

MICROSIMULATION TOOLS FOR THE EVALUATION OF FISCAL POLICIES AT BANCO DE ESPAÑA

Roberto Ramos

Structural Analysis Unit Head

EUROMOD WORKSHOP

University of Milan 25 September 2019

DG ECONOMICS, STATISTICS AND RESEARCH

MICROSIMULATION TOOLS AT BANCO DE ESPAÑA

- Banco de España has been developing a set of microsimulation tools to evaluate the revenue impact and distributive consequences of fiscal policy reforms.
- Currently:
 - Personal income tax
 - Value added tax and excise duties
 - Unemployment benefits
 - Pensions (in progress)
- They mostly rely on (publicly available) administrative data (tax returns and Social Security registries).
- Only the VAT tool allows for behavioral responses.
- See Bover, Casado, García-Miralles, Labeaga and Ramos (2017) for an overview.

BANCODE ESPAÑA Eurosistema

The Banco de España Personal Income Tax Microsimulation Model

DG ECONOMICS, STATISTICS AND RESEARCH

- The personal income tax (PIT) taxes the Spanish residents' income.
- Tax collection with the PIT represents around 7% of GDP, being the largest source of tax revenue after Social Security contributions.

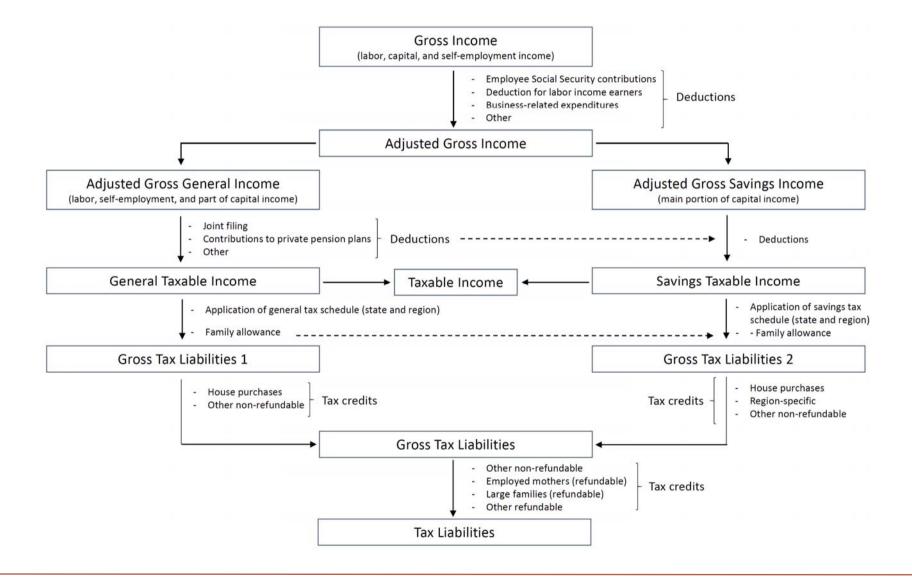
	Tax Revenue	Personal Income Tax	Social Security Contribu- tions	Value Added Taxes	Other Taxes	PIT Tax Revenue
	(1)	(2)	(3)	(4)	(5)	(6)
Spain	33.8%	7.2%	11.4%	6.4%	8.8%	21.3%
Euro Area 11	38.8%	9.4%	12.2%	7.0%	10.2%	24.3%
OECD	34.0%	8.5%	8.9%	6.7%	9.8%	24.5%

Distribution of Tax Revenues in 2015 (% of GDP)

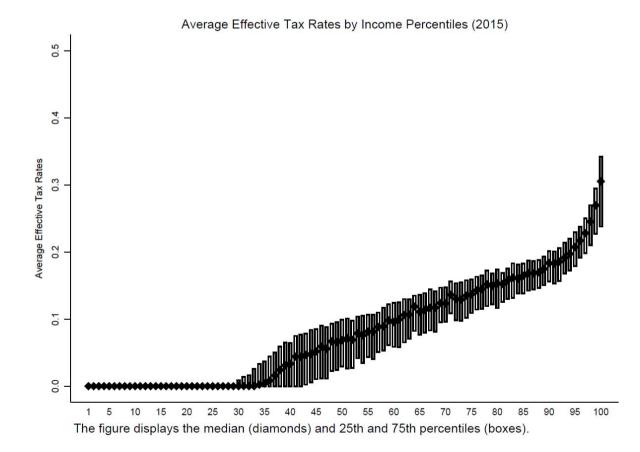
- The microsimulation tool embeds the (large set of) parameters of the tax code into a representative sample of tax returns, in order to simulate each taxpayer's tax liabilities.
 - Changes in the parameters of the tax code allow simulating tax reforms.

TAX RETURN DATA

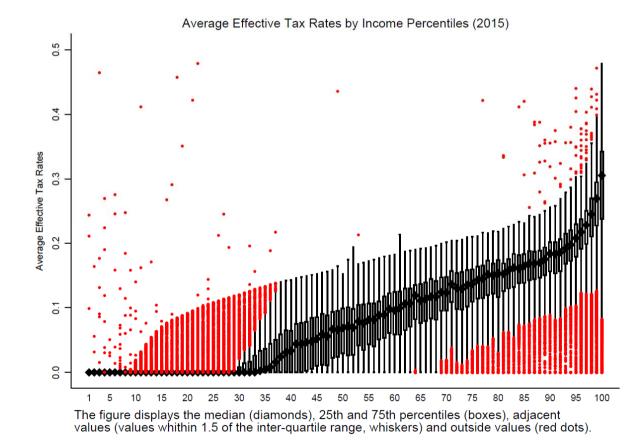
- Administrative dataset containing a (stratified) random sample of tax returns.
 - IEF-AEAT sample of tax returns (yearly data, last wave is 2016).
 - The data cover 15 regions (out of 17) and 2 autonomous cities.
 - 2.7 million tax returns \approx 14% of the universe.
- The dataset includes almost the complete set of fiscal and sociodemographic characteristics provided in the tax return.
 - Income from different sources (labor, capital, self-employment).
 - Tax benefits (deductions and credits).
 - Tax liabilities.
 - Demographic characteristics (age, location, number of dependent relatives, disability...)
- The unit of observation is the tax return.
 - Either individual or joint filing.
 - No information on labor status or hours worked.


ADMINISTRATIVE DATA OF TAX RETURