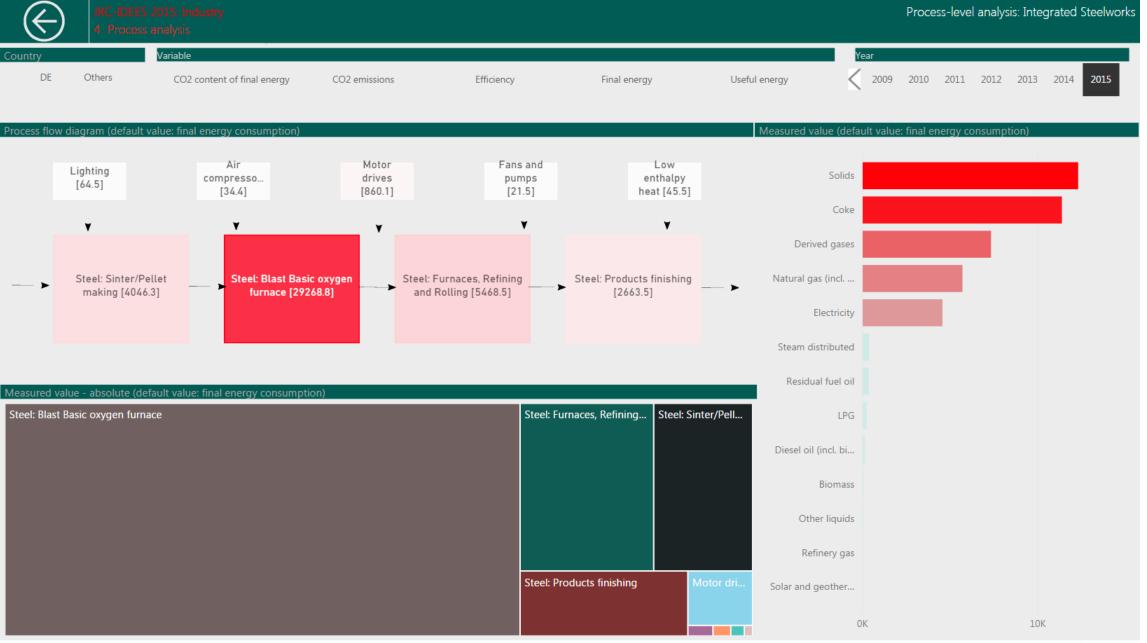
Category Subcategory As of Date Variable Current Value Growth over period Comparison Value Trend Quantities Macro 2015 Value added (M€2010) 191,464.51 -17.17 % 231,161.59									Max Year (de	fault variable: value added	l per emplo
Energy or emissions 2015 Value added (M€2010) 191,464.51 -17.17 % 231,161.59	Category	Subcategory	As of Date	Variable	Current Value		Comparison Value	Trend	N	,	-
2015 Final energy consumption (ktoe) 26,493.49 -15.03 % 31,179.17 2015 Useful energy service (ktoe) 10,606.89 -7.80 % 11,504.37	Quantities	Macro	2015	Value added (M€2010)	191,464.51	-17.17 %	231,161.59	\sim	Area		D.P.ª
		Energy or emissions	2015	Final energy consumption (ktoe)	26,493.49	-15.03 %	31,179.17	\sim		K MA	
2015 CO2 emissions (ktCO2) 57,268.15 -22.60 % 73,993.59			2015	Useful energy service (ktoe)	10,606.89	-7.80 %	11,504.37	\sim		100	R.C.
Min Year (default variable: value add			2015	CO2 emissions (ktCO2)	57,268.15	-22.60 %	73,993.59	\sim	Min Voor (dof	fault variable: value added	L por emplo
Intensities Energy or emissions to macro 2015 Energy intensity of value added (toe / M€2010) 138.37 +2.59 % 134.88 134.88	Intensities		2015	Energy intensity of value added (toe / M€2010)	138.37	+ 2.59 %	134.88	\mathcal{M}			
2015 Carbon intensity of value added (tCO2 / M€2010) 299.11 -6.56 % 320.09 / / / / / / / / / / / / / / / / / / /			2015	Carbon intensity of value added (tCO2 / M€2010)	299.11	-6.56 %	320.09	\mathcal{M}	Arrit	. 18	
Energy or emissions to energy or emissions 2015 Carbon intensity of final energy (tCO2 / toe) 2.16 -8.92 % 2.37			2015	Carbon intensity of final energy (tCO2 / toe)	2.16	-8.92 %	2.37	\sim		XXX.	
System efficiency (toe 2015 useful energy / toe final energy) 0.40 +8.51 % 0.37			2015	useful energy / toe final	0.40	+8.51 %	0.37			150	2 AR

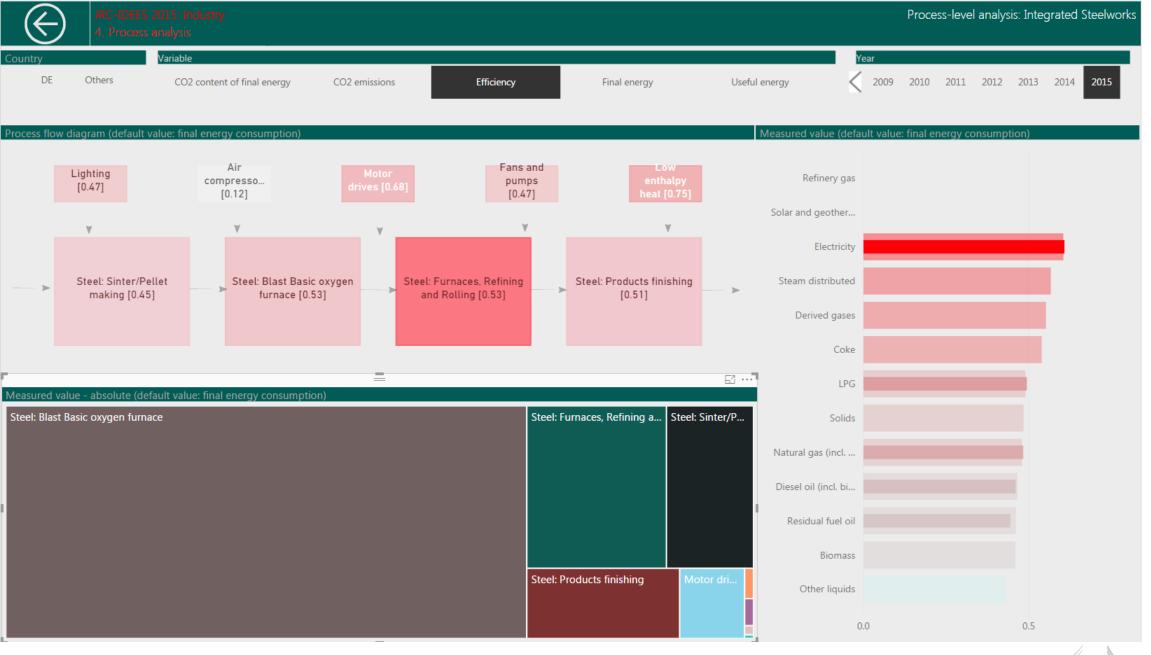

\bigotimes		S 2015: Residenti / and emissions										Analysis at t	he household leve	el: energy cor	nsumption a	ns emissions
Country		Select a single ye	ar							Measure: Difference	e		Measure: Comp	are		
DE	Others	2006 20	07 2008	2009	2010	2011	2012	2013	2014 2015	None	Ref 2000	Year-to-Year	No	Over 2000	Over EU	(\mathbf{A})

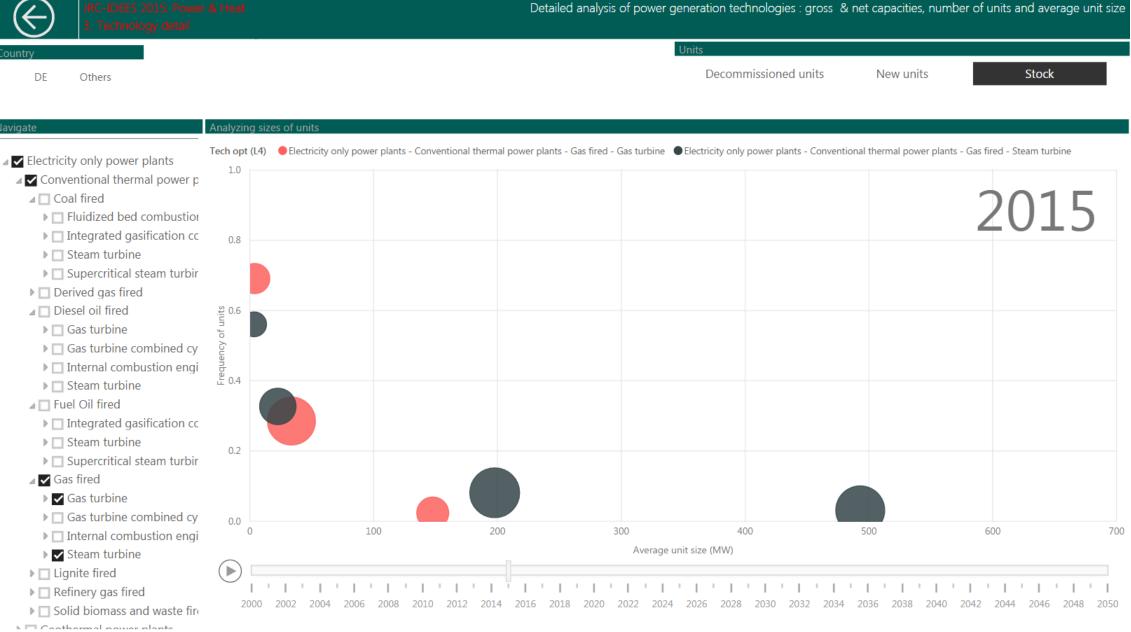
Number of households equipped by Household	l type		CO2 emissions (ktCO2) by Year and H	lousehold ty	/pe				
Gases	Gas/diesel oil	District h	Household type	 Advanced electrical 	Biomass	Conventional electr	District heating	Gas/diesel oil	Gases 🛑 Geothermal	LPG Solids
Biomass	Conventional ele	Solids								
	Advanced electri	cal	2000	2002	2004	2006	2008	2010	2012	2014

\bigotimes		ES 2015: Reside ly and emission											Analysis at t	he household lev	el: energy cor	nsumption a	ns emissions
Country		Select a singl	e year								Measure: Differer	ce		Measure: Comp	oare		
DE	Others	< 2006	2007	2008	2009	2010	2011	2012	2013	2014 2015	None	Ref 2000	Year-to-Year	No	Over 2000	Over EU	


Number of households equipped by Household	type		CO2 emissions (ktCO2) by Year and H	ousehold ty	/ре				
Gases	Gas/diesel oil Di		Household type	Advanced electrical	Biomass	Conventional electr	District heating	Gas/diesel oil	Gases 😑 Geothermal	LPG Solids
	Conventional ele	Solids								
Biomass	Conventional ele	Solids								
	Advanced electrical									
			2000	2002	2004	2006	2008	2010) 2012	2014


	015: Services Specific analysis of energy consu composition	mptions - Sankey Chart 2: End-uses -> Technologies -> Useful energy provided by technologies
Country Tec	chnology	End-use
DE Others	Catering -	Hot water - Hot water - Catering Hot water Space cooli Space heati Gas/Diesel Gases incl. Joil incl. biogas biofuels (G
Animate or select single year () (1) (1) (1) (1) (1) (1) (1) (1) (1) (Catering	Hot water - Electricity Hot water - Gases incl. biogas Catering - Electricity - useful Catering - Gases incl. biogas - u
	Hot water	Catering - Electricity Hot water - Electricity - useful Hot water - Gases incl. biogas - useful Space cooling - Electric space c
Origin node Technology option	Space cooling	Catering - Gases incl. biogas
Use		Space heating - Conventional electric heating
	Space heating	Space heating - Conventional ga Space heating - Conventional el
Destination node Energy service Technology option		Space heating - Derived heat
		Space heating - Derived heat - u Space heating - Gas/Diesel oil in Space heating - Gas/Diesel oil in





Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

REPRESENTING THE SECTORAL STRUCTURE

Formulated by means of a **nested-tree structure**

flexible implementation across the different sectors Decomposing energy use at the level of

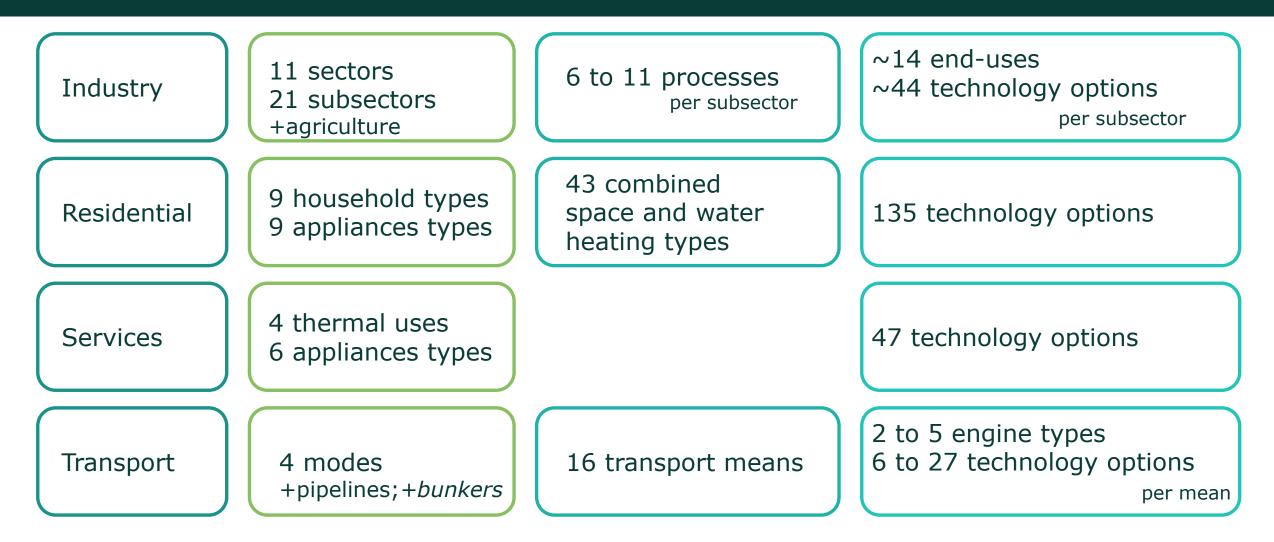
- processes
- energy end-uses
- technology options,
- technology types, and
- associated energy forms

Reflecting the energy equipment installed as to satisfy the service needs of energy consumers

The representative agents' investment decisions are obtained through a **nested multinomial logit formulation**

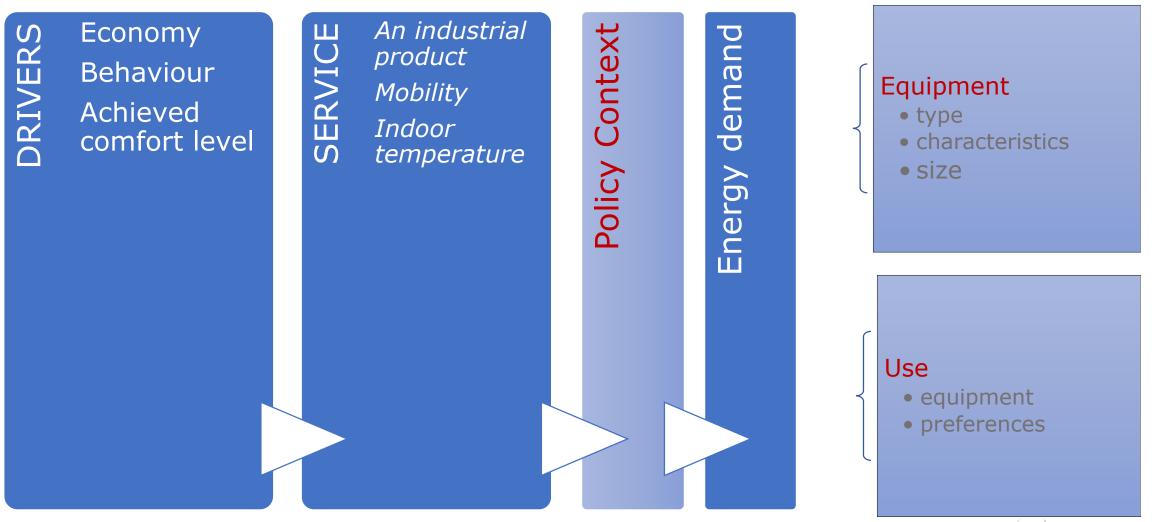
The drivers for the decision making at each level of the tree are

- the techno-economic characteristics of the alternative options
- their market acceptance factor
- the size of equipment installed
- the level of operation of the equipment


The explicit characteristics of an installation span the whole tree

Substitutability/complementarity of the options available at each level is explicitly addressed

Behavioural equations apply as regards the operation and use of energy related equipment



MODEL DETAIL IN THE DEMAND SIDE

WE CONSUME ENERGY TO MEET OUR NEEDS

HOW THE POLICY CONTEXT AFFECTS ENERGY DEMAND

Energy equipment limits flexibility

Representative consumption unit

- An industrial installation needed to produce one unit of output
- A building installation for thermal uses
- A unit or a representative configuration of units for electrical equipment
- A vehicle for private transport
- A representative vehicle configuration for other transport modes

Multiple options of installations are available within a vintage

Replacement of different components in line with the corresponding technical lifetime

Dynamically evolving technoeconomic characteristics

Explicit representation of idle equipment or installations

- Avoiding erroneous allocation of equipment
- Allows identifying the domain for policy implementation

How the Policy Context Affects Energy Demand

Energy equipment limits flexibility

- Installation types
- Vintage specific characteristics

Number of individual units explicitly identified

Operation of equipment may deviate from optimality

The way we use the energy related equipment is dependent on

- the prevailing policy conditions
- the vintage specific equipment characteristics
 Size / Technical characteristics
- the purpose of use

Affecting the level of satisfying our service needs Flexibility to adapt is explicitly considered

Not applicable for industrial sectors Also acting on vehicles loads for transport

How the Policy Context Affects Energy Demand

Energy equipment limits flexibility

- Technology types
- Vintage specific characteristics

Number of individual units explicitly identified

Operation of equipment may deviate from optimality

- Size forms a constraint
- Response to policy dependent on equipment and purpose of service
 - > <u>multiple decisions</u>

Enhanced **economic** response mechanisms

Infrastructure improvements are vintage and energy use specific

- non-linear cost formulation applies
- accumulation of consecutive investment in the vintage specific characteristics
- underutilisation of energy equipment captured

Premature replacement of equipment

- within each vintage
- applicable at the level of equipment clusters
- stranded costs and scrapped equipment quantified
 Policy initiatives can be explicitly addressed

Structural responses

- changes in activity volumes
- revisions of comfort standards
- reallocations of service needs

HOW THE POLICY CONTEXT AFFECTS ENERGY DEMAND

Energy equipment limits flexibility

- Technology types
- Vintage specific characteristics

Number of individual units explicitly identified

Operation of equipment may deviate from optimality

- Size forms a constraint
- Response to policy dependent on equipment and purpose of service
 - multiple decisions

Enhanced **economic** response mechanisms

- Investment in non-energy equipment
- Premature replacement of equipment
- Structural responses

Explicit accounting for incurred stranded costs; idle stock; scrapped equipment

HOW THE POLICY CONTEXT AFFECTS ENERGY DEMAND

 Envisaged level of use reflects the comfort standard ("welfa links to macroeconomic and demogra assumptions it also takes into account 	
 the penetration rate of the equipment possible saturation limits 	 Realised level of use adjusts the envisaged level in response to the policy framework agents flexibility to adapt is explicitly considered vintage and energy equipment specific describes the operation of the installed equipment

Each choice is treated as a physical entity (installation)

Explicit number of new installation quantified Non-energy using options form an integral part of the investment decision

HOW THE POLICY CONTEXT AFFECTS ENERGY DEMAND

Energy equipment limits flexibility

- Technology types
- Vintage specific characteristics

Number of individual units explicitly identified

Operation of equipment may deviate from optimality

- Size forms a constraint
- Response to policy dependent on equipment and purpose of service
 - multiple decisions

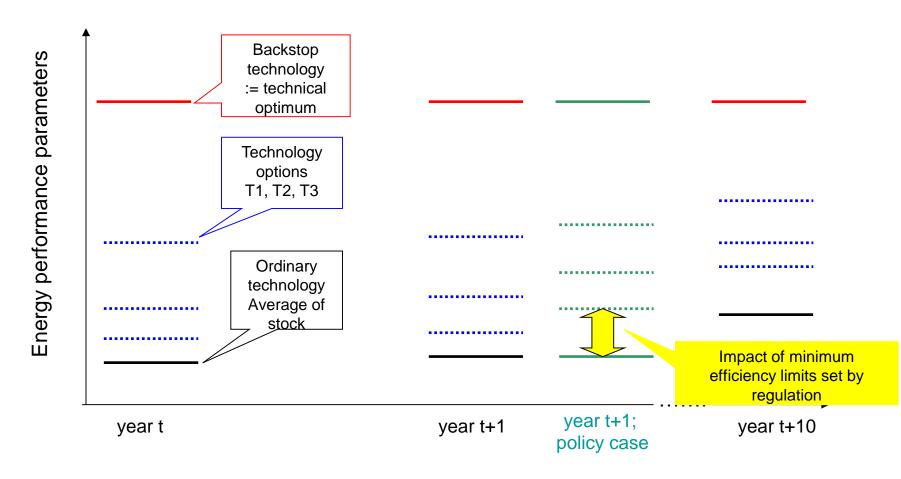
Enhanced **economic** response mechanisms

- Investment in non-energy equipment
- Premature replacement of equipment
- Structural responses

Explicit accounting for incurred stranded costs; idle stock; scrapped equipment

We **invest** to meet our envisaged service needs

- Explicit number of units identified
- Combined to non-energy using options <u>reflected on size of energy equipment</u>


Endogenous technology dynamics

HOW THE POLICY CONTEXT AFFECTS ENERGY DEMAND

Initial stock dependent (country specific)

Alternative technology options develop dynamically towards technical optimal Explicit representation of minimum standards

Endogenous technology dynamics

Techno-economic characteristics

- country specific
- policy dependent evolution

Related costs link to technology dynamics

- level of deployment
- pace of progress
- technical / physical limits
- learning effects

If a technology option becomes unattractive its technology progress slows down

HOW THE POLICY CONTEXT AFFECTS ENERGY DEMAND

Energy equipment limits flexibility

- Technology types
- Vintage specific characteristics

Number of individual units explicitly identified

Operation of equipment may deviate from optimality

- Size forms a constraint
- Response to policy dependent on equipment and purpose of service
 - multiple decisions

Enhanced **economic** response mechanisms

- Investment in non-energy equipment
- Premature replacement of equipment
- Structural responses

Explicit accounting for incurred stranded costs; idle stock; scrapped equipment

We **invest** to meet our service needs

- Explicit number of units identified
- Combined to non-energy using options <u>reflected on size of energy equipment</u>

Endogenous technology dynamics

Technology characteristics are country specific

- depend on the existing equipment stock (structure and age)
- relate to the need for new equipment
- link to prevailing policy conditions
 Related costs link to projected dynamics

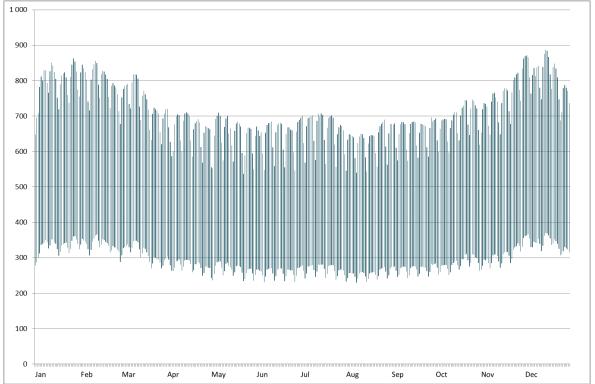
<u>through</u>

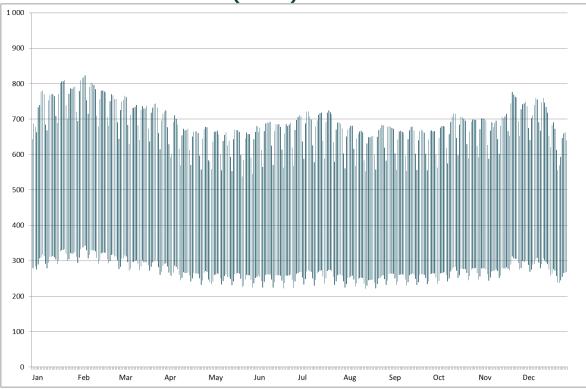
- level of deployment
- pace of progress
- technical/physical limits
- learning effects

Brief description and current status

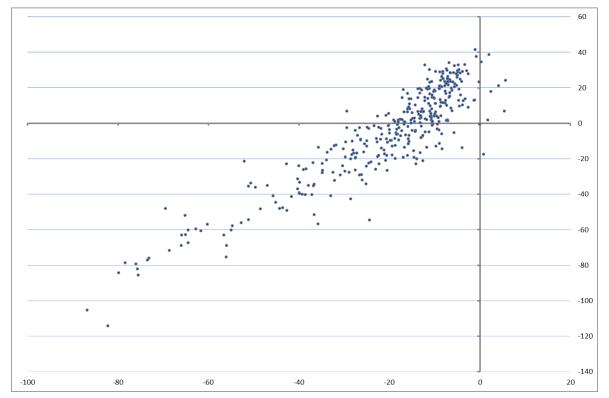
Motivation and main features of the tool

Demand side


Power sector


Behavioural aspects

FROM A CHRONOLOGICAL LOAD CURVE ...

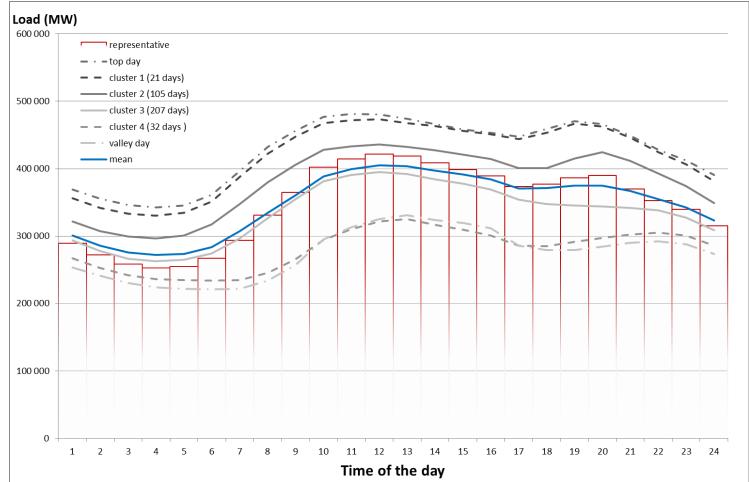


FROM A CHRONOLOGICAL LOAD CURVE ...

ENTSO-E provides information on an hourly basis for the load (GW)

Comparison of daily load 2015-2010

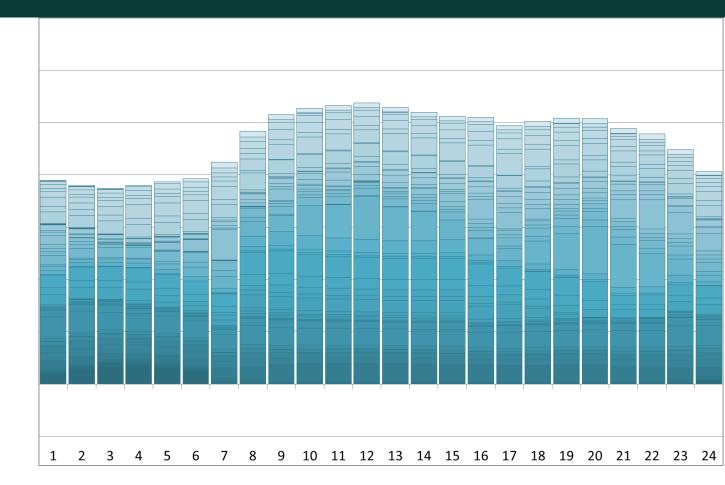
Comparison of daily peak to base load 2015-2010



... TO THE REPRESENTATIVE DAY APPROACH

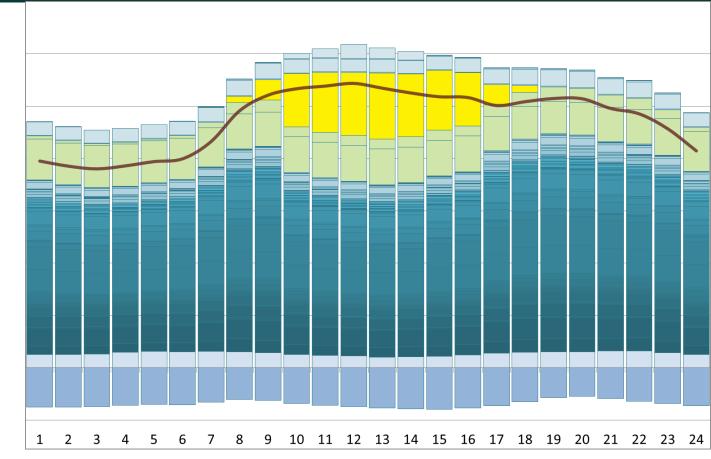
Load curve of a **representative** day

- most likely load pattern for dispatching conditions in one year
- more pronounced peak and valley than in average load curve
- similar concept applies to solar and wind generation
- extreme days can be captured through 'snapshots'


expansion to two representative days foreseen

Chronological load curve derived from almost 300 energy uses

- with specific load profiles
- dynamic evolution of shape
- fully capturing policy effects

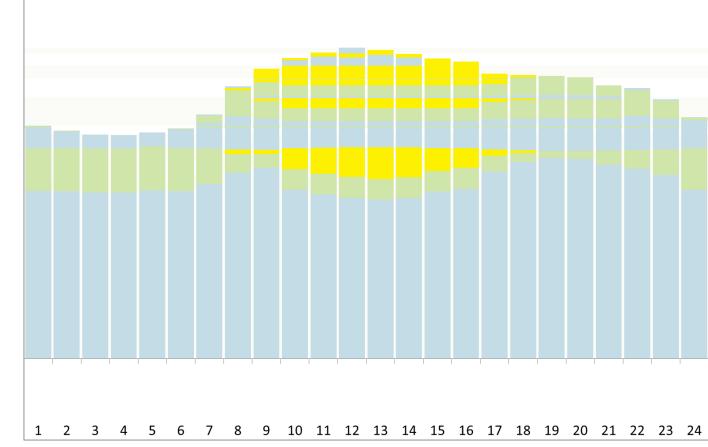


Chronological load curve derived from almost 300 energy uses

Trade of electricity takes place as to optimise the power system

Simultaneous imports and exports of electricity across countries

Interconnection constraints fully respected


Chronological load curve derived from almost 300 energy uses

Trade of electricity takes place as to optimise power generation

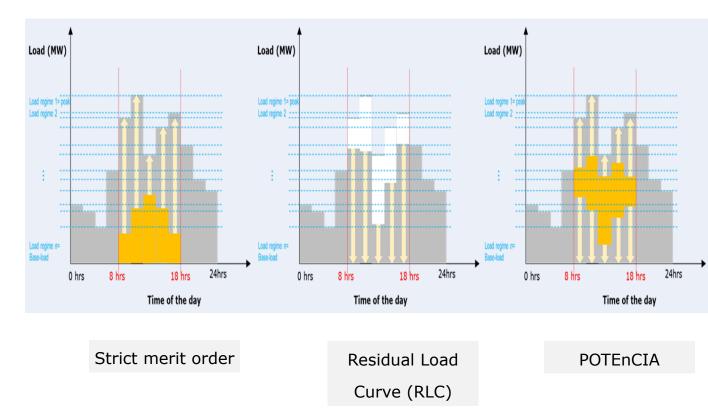
Power plants operation addressed at the level of units

Dispatching in multiples of unit sizes

• Mimicking mixed integer programming

Portfolio management approach with dynamic characteristics

Chronological load curve derived from almost 300 energy uses


Trade of electricity takes place as to optimise power generation

Power plants operation addressed at the level of units

- Dispatching in multiples of unit sizes
- Mimicking mixed integer programming

Meeting power **and/or** electricity generation

- Integrating high shares of variable renewable energies
- Respecting resources availability constraints

Chronological load curve derived from almost 300 energy uses

Trade of electricity takes place as to optimise power generation

Power plants operation addressed at the level of units

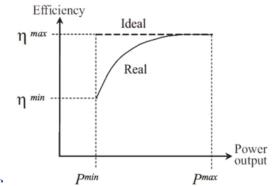
Dispatching in multiples of unit sizes

• Mimicking mixed integer programming

Meeting power **and/or** electricity generation

- Integrating high shares of variable renewable energies
- Respecting resources availability constraints
- Accounting for opportunity costs induced across competing technologies
- Bundling of units is reflected and addressed
- System stability is ensured

Stationary operating costs


Based on nominal techno-economic characteristics of power plant units

- Power plant efficiency
- Rate of own consumption
- Variable operating cost
- Fuel cost
- Policy costs (ETS price, renewable value etc.)

Operating mode related costs reflecting cycling

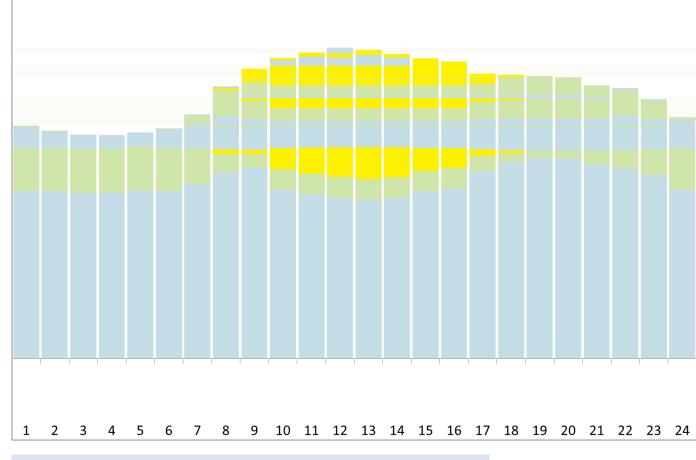
Part load operation (spinning reserve) Start-ups and shut downs

- wearing off of equipment effect
- increased own consumption effect

Chronological load curve derived from almost 300 energy uses

Trade of electricity takes place as to optimise power generation

Power plants operation addressed at the level of units

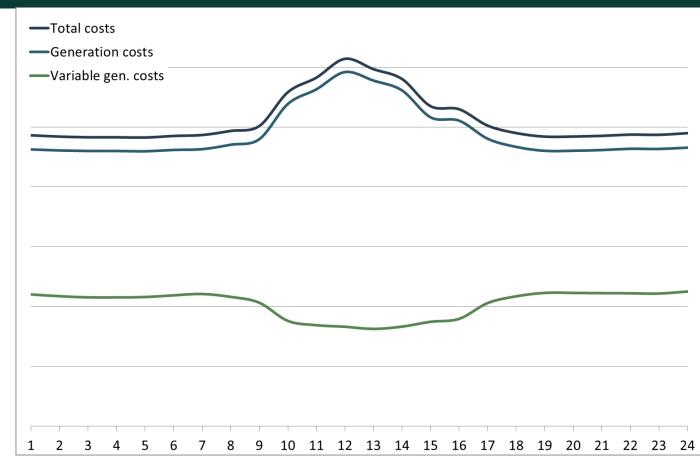

Dispatching in multiples of unit sizes

• Mimicking mixed integer programming

Meeting power **and/or** electricity generation

- Integrating high shares of variable renewable energies
- Respecting resources availability constraints
- Accounting for opportunity costs induced across competing technologies
- Bundling of units is reflected and addressed
- Addressing system stability

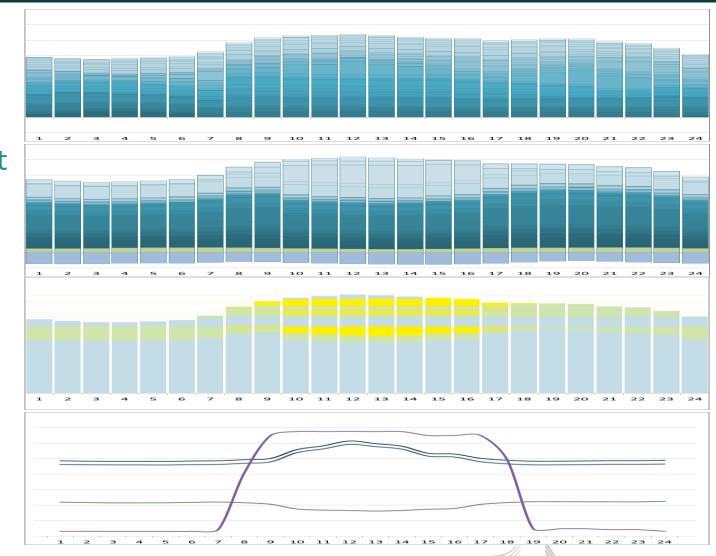
Cogeneration plants driven primarily – but not exclusively - by steam demand


Portfolio management approach with dynamic characteristics

Chronological load curve derived from almost 300 energy usesTrade of electricity takes place as to optimise power generationPower plants operation addressed at the level of units

Capturing **generation cost fluctuations**

- Average and marginal cost on hourly basis
- Correctly identifying the cost of different uses
- Identifying the scope for Demand Side Management
 - *Endogenous signal to the demand side that can influence load profiles*



- Chronological load curve derived from almost 300 energy uses
 Trade of electricity takes place as to optimise power generation
- **Power plants operation** addressed at the level of units
- Capturing generation cost fluctuations
- ... and identifying the number of units in operation
 - allowing to understand the complexity of the dispatching problem

- Chronological load curve derived from more than 300 energy uses Trade of electricity takes place as to optimise power generation
- **Power plants operation** addressed at the level of units
- Capturing generation cost fluctuations
- ... and identifying the number of units in operation
 - ... as to better mimic real life power plants operation

Respecting system and power plants factual characteristics

Investments take place in typical sizes of units

Investments take place in multiples of unit sizes

- Mimicking a mixed integer programming approach
- Strongly affecting the evolution of the power plants park, especially for small countries
- Preferences for delaying or advancing investment can be reflected
- Linking to the policy regime
- Underinvestment may occur

The load profile of investment needs reflects

- the load profile of decommissioned capacities, and
- the load pattern of the evolving demand load curve

A **portfolio management approach** applies through a nested multinomial logit formulation

- up to four typical size classes
- technology options
- fuel types
- electricity-only and cogeneration plants
- power plants with/without CCS equipment

272 types

Respecting system and power plants factual characteristics

Investments take place in typical sizes of units

System stability accounted for

Explicit consideration of **system stability** implemented

Endogenous calculation of the **reserve margin**

- boundary conditions for the total installed capacity versus peak load apply
- the total capacity in use versus the total capacity installed forms another boundary condition

The **system stability indicator** provides a signal to the investment decision-making

- defined by means of the capacity in operation compared to peak load
- the attractiveness for power plants that satisfy electricity and not load reduces as the system stability indicator increases

i.e. investors favour more power plants options that contribute to reliable load

Different types of investors considered

From small power generators that act primarily towards satisfying their own needs ...

to large utilities that seek to optimise the operating characteristics of the overall system **Dedicated producers**: their decision reflects the fulfilment of a specific load pattern

- demand or resource availability driven (IPPs fall in this category)
- weighted distribution of expectations defined at the level of load regimes
- overall decision obtained combining those of the different load regimes

Multiple market agents: individual investment choices in view of the overall load profile

- load regimes decisions form a new problem at the aggregate level
- different expectations dealt with at the aggregate level

Central decision planners: central investment choice in view of the overall load profile

 instead of multiple individual decisions, one single decision that encompasses various assumptions with regards to the different possible evolutions of the system

Coping with uncertainties

No perfect foresight

Recursive rational expectations

Divergent future outlooks

Failures in meeting capacity needs may occur **Capacity planning** considers by default **uncertainty** for the policy framework

Dynamic recursive foresight with imperfect information ('rational expectations')

Investors assume **different expectations** on the likely evolution of the policy framework in their decision-making, captured through a probability density function

- The envisaged future policy framework links to
 - prevailing policy assumptions
 - short- and medium term trends in the historic evolution
 - an understanding of the sector's limitations
- The weighted distribution of the decisions of the different market agents (and their divergent expectations) applies on investment decisions

Respecting system and power plants factual characteristics

Investments take place in typical sizes of units Different types of investors considered

From small power generators that act primarily towards satisfying their own needs ...

System stability accounted for

to large utilities that seek to optimise the operating characteristics of the overall system

Coping with uncertainties

No perfect foresight

Recursive rational expectations

Divergent future outlooks

Failures in meeting capacity needs may occur

Brief description and current status

Motivation and main features of the tool

Demand side

Power sector

Behavioural aspects

ACCOUNTING FOR BEHAVIOURAL RESPONSES

We do not behave in the same way

Our decisions are characterised by suboptimality driven by

the economic environment

- access to capital and/or
- budgetary constraints

Investment decisions take place on the basis of the perceived cost of capital

The subjective financing capability

- Reflects access to capital and purchase power
- Addresses risk factors/asymmetric information
- Links to budget constraints (differentiated per Member State)

Different formulations for the subjective financing capability are available

- from being deactivated
- to being assumed constant and equal across EU Member States

For commercial investors the perceived cost of capital is equivalent to the WACC (weighted average cost of capital)

Investment costs are reported on the basis of the **nominal discount rate**

ACCOUNTING FOR BEHAVIOURAL RESPONSES

We do not behave in the same way

Our decisions are characterised by suboptimality driven by

the economic environment

- access to capital and/or
- budgetary constraints

our rationality

- perception (understanding)
- preferences

Deviations from economic optimality are captured through **market acceptance factors**, reflecting

- market agents' preferences (cognitive biases)
- market agents' risk considerations
- existing limitations of technical and infrastructure nature

Policies can increase our rationality by

- fostering economic awareness
- removing asymmetric information
- improving risk perception

but also through

- exploiting learning-by-adopting effects
- influencing individual preferences
- triggering collective "societal" appreciation/collective behaviour effects

Modelled through a **dynamic non-linear formulation** that allows **endogenously** shifting

- from a portfolio of (suboptimal) decisions
- towards the economically optimal one

ACCOUNTING FOR BEHAVIOURAL RESPONSES

We do not behave in the same way

Our decisions are characterised by suboptimality driven by

the economic environment

- access to capital and/or
- budgetary constraints

our rationality

- perception (understanding)
- preferences

Economic conditions act on the **perception of investment costs**

Endogenously driven adaptation mechanism that reflects market agents **behaviour response** to policies

Policy driven changes in the **economic rationality** of investment decision making

"Entry Point" Scenario Assumptions Macro-economy & demographics international fuel prices industry

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL

Brussels, 26 February 2018

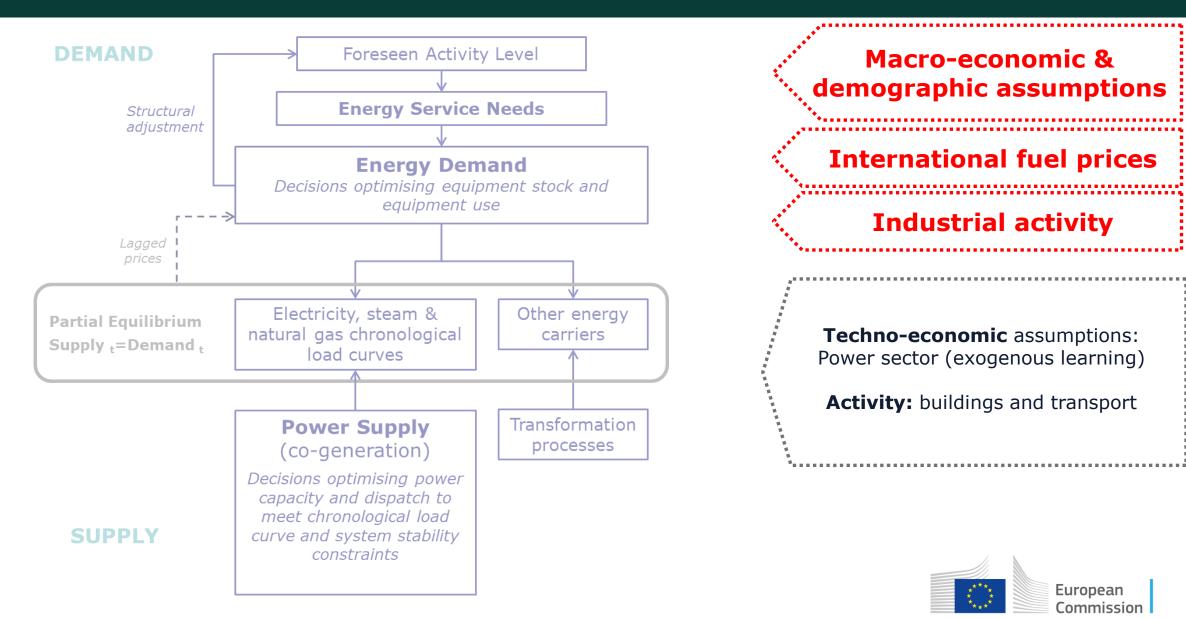
POLICY ANALYSIS WITH A MODELLING TOOL

... requires continuous interactions

between European Commission and Member States' experts

 Understanding and correctly reflecting the past

JRC-IDEES database


 \rightarrow Exchanges with national experts on-going

Agreeing in key future assumptions

- Understanding the model features and scope
 - → illustrative "Entry-point" stylised scenario
- Addressing country specificities
 - → incorporation of country specific policies in place
 - \rightarrow inclusion of on-going investments plans
 - → reflection of envisaged evolution of national energy systems in a European wide context

SCOPE OF THIS PRESENTATION

Key Assumptions

MACRO-ECONOMY AND DEMOGRAPHICS

Population data and Projections

EUROSTAT (2017 Population Projections used)

Macroeconomic data and projections expressed in €2010

EUROSTAT historical data (from 2000 up to 2015-2016)

- National accounts ESA 2010
- SBS statistics

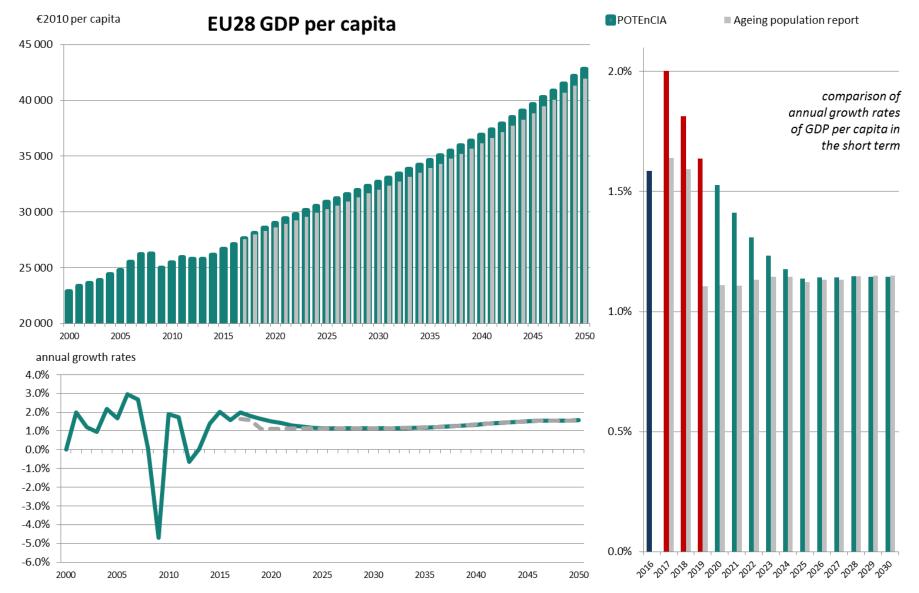
 ${\small €2010}$ obtained from current prices by applying the corresponding deflator

Projection for GDP

2017-2019: from the AMECO database published forecasts - DG ECFIN

also for gross value added and private consumption expenditure

• 2020 onwards: based on the assumptions of the "2018 Ageing Report" – EPC and DG ECFIN


Projection for sectoral value added (2016 onwards)

own estimates

MACRO-ECONOMY AND DEMOGRAPHICS

Adjustments in 2020-2025 apply as to bridge

- AMECO projections to
- Ageing report assumptions
 Country specific

GDP per capita grows at an average annual growth rate of

1.36% pa in 2015-2050 (1.31% pa in the Ageing report)

2000

2005

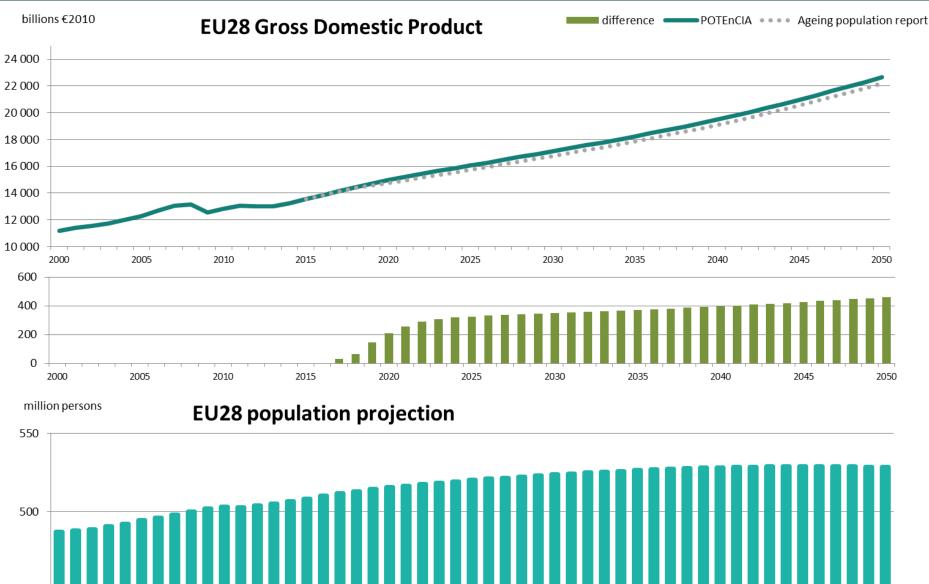
2010

2015

2020

2025

2030

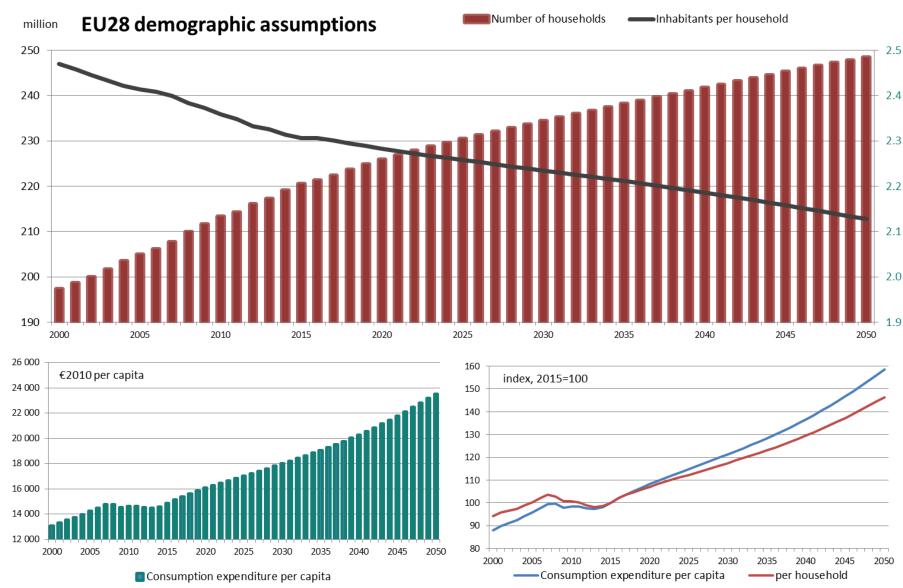

2035

2040

2045

2050

MACRO-ECONOMY AND DEMOGRAPHICS

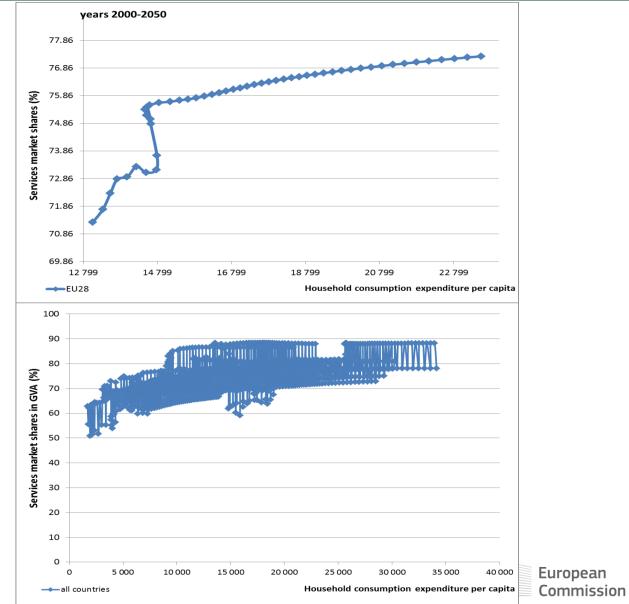

Total GDP grows by 1.47% pa in 2015-2050

Adjustments lead to an annual increase of the GDP by up to 460 billion €2010 (or 1.9% in cumulative terms)

EU population grows at a rate of 0.1% pa

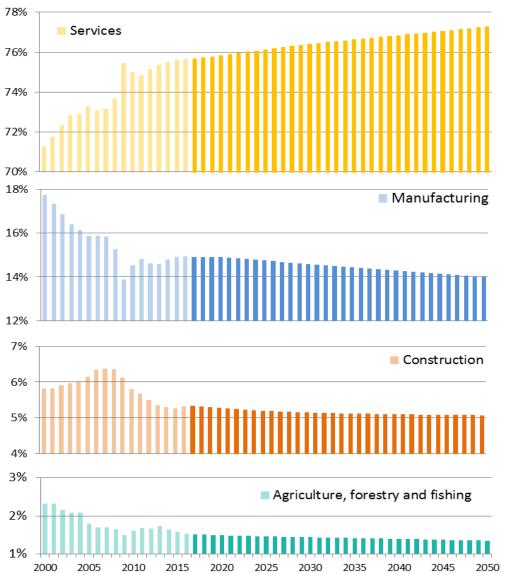
MACRO-ECONOMY AND DEMOGRAPHICS

Households size declines


- 2.31 inh/household in 2015
- 2.13 in 2050

Number of households increases by 0.3% pa

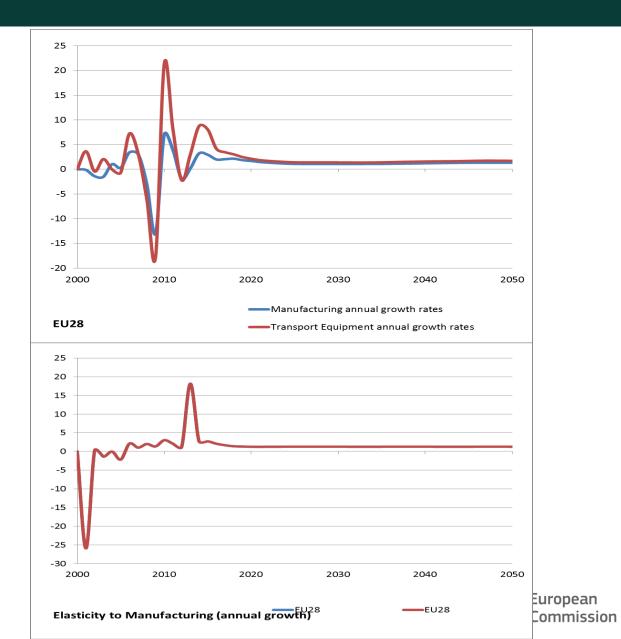
- Income per capita grows by 1.3% pa
- Income per household grows by 1.1% pa



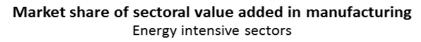
KEY ASSUMPTIONS STRUCTURE OF THE ECONOMY

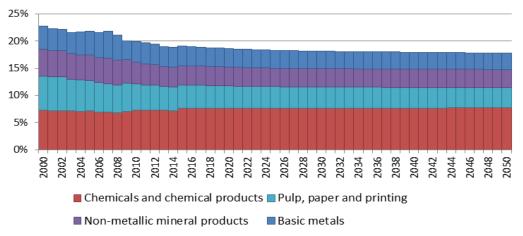
STRUCTURE OF THE ECONOMY

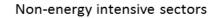
Market share of sectoral value added in GVA

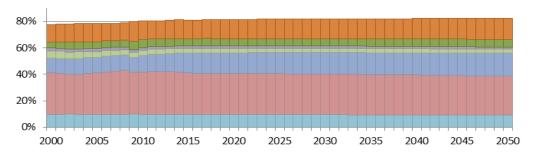


The restructuring of the EU economy continues


- Services reach 77.3% in 2050 (+1.7 percentage points from 2015 levels)
- Manufacturing declines from 14.9% in 2015 to 14.0% in 2050
- Construction and agriculture broadly stabilises
 (5.3% to 5.1%; 1.6% to 1.4%)




KEY ASSUMPTIONS STRUCTURE OF THE ECONOMY

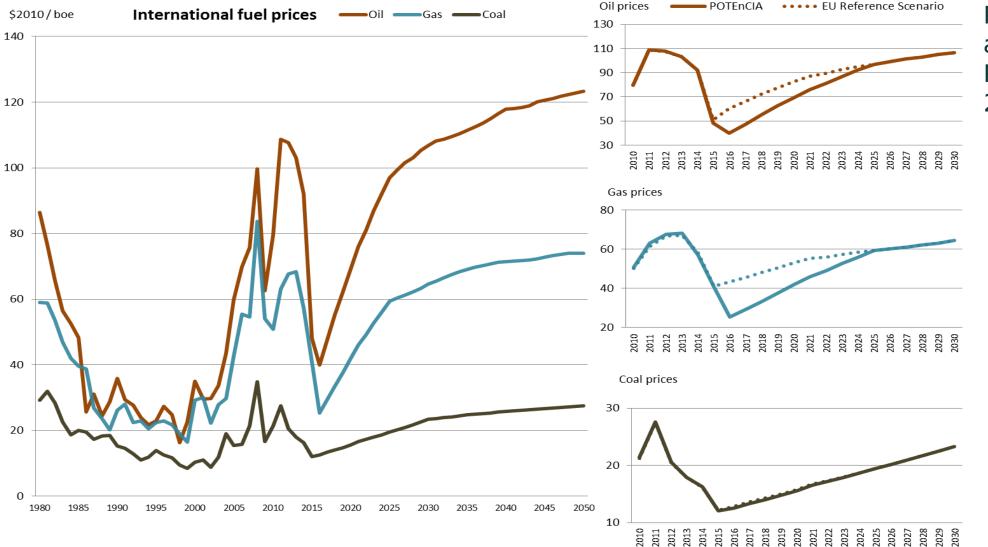


STRUCTURE OF THE ECONOMY

- Non specified industriesMachinery EquipmentTransport EquipmentTextiles and leatherWood and wood productsPharmaceutical products etc.
- Food, beverages and tobacco

VA from energy intensive sectors in manufacturing decreases from 19.1% to 17.8%

- Decreasing share of basic metals, pulp, paper and printing
- Stable share of chemicals and chemical products

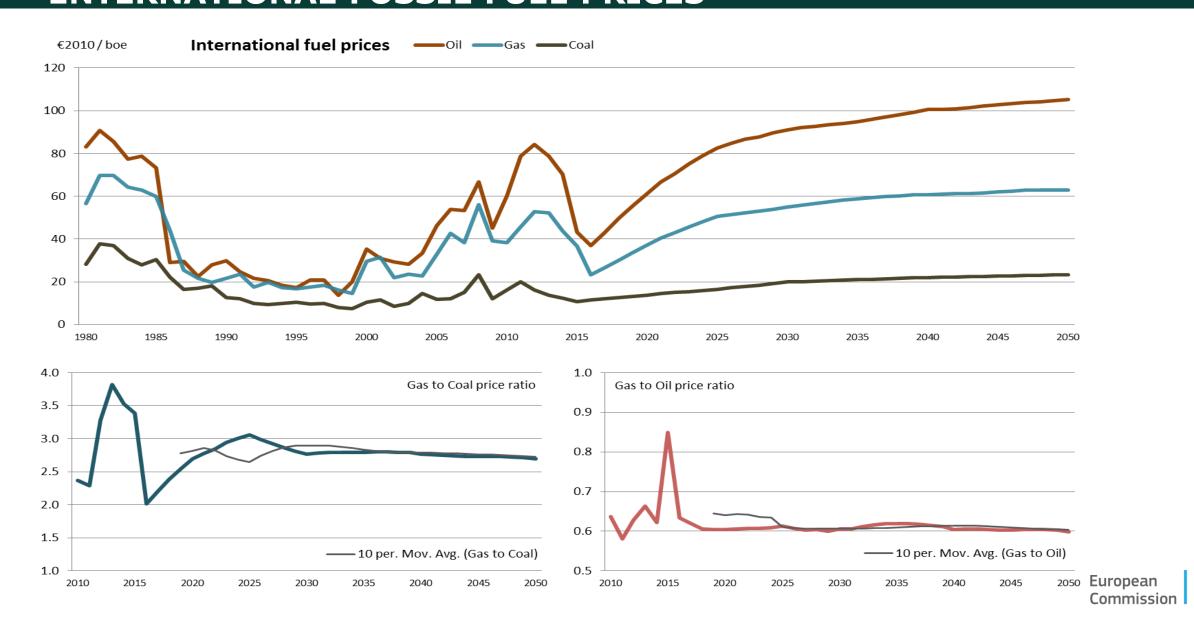

Fastest growing sectors are

- transport equipment and
- food, beverages and tobacco industries

KEY ASSUMPTIONS

INTERNATIONAL FOSSIL FUEL PRICES

Prices assumptions aligned to the EU Reference Scenario 2016


Updated for historical values up to 2016

- World Bank (Gas and Oil)
- BP Statistics (Coal)

Gradual convergence to the Reference Scenario values is performed from 2017 to 2024

KEY ASSUMPTIONS INTERNATIONAL FOSSIL FUEL PRICES

KEY ASSUMPTIONS - INDUSTRIAL ACTIVITY

INDUSTRIAL SECTORS

Energy Intensive	Non-energy Intensive	
 Iron and steel Integrated steelworks Electric arc Non-ferrous metals Aluminium primary production Aluminium secondary production Other non-ferrous metals Chemicals Other chemicals Pharmaceutical products etc. 	Food, Beverages and Tobacco Transport equipment Machinery equipment Textiles and Leather Wood and wood products Other industrial sectors <i>Including:</i> Mining and quarrying Construction Non-specified industries	
Non-metallic minerals		

- Non-metallic mir
- Cement
- Ceramics & other NMM
- $\circ \qquad \text{Glass production}$

Paper and pulp

- Pulp production
- Paper production
- Printing and media reproduction

KEY ASSUMPTIONS - INDUSTRIAL ACTIVITY

INDUSTRIAL SECTORS

Model Description	NACE code	NACE Description	Source			
Gross domestic product	B1GM Gross domestic product at market prices		EUROSTAT Statistics: nama_gdp			
Household consumption expenditure	P31_S14_S15 Household and NPISH final consumption expenditure		EUROSTAT Statistics: nama_gdp			
Gross value added	B1G Gross value added (at basic prices)		EUROSTAT Statistics: nama_gdp			
Manufacturing	C excluding C33					
Basic metals	C24					
	C24	Manufacture of basic metals	EUROSTAT Statistics: nama_nace64			
Iron and steel						
	C241	Manufacture of basic iron and steel and of ferro-alloys	EUROSTAT Structural business statistics: sbs_ind_co			
	C242	Manufacture of tubes, pipes, hollow profiles and related fittings, of steel	EUROSTAT Structural business statistics: sbs_ind_co			
	C243	Manufacture of other products of first processing of steel	EUROSTAT Structural business statistics: sbs_ind_co			
	C2451	Casting of iron	EUROSTAT Structural business statistics: sbs_ind_co			
	C2452	Casting of steel	EUROSTAT Structural business statistics: sbs_ind_co			
Non ferrous metals						
Alumina production						
Aluminium production						
Other non-ferrous metals						
	C2442	Aluminium production	EUROSTAT Structural business statistics: sbs_ind_co			
	C2453	Casting of light metals	EUROSTAT Structural business statistics: sbs_ind_co			
	C2441	Precious metals production	EUROSTAT Structural business statistics: sbs_ind_co			
	C2443	Lead, zinc and tin production	EUROSTAT Structural business statistics: sbs_ind_co			
	C2444	Copper production	EUROSTAT Structural business statistics: sbs_ind_co			
	C2445	Other non-ferrous metal production	EUROSTAT Structural business statistics: sbs_ind_co			
	C2446	Processing of nuclear fuel	EUROSTAT Structural business statistics: sbs_ind_co			
	C2454	Casting of other non-ferrous metals	EUROSTAT Structural business statistics: sbs_ind_co			
Chemicals Industry	C20, C21					
Chemicals and chemical products	C20					
	C20	Manufacture of chemicals and chemical products	EUROSTAT Statistics: nama_nace64			
Basic chemicals						
	C2013	Manufacture of other inorganic basic chemicals	EUROSTAT Structural business statistics: sbs_ind_co			
	C2014	Manufacture of other organic basic chemicals	EUROSTAT Structural business statistics: sbs_ind_co			
	C2015	Manufacture of fertilisers and nitrogen compounds	EUROSTAT Structural business statistics: sbs_ind_co			
	C2016	Manufacture of plastics in primary forms	EUROSTAT Structural business statistics: sbs_ind_co			
Other chemicals						
	C2011	Manufacture of industrial gases	EUROSTAT Structural business statistics: sbs_ind_co			

Key Assumptions – industrial activity Industrial output: concept

Physical tonnes of output:

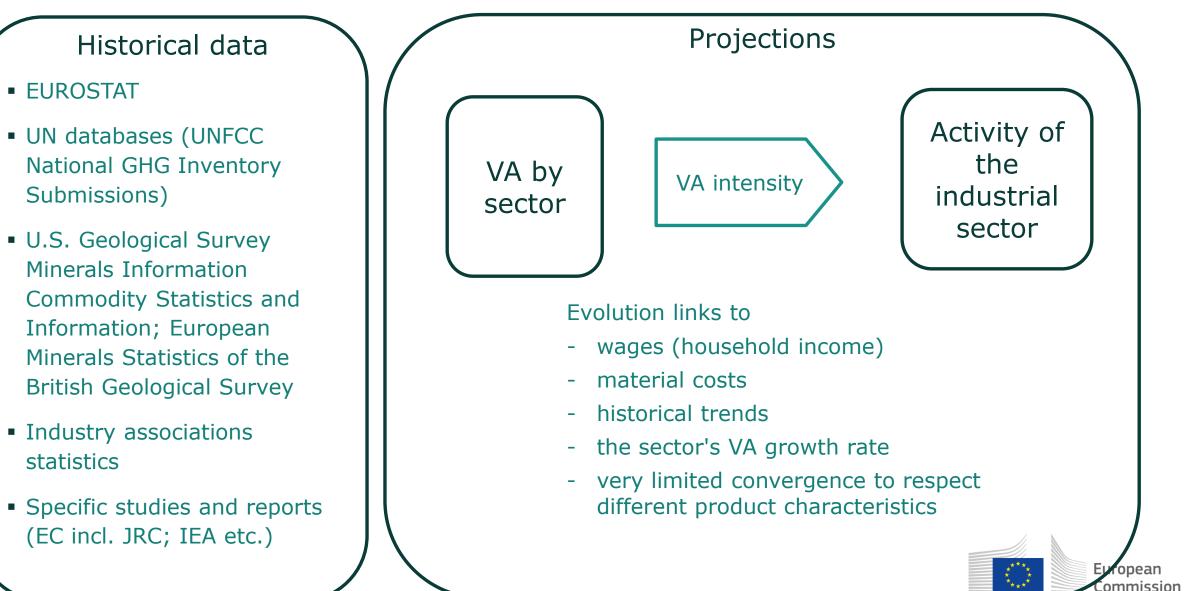
Sectors with a clearly defined product

'Equivalent tonnes' of output:

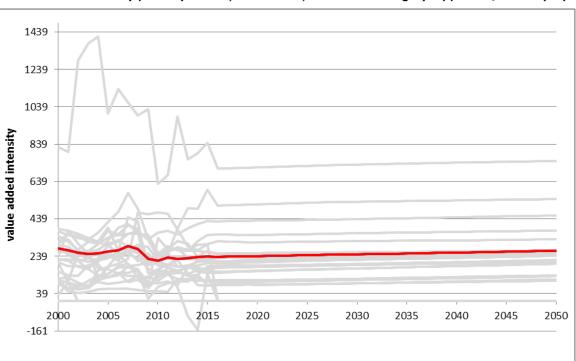
- Relates the production to a clearly defined product
- By means of value added and energy intensity
- Accounting for additional information (if available)

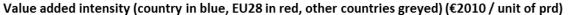
'Physical output index':

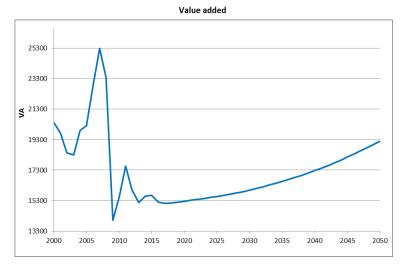
- For non-energy intensive sector
- Proxy at EU level matches VA
- Product with similar useful energy requirements

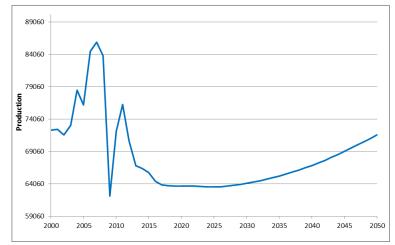

Iron and steel	t steel
Alumina	t alumina
Aluminium	t aluminium
Cement	t cement
Pulp	t pulp
Paper	t paper

Other non-ferrous metals	t lead eq.
Chemicals	t ethylene eq.
Ceramics & other NMM	t bricks eq.
Glass production	t container glass eq.
Printing and media reproduction	t paper eq.

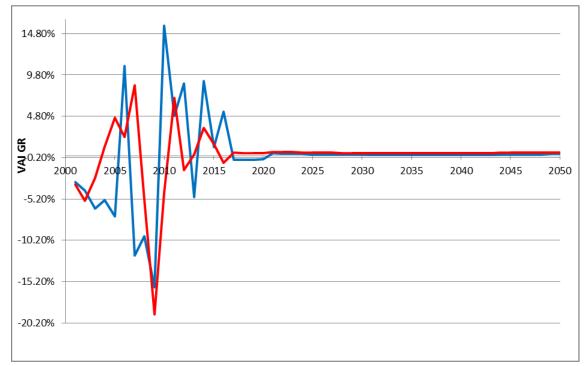


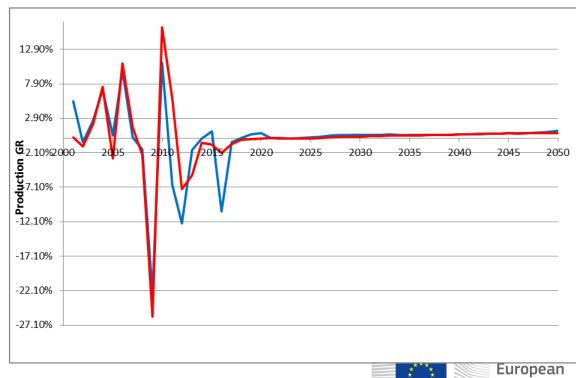

Key Assumptions – industrial activity


DATA AND APPROACH


KEY ASSUMPTIONS - INDUSTRIAL ACTIVITY ILLUSTRATION: IRON AND STEEL - EAF

Production



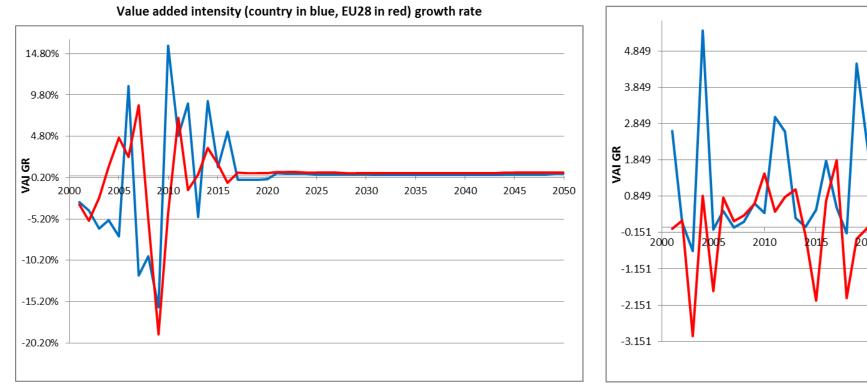

KEY ASSUMPTIONS – INDUSTRIAL ACTIVITY Additional information made available

Country comparison to EU28 average

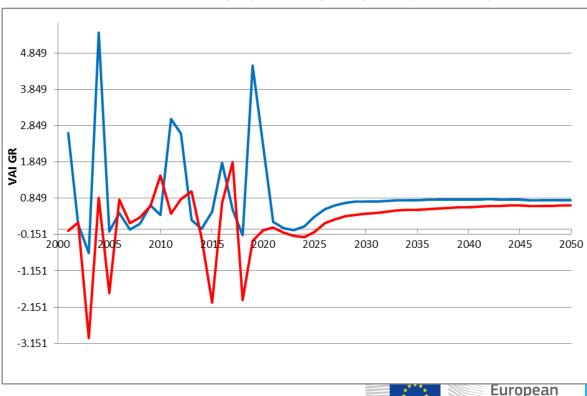
Growth rates of value added, value added intensity and production

Value added intensity (country in blue, EU28 in red) growth rate

Commission


Production (country in blue, EU28 in red) growth rate)

KEY ASSUMPTIONS – INDUSTRIAL ACTIVITY Additional information made available


Country comparison to EU28 average

Growth rates of value added, value added intensity and production

Value added elasticity of production

Value added elasticity of production (country in blue, EU28 in red)

Commission

DATA FILES

Demographics

- Population
- Number of households
- o Inhabitants per household

Macro-economic assumptions

- Gross domestic product
- $\circ \quad \ \ \text{Household consumption expenditure}$
- \circ VA by sector

Industry

- o Definition file
- Envisaged production volumes
- Value added intensity

accompanied by a series of graphs illustrating trends in

- Absolute figures
- Growth rates
- o Elasticities
- o Comparison to the EU28

Annual time steps 2000-2050 by **Member State**

Power generation technologies

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL

Brussels, 26 February 2018

POWER PLANT TYPES

- Nuclear
- Conventional thermal 8 fuel types
 - Each fuel-type split into 3-4 technologies:
 - Steam turbine
 - Fluidized bed combustion
 - Integrated gasification combined cycle
 - Supercritical steam turbine
 - Gas turbine
 - Gas turbine combined cycle
 - Internal combustion engine
 - up to 4 size classes
 - size limits vary among technologies

- Wind
 - On-shore / Off-shore
- Solar photovoltaics
- Solar thermal
- Geothermal
- Tide, wave and ocean
 - Tidal / Wave
- Hydro
 - Run-of river / Reservoirs (dams)
- Pump storage
 - electricity only / CHP
 - with/without CCS

272 power plant type groups

TECHNOLOGY CHARACTERIZATION

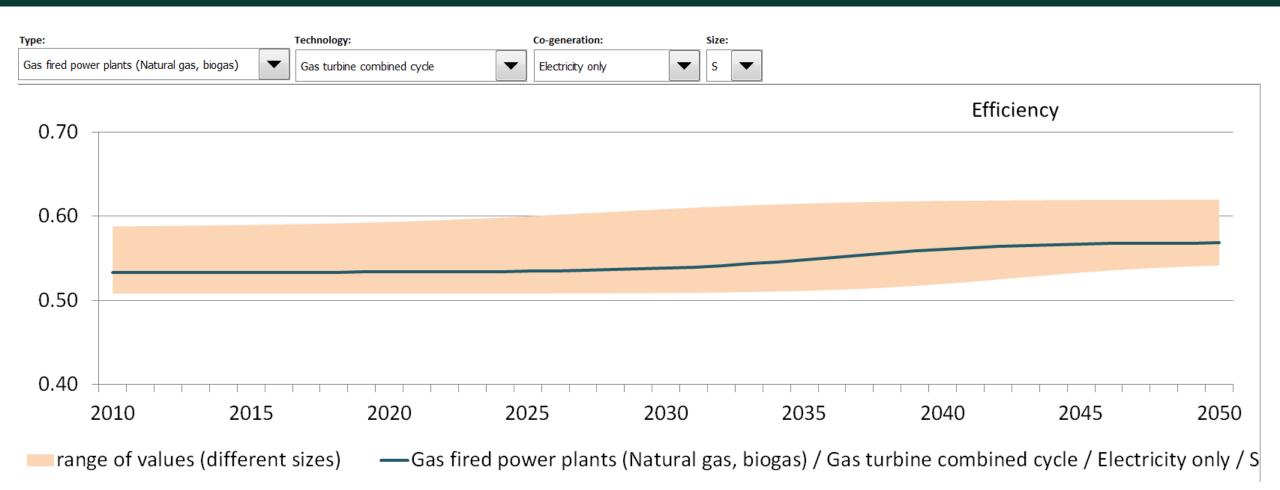
Each power plant type is characterised by a set of techno-economic parameters, i.e.:

- typical size of a power plant unit
- technical lifetime
- the construction time
- the technical availability (expressing the period of planned maintenance)
- capital cost
- fixed cost
- variable O&M costs

- thermal conversion efficiency
- own consumption ratio (net to gross capacity ratio)
- default steam-to-electricity ratio in the case of co-generation plants
- CO2 emissions capturing rate (for CCS power plants)
- Desired range of operation

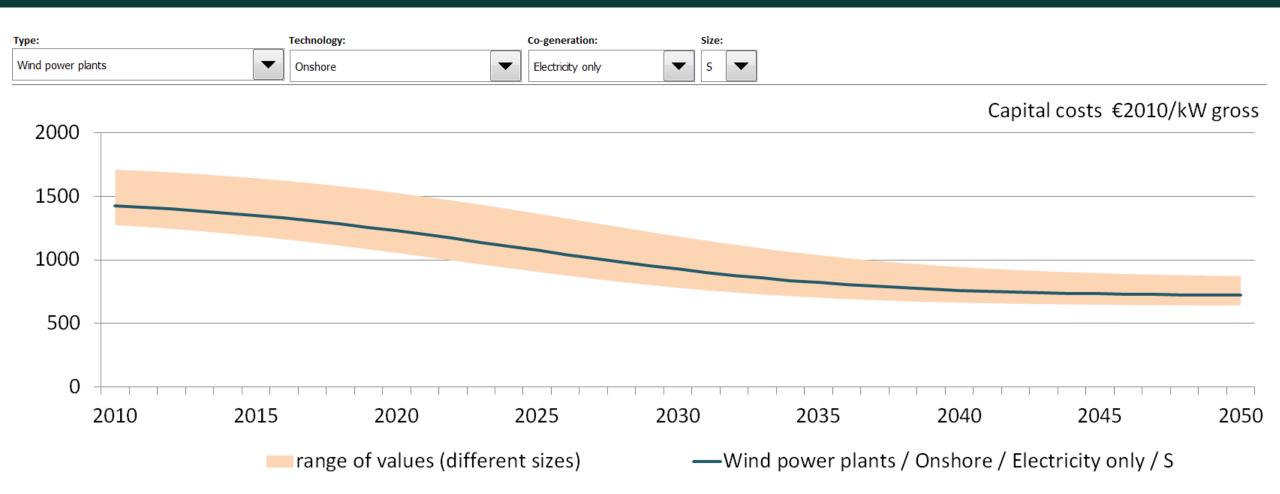
ASSUMPTIONS - SAMPLES

- Wind on-shore:
 - Capital cost going from 1200-1650 €/kW in 2015 to 650-900 €/kW in 2050

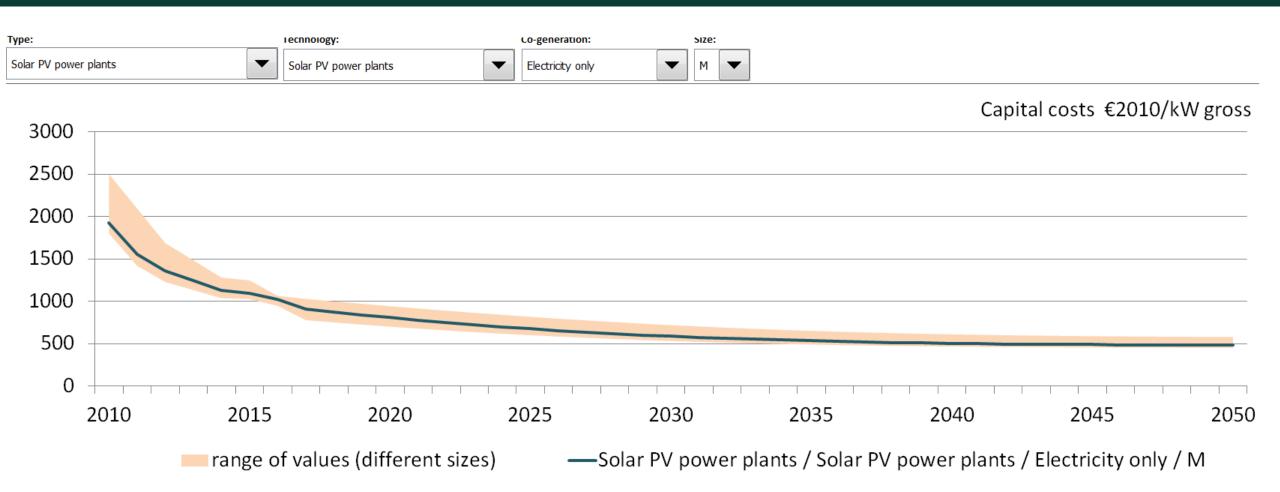

- Nuclear IV available from 2035
- CCS plants available from 2030-2035

- Solar PV:
 - Capital cost going from 1800-2500 €/kW in 2010 and 1000-1250 €/kW in 2015 to 450-600 €/kW in 2050

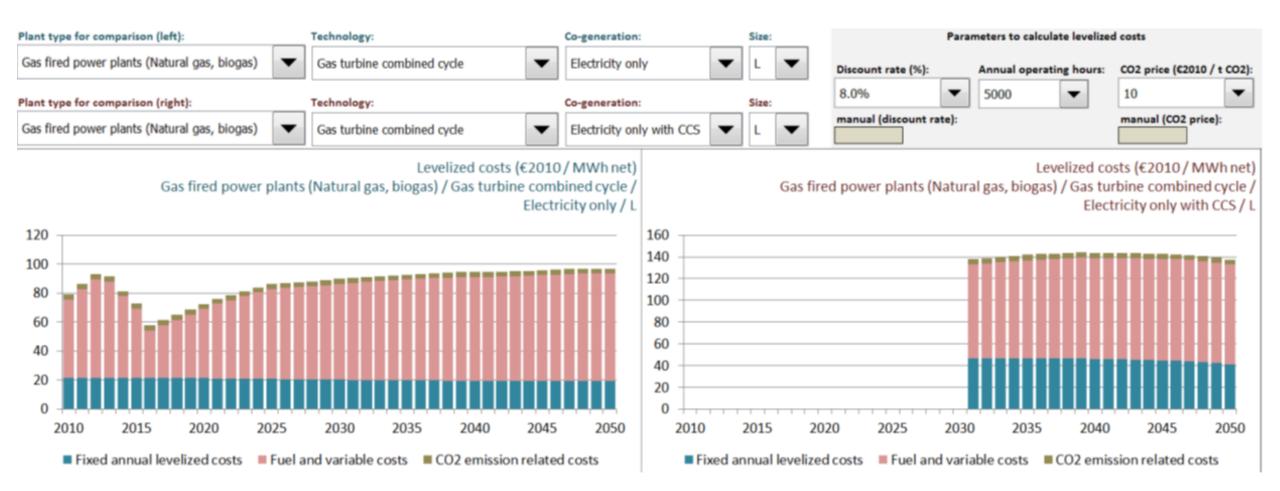
CCS plants become competitive
 from 200-250 €/t of CO2



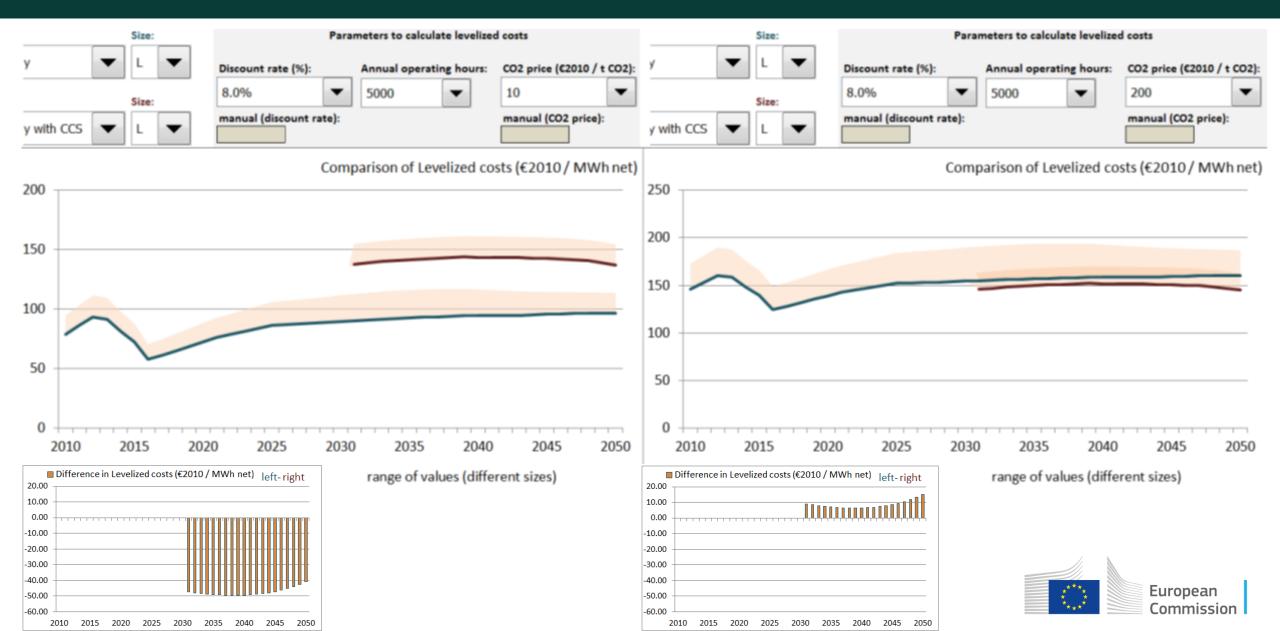
EXOGENOUS EVOLUTION - SAMPLE1



EXOGENOUS EVOLUTION - SAMPLE2



EXOGENOUS EVOLUTION - SAMPLE3

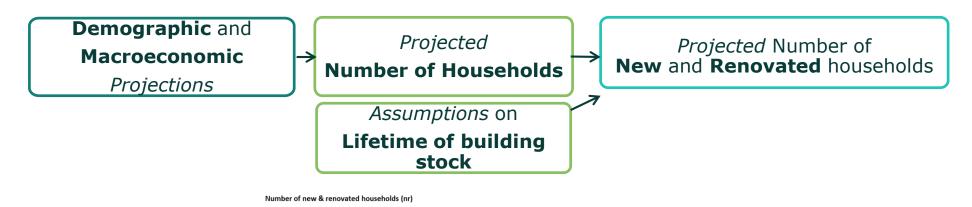


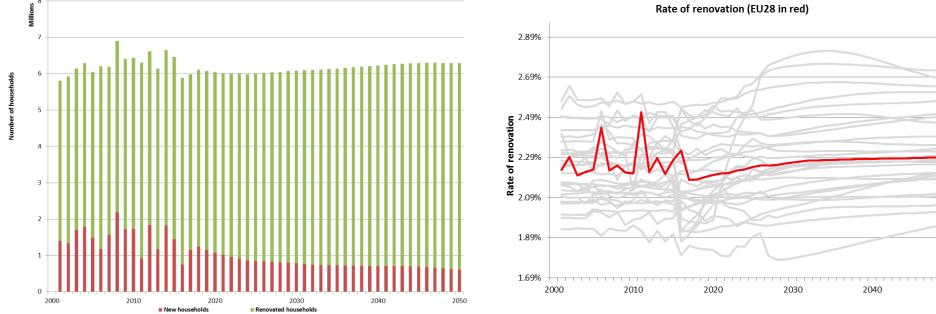
COMPARISON OF LEVELIZED COSTS

COMPARISON OF LEVELIZED COSTS - SCENARIOS

SOURCES

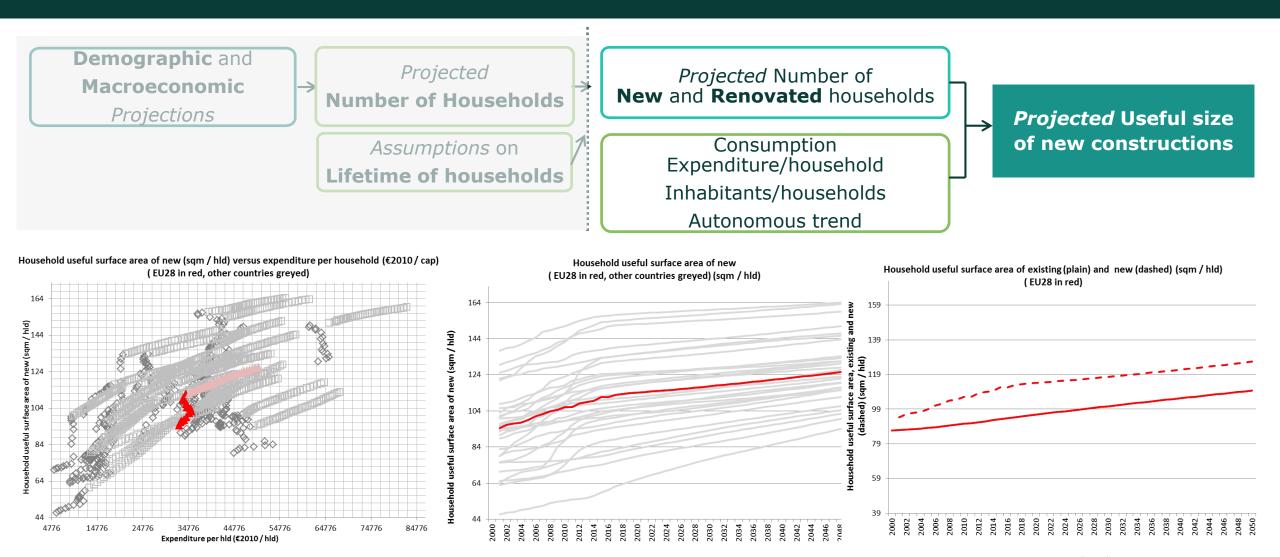
- Joint Research Centre
 - Energy Technology Reference Indicator
 - SET-Plan European Technology and Innovation Platforms (SETIS)
 - Specific technology studies (PV Status Report, etc.)
- International Energy Agency
- National Renewable Energy Laboratory
- European Technology Platform for Zero Emission Fossil Fuel Power Plants
- Global CCS Institute




"Entry Point "Scenario Assumptions BUILDINGS

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL Brussels, 26 Feb 2018

BUILDING CHARACTERISTICS



2050

BUILDING CHARACTERISTICS

THE ENERGY SERVICE NEEDS

Identified at the level of the representative **consumption unit**, defined by means of

- a household installation for thermal uses in the Residential
- the representative building cell in the Services
- an representative device for specific electricity uses
 - Appliance (e.g. typical EU refrigerator)
 - Electric device (e.g. ICT equipment)

...a concept that allows for a comparability across the Member States

THE REPRESENTATIVE CONSUMPTION UNIT

RESIDENTIAL

Thermal uses

Space heating Space cooling Water heating Cooking

Specific electricity uses Lighting White appliances

- refrigerators and freezers
- washing machines
- tumble dryers
- dishwashers
 TV and multimedia
 ICT equipment
 Other electric appliances

Lightbulb of 1000 lumens

• 220I of a fridge and 110I of a freezer

- 6kg washing machine
- 6kg tumble drier
- o a typical dishwasher

TV set +satellite receiver + Dvd player + playing console + sound system ...

1 desktop+1laptop+ share of a printer+ mobile devices

Iron, vacuum cleaner, hair drier, kettle, toaster, grill, mixers etc.

Preparatory studies under 'Eco-design of energy using products regulation' taken into consideration

SERVICES

Thermal uses

Space heating Space cooling Hot water services Catering

Specific electricity uses

Street lighting Building lighting Ventilation Miscellaneous building technologies Commercial refrigeration ICT and multimedia

Key assumptions

The **envisaged** operation and equipment characteristics

 Thermal Uses Size of equipment **Useful energy** indicator per m² (kWh/ m²) Hours of operation **Electricity uses** Number of units Size of equipment incorporated Hours of operation

THERMAL USES

Main **drivers** in projecting the evolution of the energy service needs per m²

Societal characteristics

 surface area of a representative household

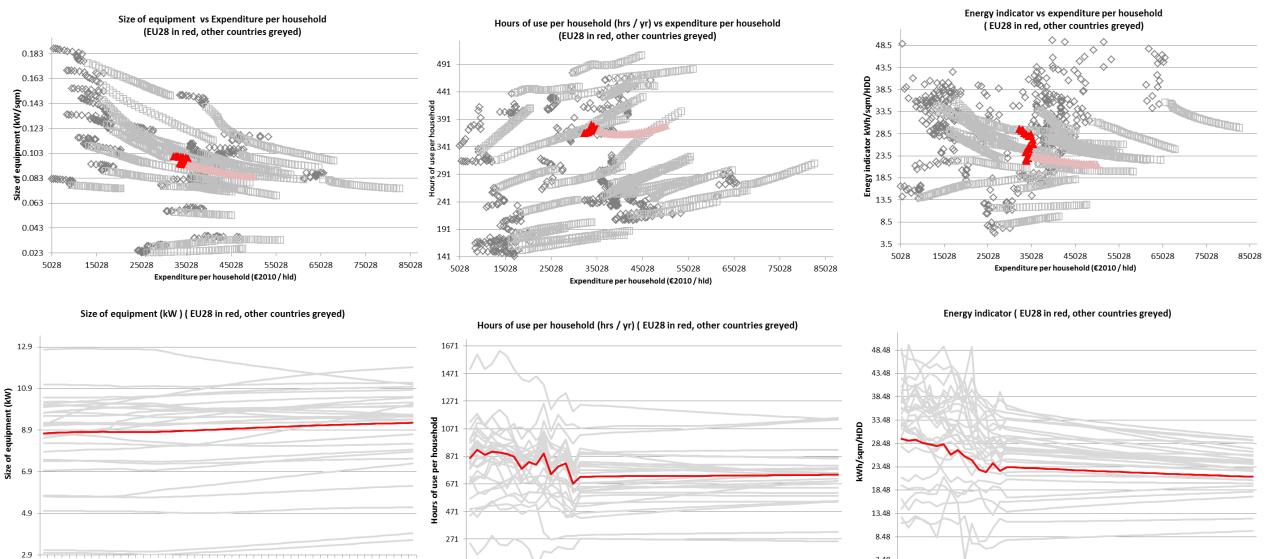
Evolution of the economy

 Private consumption expenditure per capita

Evolution of the households occupancy

Inhabitants per household

Implicit assumption capturing


- technology improvements e.g. downsizing of equipment
- systematic assessment of heating needs in new constructions
- building stock characteristics improvements

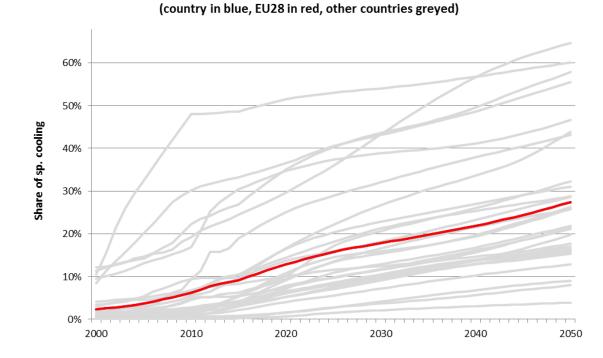
Converging behaviours as regards the comfort levels

- Addressing discrepancies in service needs
- Accounting for the climatic conditions

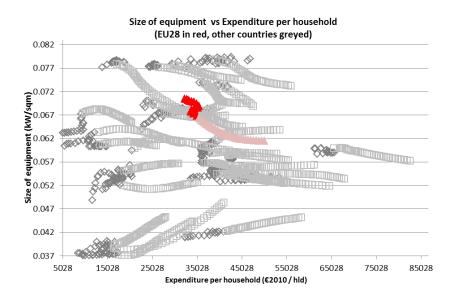
SPACE HEATING

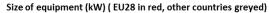
European Commission

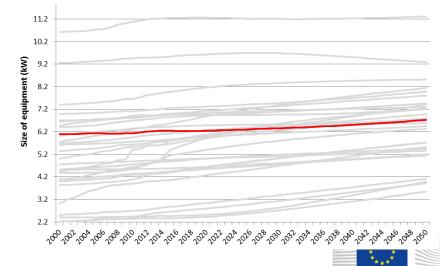
 3.48


2002 2004

 ġ


THERMAL USES - SPACE COOLING


SPACE COOLING is the only thermal use that is


considered as underserviced today

Share of households equipped with sp. cooling

European Commission

ELECTRIC APPLIANCES

Implicit drivers embodied in the projections

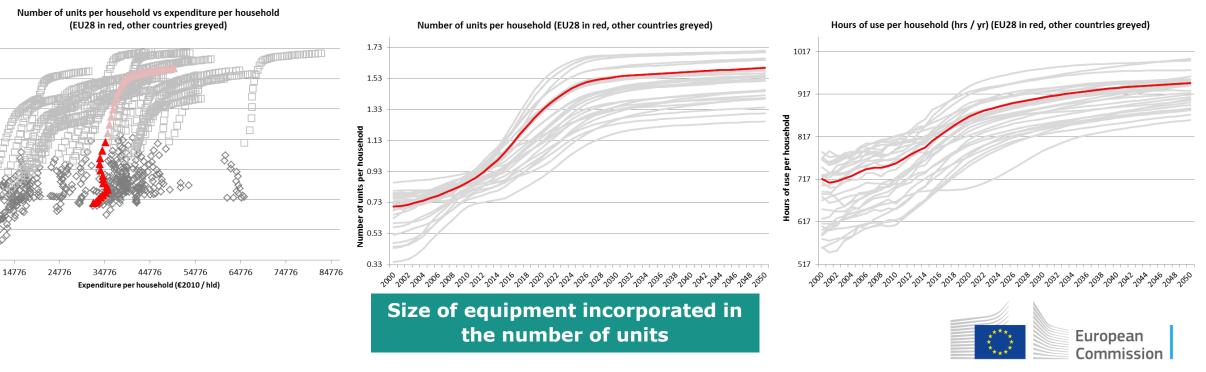
Socio -economic drivers

1.73

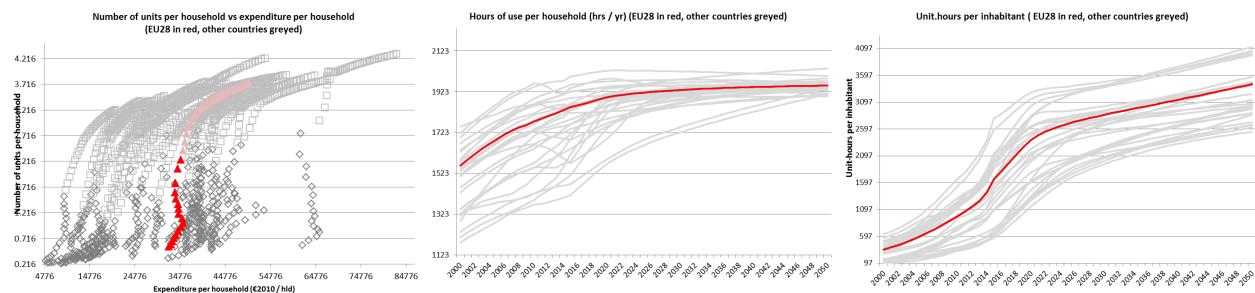
1.53

Number of units per household 0.93 0.73

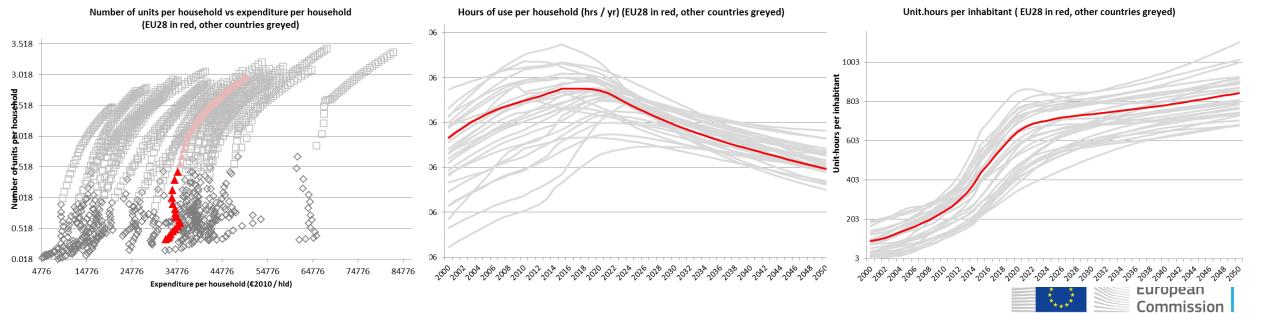
4776


- Private consumption expenditure per capita
- Households occupancy Inhabitants per household

Historical trends


- Behavioural patterns identified
- Saturation effects considered

Converging behaviours assumed


WASHING MACHINE

TV AND MULTIMEDIA

ICT EQUIPMENT

DATA FILES OF POTENCIA ASSUMPTIONS

	o – economic, mptions	demographic,	climate	drivers	used	in	the	
o Ho o Si o Nu	mal uses related ours of use per housel ze of equipment umber of units (coolin hergy indicator in vario	nold g)	sqm/HDD)					
o Ho o Nu	ric Appliances re ours of use umber of units (coolin hergy indicator: Unit-h	g)	on					b
o In	/sis related infor stantaneous growth ra ariables of interest vs	ates	sehold Elast	icities				

Across **time** and by **Member State**

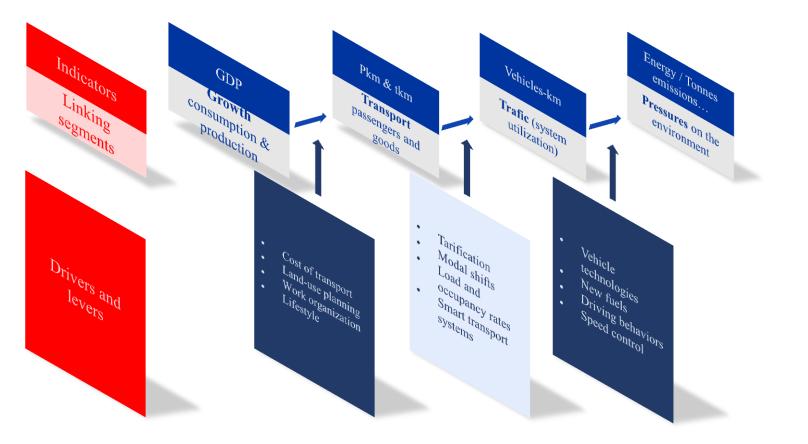
"Entry-point" Scenario Assumptions TRANSPORT ACTIVITY

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL

Brussels, 26 February 2018

OUTLINE

- **1.** Why are transport activity projections needed in an Energy System Model, and how do they enter POTEnCIA?
 - **1.** The transport challenges
 - **2. POTEnCIA** mechanisms for transport activity
- **2.** Transport activity projections the storylines
 - **1.** Passengers
 - 2. Freight
- **3.** Data files



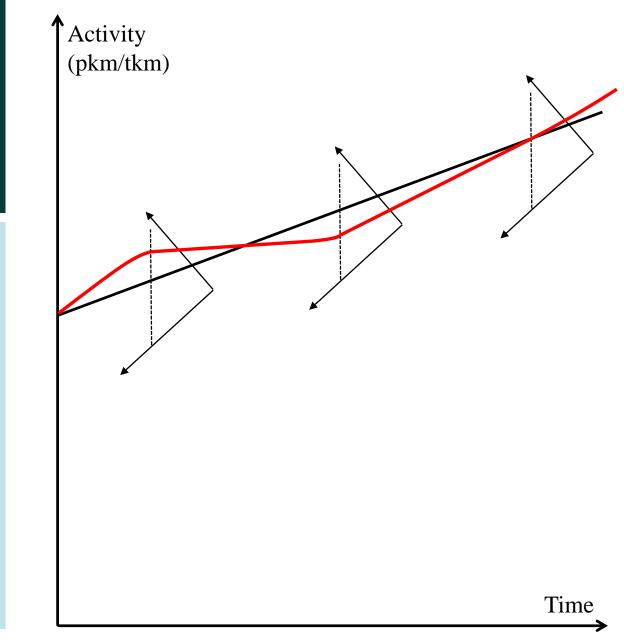
OUTLINE

- **1.** Why are transport activity projections needed in an Energy System Model, and how do they enter POTEnCIA?
 - **1.** The transport challenges
 - 2. POTEnCIA mechanisms for transport activity
- **2.** Transport activity projections the storylines
 - **1.** Passengers
 - 2. Freight
- **3.** Data files

Transport and the economy

- Transport still primarily responds to economic environment (ITF, 2017; Banister and Stead, 2002)
- The intricacy of effects (Proost & Van Dender, 2012;...)
 - Energy prices
 - Technology dynamics
 - Organization, behaviours...
 - Transport and energy policies
 - \Rightarrow Overlaps
 - \Rightarrow Multiple dividends
 - \Rightarrow Rebounds
- Potential game changers (IEA, 2017)
 - More services-oriented economy (inc. Digitalization)
 - Behavioural response (uncertain)

Transport and the economy



- Transport still primarily responds to economic environment (ITF, 2017; Banister and Stead, 2002)
- The intricacy of effects (Proost & Van Dender, 2012;...)
 - Energy prices
 - Technology dynamics
 - Organization, behaviours...
 - Transport and energy policies
 - $\Rightarrow \textit{Overlaps}$
 - \Rightarrow Multiple dividends
 - \Rightarrow Rebounds
- Potential game changers (IEA, 2017)
 - More services-oriented economy (inc. Digitalization)
 - Behavioural response (uncertain)

Transport activity projections within POTEnCIA

- Projections of activity (pkm / tkm)
 envisaged levels
- Endogenous deviations based on specific model conditions
 - Relative costs of transport will induce direct price effects and substitutions
 - Technology costs
 - Fuel costs
 - Adoption, learning, behavioural effects...

OUTLINE

- **1.** Why are transport activity projections needed in an Energy System Model, and how do they enter POTEnCIA?
 - **1.** The transport challenges
 - **2. POTEnCIA** mechanisms for transport activity
- **2.** Transport activity projections the storylines
 - **1.** Passengers
 - 2. Freight
- **3.** Data files

Transport segments and representation principles

- Representative configuration units...
 - · Real stocks for
 - Passengers road
 - Light duty vehicles
 - Domestic trucks
 - EU-based representative configurations for freight road, aviation, rail
 - Annual mileage
 - Number of seats / cargo capacity
- ... allowing
 - Comparisons for future investment decisions
 - Captures country differences in equipment use (traffic conditions, use of infrastructure...)

Passenger transport	Freight transport								
Road transport									
Powered 2-wheelers	Light commercial vehicles								
Private cars	Domestic freight trucks								
Buses and coaches	International freight trucks								
Rail, metro and tram									
Metro and tram, urban light rail	Conventional trains								
Conventional passenger trains									
High speed passenger trains									
	Aviation								
Domestic	Domestic and International - Intra-EU								
International – Intra-EU	International – Extra-EU								
International – Extra-EU									
International – Intra-EU	Domestic and International - Intra-EU								

Coastal shipping and inland waterways

Domestic coastal shipping Inland waterways

Bunkers

Bunkers – Intra-EU Bunkers – Extra-EU

Building-up transport activity projections: Process schematics

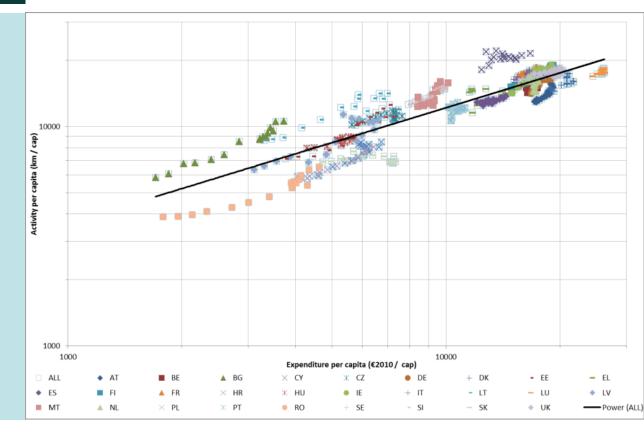
Applies to both passengers and freight

1 Derive activity projections for global activity intensity (km / cap or tkm / GDP) and activity

- Identify drivers
- Define plausible evolution rules (convergence, saturations...)
- Using population, GDP... assumptions

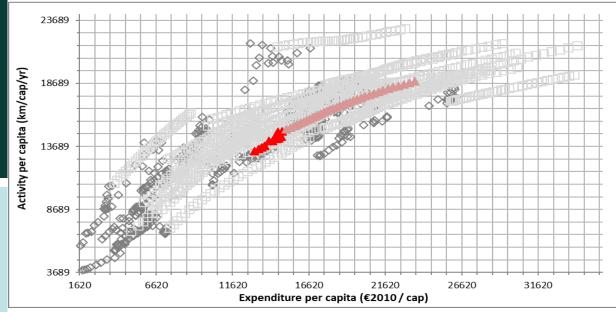
2Perform modal split

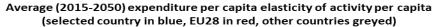
- Initial assumption
- Account for known infrastructure projects...
- Various experts studies / expertise

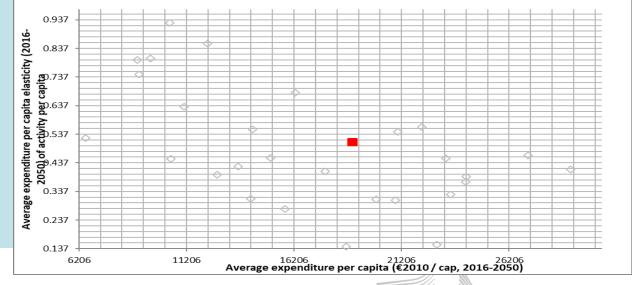

3For each mode

- Derive other intensities by decomposition
- Load factors
- Mileage per vehicle
- •Number of flights per airplane
- •...
- •Get to number of vehicles (**typical EUconfigurations**)
- •See JRC-IDEES
- Different evolutions in POTEnCIA

Passengers *Storylines* – the envelope

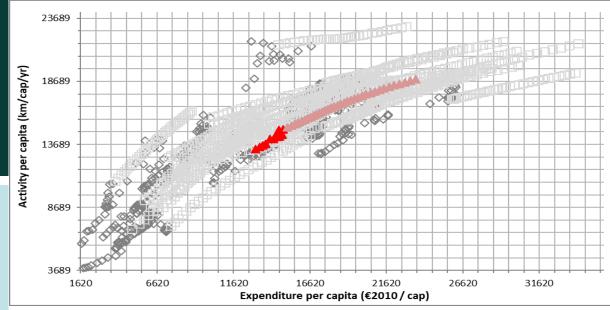

- Mobility per capita links to income (Schafer & Victor, 2000)
 - The travel need increases with income (commuting & business trips, leisure...)

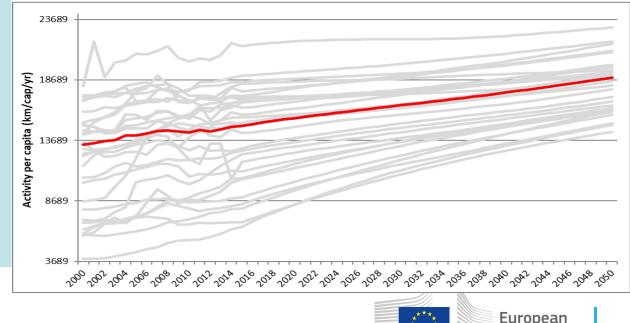




Passengers *Storylines* – the envelope

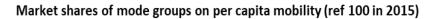
- Mobility per capita links to income (Schafer & Victor, 2000)
 - The travel need increases with income (commuting & business trips, leisure...)
- The marginal effect of an increasing income should be overall diminishing
 - Growth of mobility saturates with growing income

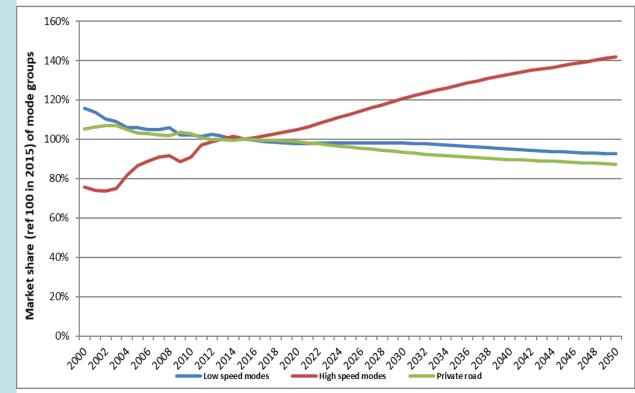



European Commission

Passengers *Storylines* – the envelope

- Mobility per capita links to income (Schafer & Victor, 2000)
 - The travel need increases with income (commuting & business trips, leisure...)
- The marginal effect of an increasing income should be overall diminishing
 - Growth of mobility saturates with growing income
- Convergence across EU MSs appears
 - Behaviours become more homogenous

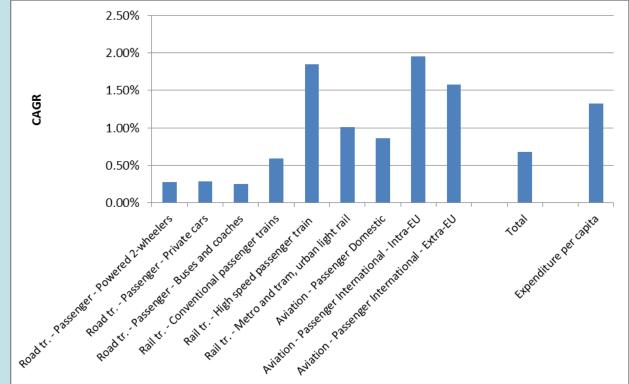

Activity per capita of mode (selected country in blue, EU28 in red, other countries greyed)



Commission

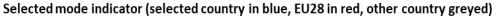
Passengers *Storylines* – the modal split

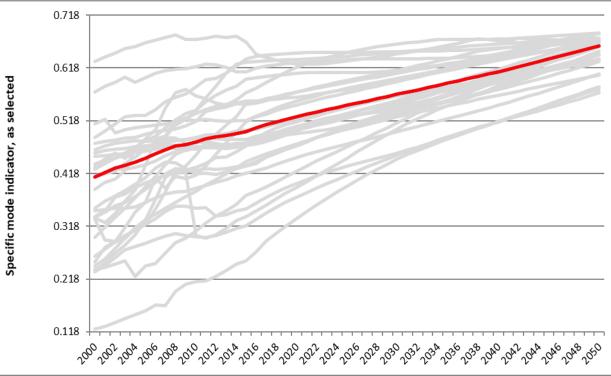
- Passengers have a finite travel time budget (Zahavi, 1974...) & revenue effect
 - Links to income
 - High speed modes (aviation, high speed train) should increase faster



Passengers *Storylines* – the modal split

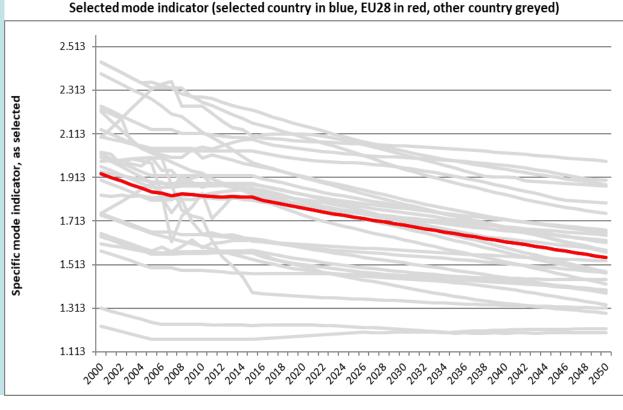
- Passengers have a finite travel time budget (Zahavi, 1974...) & revenue effect
 - Links to income
 - High speed modes (aviation, high speed train) should increase faster
- Past trends (ITF, 2017) indicate that aviation should experience very high growth
 - High speed train competes for domestic & some intra-EU trips
 - Intra and extra-EU aviation boom




Coumpound annual growth rates (2015-2050) of activity per capita and expenditure per capita

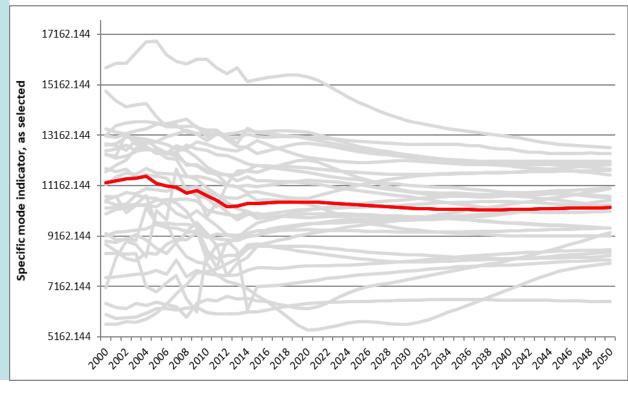
Passengers *Storylines* – modal analysis – pass. cars

- Extending the concept of vehicle ownership the availability ratio
 - Links to income & household structure (household decision)
 - Implicitly captures the evolution of the size of representative vehicles
 - Debate: significance of car ownership + car pooling + car sharing

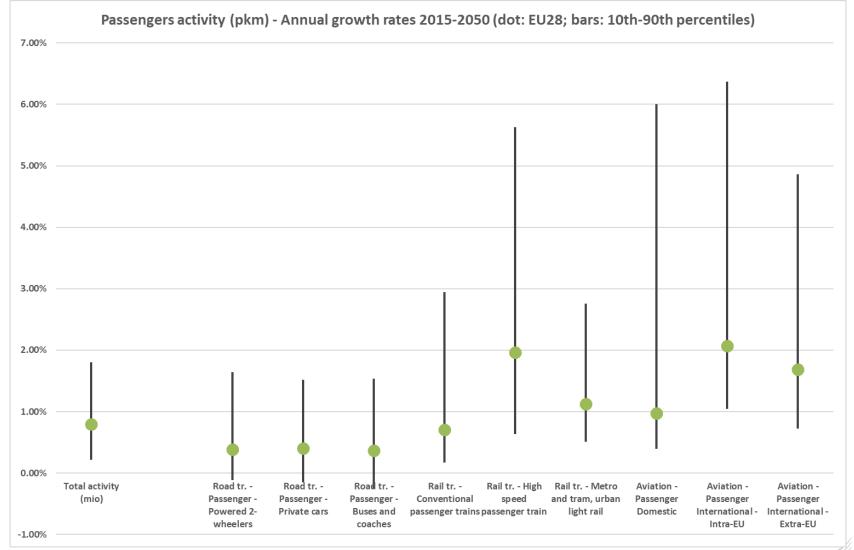


Passengers *Storylines* – modal analysis – pass. cars

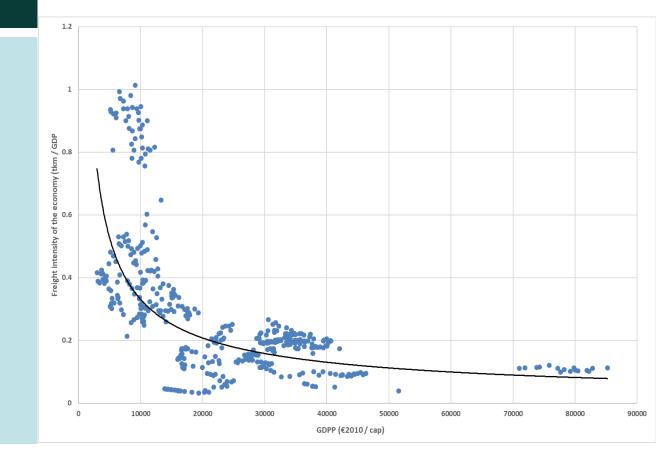
- Extending the concept of vehicle ownership the availability ratio
 - · Links to income & household structure (household decision)
 - Implicitly captures the evolution of the size of representative vehicles
 - Debate: significance of car ownership + car pooling + car sharing
- Load factor
 - Decreasing trend
 - Increasing ownership
 - Drop in Inh / hld



Passengers *Storylines* – modal analysis – pass. cars

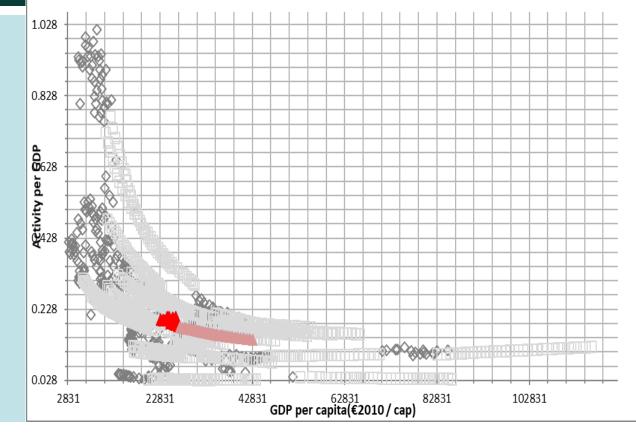

- Extending the concept of vehicle ownership the availability ratio
 - Links to income & household structure (household decision)
 - Implicitly captures the evolution of the size of representative vehicles
 - Debate: significance of car ownership + car pooling + car sharing
- Load factor
 - Decreasing trend
 - Increasing ownership
 - Drop in Inh / hld
- Mileage per vehicle
 - Stabilization at EU level with heterogeneous country profiles
 - Saturation of use and modal shifts
 - Catch-up of lagging countries

Selected mode indicator (selected country in blue, EU28 in red, other country greyed)


Passengers *Storylines* – wraping up

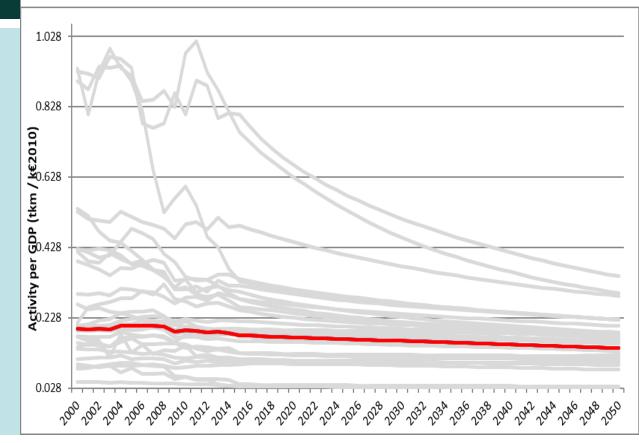
Freight *Storylines* – the envelope

 Freight activity intensity of the economy links to GDP per capita (ITF, 2017; Alises & Vassalo, 2015) and economic structure (% serv. In GVA)



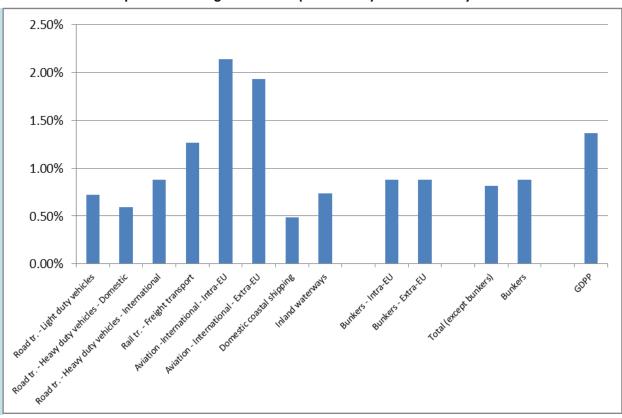
Freight *Storylines* – the envelope

- Freight activity intensity of the economy links to GDP per capita (ITF, 2017; Alises & Vassalo, 2015) and economic structure (% serv. In GVA)
- Saturation effect



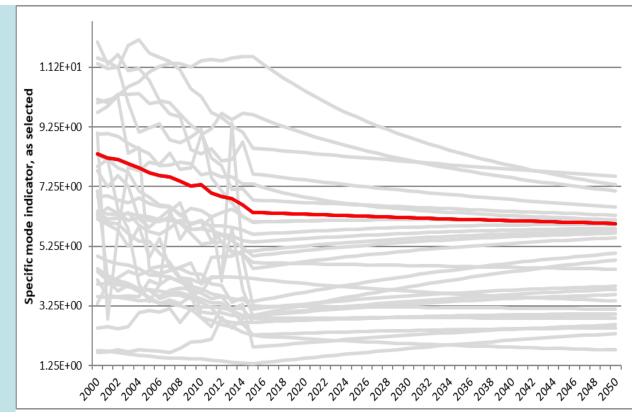
Freight *Storylines* – the envelope

- Freight activity intensity of the economy links to GDP per capita (ITF, 2017; Alises & Vassalo, 2015) and economic structure (% serv. In GVA)
- Saturation effect
- Slight convergence across EU MSs should appear


Activity per GDP (selected country in blue, EU28 in red, other countries greyed)

Freight *Storylines* – the modal split

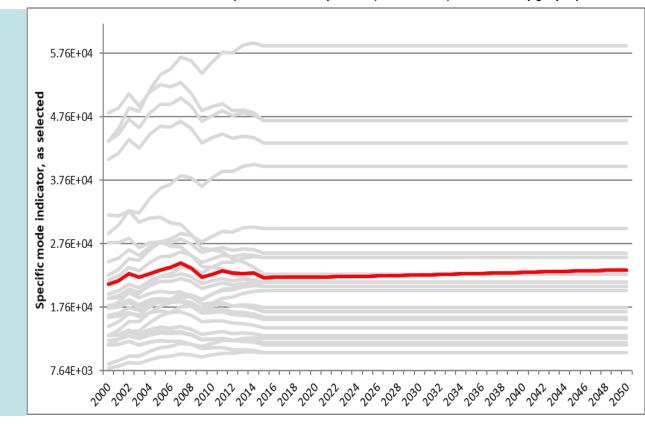
- Alternatives to road develop fast
 - Aviation along with passengers
 - Rail
- Explicit accounting for domestic versus international haulage



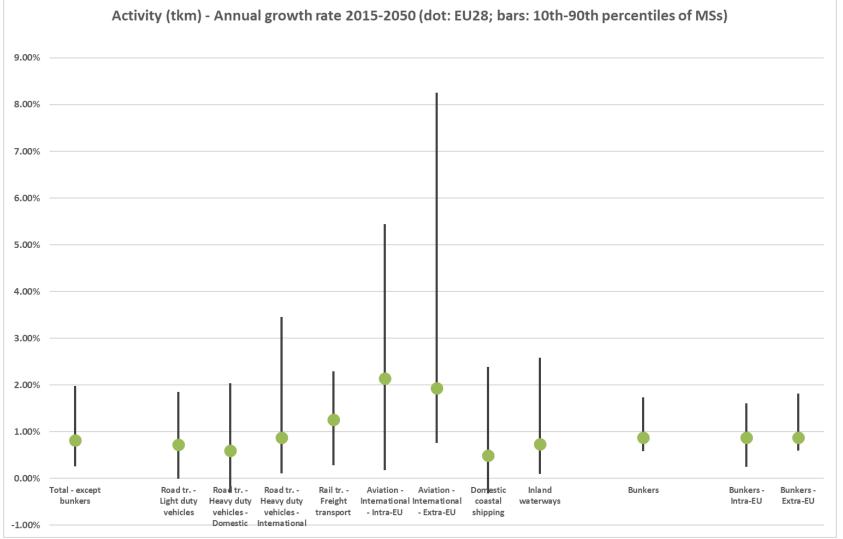
Coumpound annual growth rates (2015-2050) of total activity and GDPP

Freight *Storylines* – modal analysis – Dom. & Int. haulage

Selected mode indicator (selected country in blue, EU28 in red, other country greyed)


- Load factor
 - Improved logistic
 - Volume versus tonnage effects

Freight *Storylines* – modal analysis – Dom. & Int. haulage


- Load factor
 - Improved logistic
 - Volume versus tonnage effects
- Mileage per vehicle
 - Identifying and projecting goods mobility patterns is difficult

Selected mode indicator (selected country in blue, EU28 in red, other country greyed)

Freight Storylines – wrapping up

OUTLINE

1. Why are transport activity projections needed in an Energy System Model, and how do they enter POTEnCIA?

- **1.** The transport challenges
- **2. POTEnCIA** mechanisms for transport activity
- 2. Transport activity projections the storylines
 - **1.** Passengers
 - 2. Freight
- **3.** Data files

DATA FILES OF POTENCIA ASSUMPTIONS

Macro – economic, demographic drivers used in the assumptions

Passenger transport - total and by mode

- Activity (Passenger-km)
- Activity per capita (km/capita)
- Mileage driven (Vehicle-km)
- Load factor (passenger per movement)
- Vehicle availability ratio (%)

Freight transport - total and by mode

- Activity (ton-km)
- Mileage driven (km)
- Intensity (ton-km/GDP)
- Load factor (tons per movement)
- Vehicle ownership ratio (%)

Distinction between domestic and international road (transit)

Analysis related information

- o Instantaneous growth rates
- Variables of interest vs Expenditure or GDP per capita (for passengers or freight respectively)
- Elasticities

Across **time** and by **Member State**

Dissemination

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL

Brussels, 27 February 2018

File sharing – Research Collaboration Portal

Scenario result files

Summary

Industry

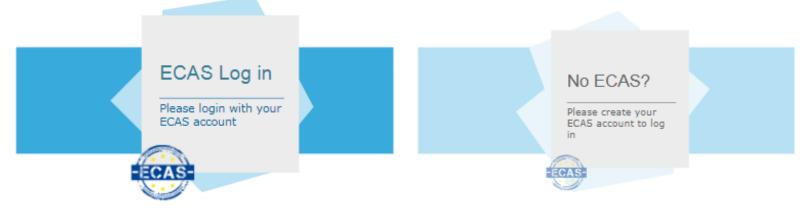
Residential

Services, Agriculture

Transport

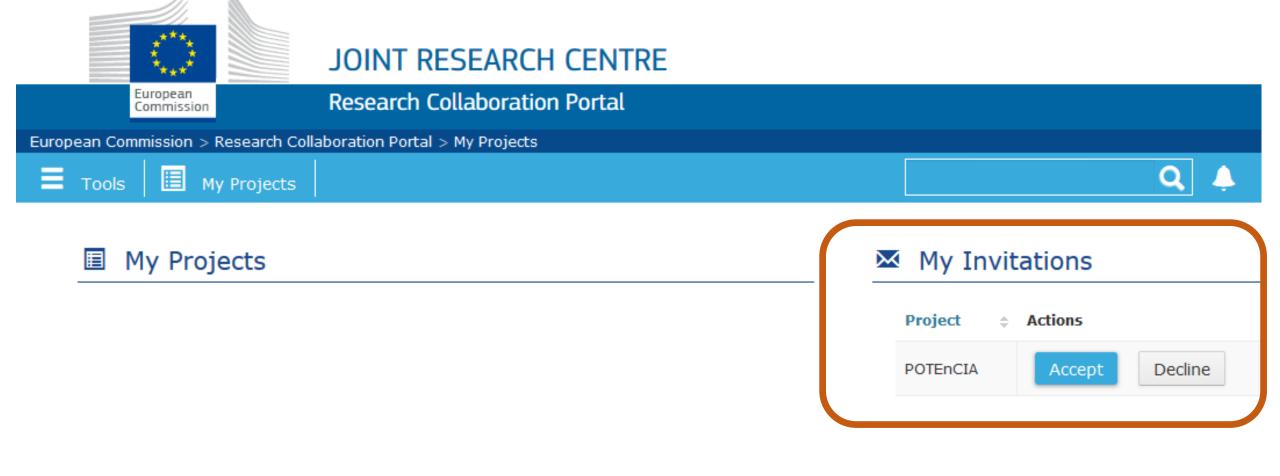
Power Generation

Energy balances

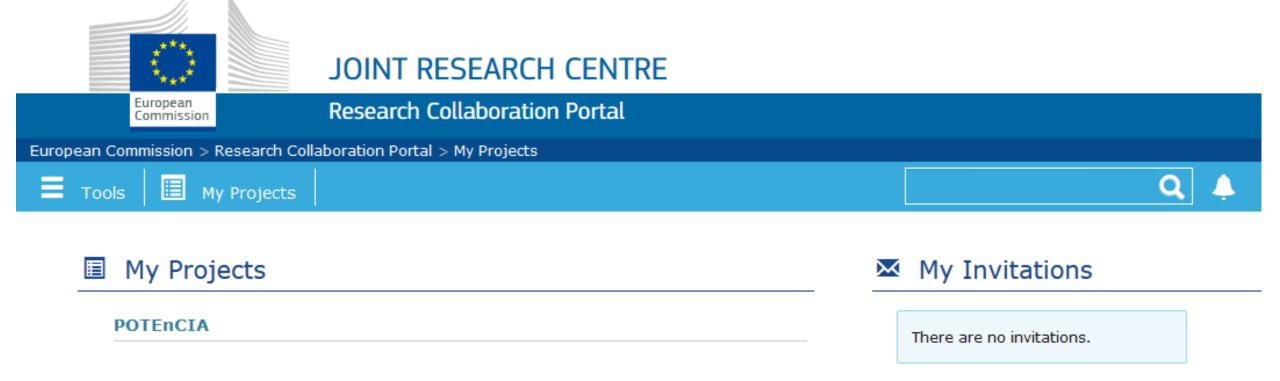


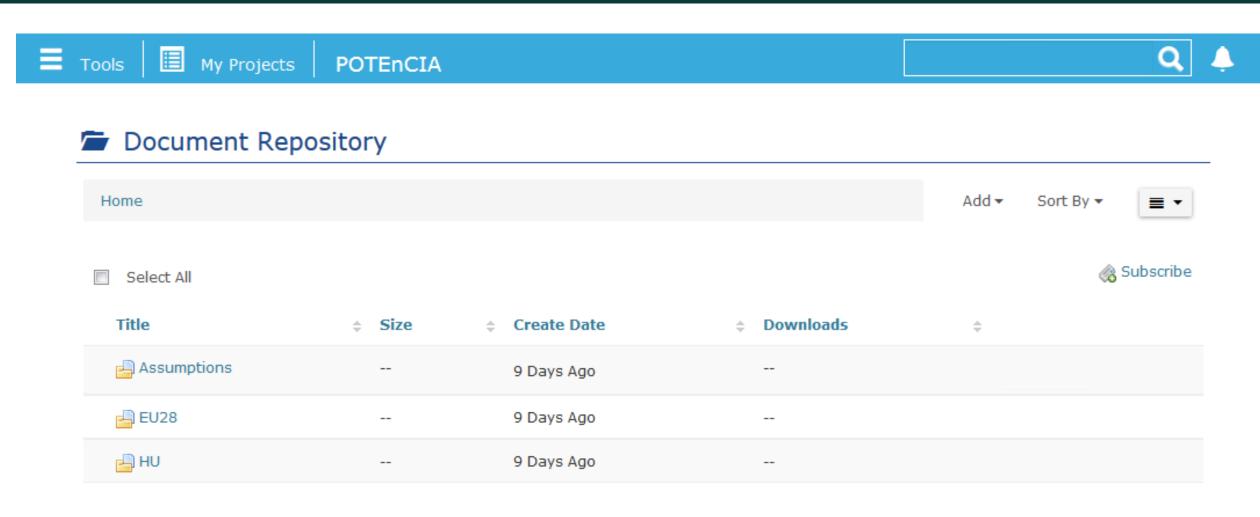
RESEARCH COLLABORATION PORTAL (RCP)

Legal notice | Contact | Help | Log in


Welcome to the RESEARCH COLLABORATION PORTAL

RCP - ACCESSING THE POTENCIA PROJECT


Legal notice | Contact | Help | Log out


RCP – OPENING SCREEN

Legal notice | Contact | Help | Log out

RCP – DOCUMENT REPOSITORY

SCENARIO RESULT FILES

- Summary file
- Energy balance
- Sectoral aggregates
 - Industrial sectors
 - Residential sectors
 - Tertiary sectors (Services, Agriculture)
 - Transport
 - Power and steam generation
- Sectoral detailed files
 - Transport sectors

- Reports with 5 year steps
- Reports with annual steps
- Yearly files (power generation)

SUMMARY RESULT FILE

e.g. *dm_EntryPoint_EU28_summary_yearly.xlsx*

Summarizes the results in an aggregated level: Energy consumption, Emissions, Costs, Indicators

- Overview Overview of the country's energy system
- Industry
- Residential
- Tertiary
- Transport
- PowerGen
- EnergyBalances
- Emissions
- *ETS*
- RESshare

- Industrial sectors overview
- Residential sector main aggregates
- Services and agriculture sector
- Transport sectors overview
- Power generation
- Energy balances / all products aggregate
- CO2 Emission balances
- (current) ETS sector balances
- Share of energy from renewable sources

ENERGY BALANCE RESULT FILE

e.g. *dm_EntryPoint_EU28_bal_yearly.xlsx*

Provides a complete energy balance at Eurostat fuel level and POTEnCIA sectoral detail.

• Timelined – one sheet contains data for a sector for 2000-2050

inal energy consumption	[ktoe]	2044	2045	2046	2047	2048	2049	2050
II Products	0000	1 137 244.57	1 139 525.33	1 142 721.95	1 145 203.79	1 147 895.79	1 150 362.48	1 153 033.78
Solid Fuels	2000	54 796.68	54 857.08	54 900.57	54 990.26	54 997.03	54 904.66	54 911.52
Hard coal and derivatives	2100	49 867.00	49 913.21	49 943.21	50 023.15	50 022.57	49 924.23	49 920.34
Hard Coal	2111	37 168.45	37 204.47	37 228.49	37 286.09	37 282.37	37 208.46	37 241.94
Anthracite	2115	2 374.11	2 377.80	2 381.37	2 393.39	2 391.24	2 381.54	2 391.24
Coking Coal	2116	2 437.89	2 434.69	2 431.95	2 415.16	2 419.60	2 403.05	2 409.22
Other Bituminous Coal	2117	31 861.29	31 895.68	31 917.55	31 978.90	31 972.32	31 924.14	31 941.26
Sub-bituminous Coal	2118	495.17	496.29	497.61	498.64	499.22	499.72	500.21
Patent Fuels	2112	343.37	343.80	344.31	344.76	345.14	345.52	345.76
Coke	2120	12 241.05	12 250.20	12 255.03	12 276.36	12 278.62	12 253.18	12 214.69
Coke Oven Coke	2121	12 241.05	12 250.20	12 255.03	12 276.36	12 278.62	12 253.18	12 214.69
Gas Coke	2122	-	-	-	-	-	-	
Coal Tar	2130	114.14	114.75	115.38	115.94	116.45	117.09	117.95
Lignite and Derivatives	2200	4 897.38	4911.10	4924.31	4 933.80	4941.10	4 946.82	4 957.33
Lignite/Brown Coal	2210	1772.08	1774.43	1774.95	1776.14	1775.63	1775.05	1774.54
Peat	2310	469.44	471.64	473.67	474.77	476.44	476.73	477.89
BKB (brown coal briquettes)	2230	2 553.33	2 562.63	2 573.37	2 580.68	2 586.93	2 593.05	2 602.96
Peat Products	2330	102.53	102.41	102.33	102.22	102.09	101.99	101.95
Oil Shale and Oil Sands	2410	32.29	32.76	33.04	33.31	33.36	33.61	33.85
Total petroleum products (without biofuels)	3000	410 691.95	411 320.48	412 477.97	413 670.06	414 655.36	415 729.82	416 818.92
Crude oil, feedstocks and other hydrocarbons	3100	8.15	8.16	8.17	8.17	8.17	8.18	8.18
Crude oil and NGL	3110	8.15	8.16	8.17	8.17	8.17	8.18	8.18
Crude Oil without NGL	3105	-	-	-	-	-	-	
Natural Gas Liquids (NGL)	3106	8.15	8.16	8.17	8.17	8.17	8.18	8.18
Feedstocks and other hydrocarbons	3190	-	-	-	-	-	-	
Refinery Feedstocks	3191	-	-	-	-	-	-	
Additives / Oxygenates	3192	-	-	-	-	-	-	
Other Hydrocarbons (without biofuels)	3193							

INDUSTRIAL SECTORS RESULT FILE

e.g. *dm_EntryPoint_EU28_ind_yearly.xlsx*

Provides the results at a detailed process / technology level:

Value added; production; capacities; energy consumption; emissions; costs; indicators, ...

- *Summary* Overview of sectors
- *first sector-sheet* Value added; physical output; energy consumption; CO2 emissions; intensities; costs
- second sector-sheet Production capacities (incl. investment; idle capacities; normal and pre-mature replacement); energy and emission reductions through non-energy measures

RESIDENTIAL SECTOR RESULT FILE

e.g. *dm_EntryPoint_EU28_res_yearly.xlsx*

Provides the results at a household / end-use level:

- RES_summary Macro-economic drivers; household indicators; end-use level indicators for energy consumption, thermal energy service, emissions, efficiencies (e.g. energy consumption per household for space heating); costs
- *RES_sectors* Thermal uses: energy consumption; energy service at fuel level, emissions
- RES_appliances
- *RES_hh-type*
- RESU_hh-type

- Appliances: energy consumptions; operating hours; wattage; penetration
- Thermal uses at household type / end-use level: energy consumption
- Thermal uses at household type / end-use level: energy service

TERTIARY SECTORS RESULT FILE

e.g. *dm_EntryPoint_EU28_ter_yearly.xlsx*

Provides the results for services and agriculture:

- SER_sum_sqm

 Macro-economic drivers; indicators at useful surface area level;
 end-use level indicators for energy consumption, thermal energy service,
 emissions, efficiencies; costs
 (Same information is available per employee, per building, per capita and
 per value added SER_sum_<...> sheets)
- SER_sector
- SER_appliances
- AGR

- Thermal uses: energy consumption; energy service at fuel level, emissions
 - Appliances: energy consumptions; operating hours; wattage; penetration
 - Agriculture: energy consumption, emissions, intensities, costs

TRANSPORT SECTORS RESULT FILE

e.g. *dm_EntryPoint_EU28_tra_yearly.xlsx -* Provides the results at mode / technology level

TRA_Totals
 - Aggregated results at transport mean level

(activity, stock, energy consumption, emissions)

- TRA_Passenger Overview of the passenger transport (additional indicators, costs)
- *TRA_Freight* Overview of the freight transport (additional indicators, costs)

Each transport mode has the following sheets:

- ..._Act Activity, vehicle-km, stock, indicators, costs at mean / technology level
- ..._EnEm Energy consumption, emissions, efficiencies at mean / technology level

Second file: detailed results at technology / fuel level (e.g. *dm_EntryPoint_EU28_tra_det_yearly.xlsx*) different structure: one sheets combines all means for one indicator

POWER GENERATION RESULT FILE

e.g. *dm_EntryPoint_EU28_pg_yearly.xlsx*

- Specific energy balances: *Electricity Balance, Steam Balance*
- Results at power plant type / co-generation level:

Gross Electricity Generation Transformation input Total CO2 emissions Gross Generation Efficiency Net Capacities in Operation **Operating Hours** Gross Capacities Gross Capacities Investment System Costs

Load for the representative day: Net Generation load

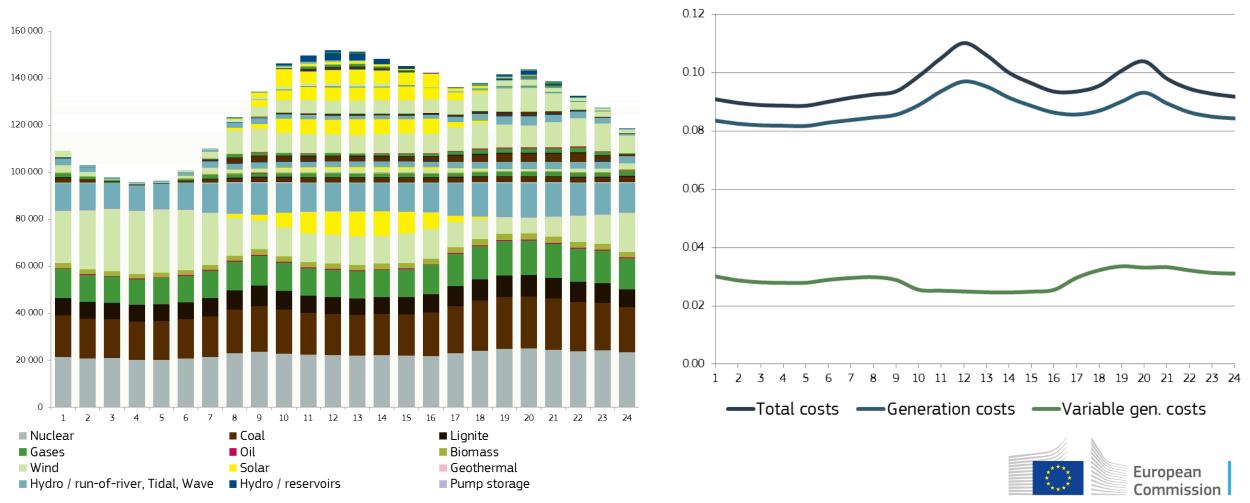
Net Electricity Generation Transformation input Nominal CO2 emissions captured Net Generation Efficiency Number of Units in Operation Spinning Hours Net Capacities Net Capacities Investment Unit Costs

Steam Generation

Transformation input Oper

Steam to Electricity ratio

Number of Units


Number of Units Investment

POWER GENERATION YEARLY SPECIAL REPORTS

e.g. *dm_EntryPoint_EU28_ctsl_2034*

Provides information on the unit commitment and costs at hourly resolution for the representative day

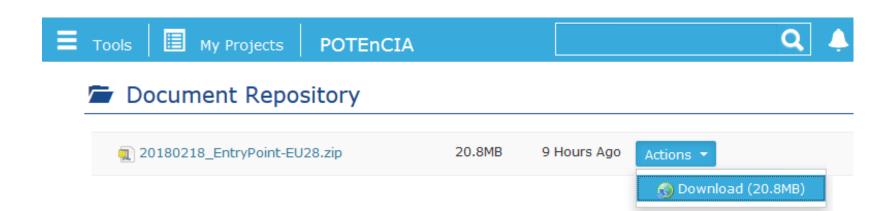
FILE STRUCTURE

5_year_reports

- dm_EntryPoint_EU28_summary_5years.xlsx
- 🕮 dm_EntryPoint_EU28_bal_5years.xlsx
- dm_EntryPoint_EU28_ind_5years.xlsx
- dm_EntryPoint_EU28_res_5years.xlsx
- dm_EntryPoint_EU28_ter_5years.xlsx
- dm_EntryPoint_EU28_tra_5years.xlsx
- dm_EntryPoint_EU28_pg_5years.xlsx

Det_5_year_reports Image: Contemport of the second seco

Annual_reports


- dm_EntryPoint_EU28_summary_yearly.xlsx
- dm_EntryPoint_EU28_bal_yearly.xlsx
- dm_EntryPoint_EU28_ind_yearly.xlsx
- dm_EntryPoint_EU28_res_yearly.xlsx
- dm_EntryPoint_EU28_ter_yearly.xlsx
- Implication description and the second secon
- dm_EntryPoint_EU28_pg_yearly.xlsx
- Det_annual_reports

Implication det_pearly.xlsx det_yearly.xlsx

Year_spec_reports

dm_EntryPoint_EU28_ctsl_2015.xlsx
 dm_EntryPoint_EU28_ctsl_2016.xlsx
 dm_EntryPoint_EU28_ctsl_2017.xlsx
 dm_EntryPoint_EU28_ctsl_2018.xlsx

dm_EntryPoint_EU28_ctsl_2047.xlsx
 dm_EntryPoint_EU28_ctsl_2048.xlsx
 dm_EntryPoint_EU28_ctsl_2049.xlsx
 dm_EntryPoint_EU28_ctsl_2050.xlsx

Constructing the POTEnCIA 'Central' Scenario *Questionnaire to Member States*

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL Brussels, 27 Feb 2018

POLICY ANALYSIS WITH A MODELLING TOOL

... requires continuous interactions

between European Commission and Member States' experts

 Understanding and correctly reflecting the past

JRC-IDEES database

- \rightarrow Exchanges with national experts on-going
- Agreeing in key future assumptions

- Understanding the model features and scope
 - → illustrative "Entry-point" stylised scenario
- Addressing country specificities
 - → incorporation of country specific policies in place
 - \rightarrow inclusion of on-going investments plans
 - → Understand the evolution of national energy systems in a European wide context

OVERVIEW AND GUIDELINES

- The scope covers energy policies & other policies impacting energy-related CO2 emissions:
 - → To identify the expected impact of existing policies (i.e. adopted and implemented by 1 January 2018)
 - \rightarrow To reflect ongoing investment plans

... and understand Member States long-term visions on their energy system in an EU-wide context

- Questions are designed to:
 - \rightarrow Gather quantitative information, as far as possible

 \rightarrow Can be complemented via attachment of relevant reports, studies, impact assessments

- Submission of replies to the questionnaire is of voluntary and non-binding nature
- Replies to the questionnaire do not replace/ substitute for MS reporting obligations under relevant energy and climate Directives & Regulations

QUESTIONNAIRE STRUCTURE

Part A POLICIES AND MEASURES IN PLACE AND INVESTMENTS

- What are existing policies and measures <u>adopted</u> and implemented by 1 January 2018 expected to deliver in terms of:
- What are the existing investment plans:

Part B MEMBER STATES' ENERGY SYSTEM VISION

• What do <u>long-term strategies and objectives</u> envisage in terms of:

INFRASTRUCTURE

Energy and transport networks

POWER GENERATION

Conventional and renewable electricity

DEMAND SIDE

Industry, buildings, transport

INFRASTRUCTURE

Energy networks

- → Electricity (transmission and distribution, interconnection)
- \rightarrow Natural Gas network (transmission, storage and LNG)
- \rightarrow Distributed heat
- \rightarrow Hydrogen and other fuel networks

Transport networks

- \rightarrow Electric vehicle fast charging
- → Alternative fuels infrastructure (hydrogen & others)
- → High-speed, conventional & metro/tram/light rail
- \rightarrow Inland waterways
- \rightarrow Aviation

Indigenous energy production

- \rightarrow Fossil-fuel resources
- \rightarrow Biomass production

Key questions

Any policies and measures in place to expand coverage?

Projects currently under construction?

Any legislation in place which might hinder/limit development ?

PART A: POLICIES AND MEASURES IN PLACE AND INVESTMENTS (2)

POWER GENERATION

- New capacities under construction
 - → Fuel, technology, capacity and unit breakdown, CHP, CCS, costs, and indicative commissioning year
- **Decommissioning** schedule
 - \rightarrow Any discrepancies between JRC-IDEES and latest national information
- Place of **nuclear** and place of **coal/lignite** in the mix
 - → Expected contribution in the future under policies in place (e.g. stable, decrease, phase-out)
 - \rightarrow Explicit policies in place to deliver
- **Renewables** (intermittent or non-intermittent)
 - \rightarrow Expected contribution in the future under policies in place
 - \rightarrow Explicit policies in place to deliver (policy type, description, expected impact, projected costs)
- Carbon Capture and Storage or use
 - \rightarrow Policies or measures in place which hinders, limits or supports the development CCS/CCU
 - \rightarrow Any project under construction

DEMAND SIDE

- Industry
 - → Any major capacity expansion/decommissioning
 - \rightarrow Policies and measures to reduce energy consumption or CO2 emission policy type, cost and impact
- Buildings
 - → Policies and measures in place on renovation, heating and cooling equipment use, appliances, renewable uptake) policy type, cost and impact
 - \rightarrow VAT on energy related equipment and other relevant taxes
- Transport
 - → Policies and measures in place on the uptake of alternative fuel vehicles, increased use of renewables, on activity shifts (in mobility patterns, in modes, in vehicle stock) policy type, cost and impact
 - → Taxes and levies on vehicles, VAT, road charges (passenger cars and heavy duty) and any other relevant taxes
- Article 7 Implementation (EED)
 - \rightarrow Any cross-sectoral newly implemented legislation or other policy measures
- Energy Taxation
 - \rightarrow <u>Sectoral breakdown</u> of tax revenues from energy consumption by fuel

PART B: MEMBER STATES ENERGY SYSTEM VISION (1)

INFRASTRUCTURE

- Foreseen evolution of coverage/activity of:
 - \rightarrow energy networks (gas, hydrogen, others)
 - → Vehicle fuelling networks (electric, hydrogen, others)
 - → Transport networks (rail, waterways)

POWER GENERATION

- Foreseen evolution of:
 - \rightarrow renewable resources in the mix
 - → CCS/CCU

DEMAND

- Any foreseen industrial restructuring
- Any relevant strategy for energy consumption in buildings (e.g. 2050 renovation strategy, renewable penetration)
- Foreseen penetration of alternative fuel in transports (by fuel –if available)

SAMPLE QUESTION - GOOD EXAMPLE

• Are there policies and measures in place to develop or expand coverage of **distributed heat** infrastructure? (please define the indicator used, e.g. % of buildings, population)

Estimated current coverage	25% of total building stock
Policies or measures in place	 National Infrastructure Investment Plan: € XX million investments in heat networks between 2012 and 2020
	Reference: Adopted Act Y – date
	Regional and local investment plans:
	 € XX million investment in city X, Y and Z
	References
Estimated impact (with year, e.g. by 2030,	Estimated increased coverage to 45-49% of building stock by 2022.
2050)	See published impact assessment in Annex A.

SAMPLE QUESTION - BAD EXAMPLE

• Are there policies and measures in place to develop or expand coverage of **distributed heat** infrastructure? (please define the indicator used, e.g. % of buildings, population)

Estimated current coverage	14% of dwellings in urban areas
Policies or measures in place	New District heat partnerships between City Y & City Z
Estimated impact (with year, e.g. by 2030, 2050)	6 separate networks to be connected by 2025.

Please consider as far as possible:

- If the information provided falls within the scope of an energy system model like POTEnCIA
- That any complementary information required to make use of estimates is available to the modelling team

Next steps Construction of the POTEnCIA "Central scenario"

MEMBER STATES EXPERTS' WORKSHOP ON THE POTENCIA MODEL

Brussels, 27 February 2018

NEXT STEPS

Development of the "**Central**" scenario in collaboration with the Member States

- Describes the evolution of the energy system with the current *policies in place*
- Corresponds to the "projections with existing policies and measures" as requested in Governance Proposal.
- Builds on the "Entry-point" scenario and the feedback received from Member States

Feedback received from Member States (return of questionnaires by end of March 2018)

Draft "Central" scenario results to be circulated (by the end of April 2018)

JRC-IDEES workshop with Member States (late April 2018)

Bilateral discussions on the scenario results (May 2018)

Consistency check of the macroeconomic assumptions with the JRC GEM-E3 model

2nd POTEnCIA Workshop to discuss the advanced "Central" scenario (June 2018)

Consolidated "Central" scenario results planned for July 2018

NEXT STEPS

Development of the "**NECPs**" scenario in collaboration with the Member States

- Describes the evolution of the energy system with the **planned** policies and measures
- Reflects the impact of **National Energy and Climate Plans** to the Member States energy systems

Policy assumptions to be introduced are going to be based on the communicated plans of the Member States

Bilateral discussions may also be envisaged

Consolidated "NECPs" scenario results planned for December 2018

Both scenarios can act as an input for the Commission's assessment of the combined impact of Member States' National Energy and Climate Plans

NEXT STEPS

In order to deliver on the work outlined two special groups as to formally involve national experts have been created:

The JRC-IDEES Special Group

The members of the working group will provide comments on /review/validate their country-specific files of the JRC-IDEES database. JRC-IDEES will be updated on an annual basis. It forms both a key input for the POTEnCIA model and a comprehensive stand-alone data-box for policy analysis.

The POTEnCIA Special Group

The purpose of this group is to further improve the input and output of the POTEnCIA model, in particular as to better reflect the properties of the national energy systems.

Thank you for your attention

JRC Science Hub –POTEnCIA: ec.europa.eu/jrc/POTEnCIA

Contact: JRC-C6-POTENCIA@ec.europa.eu

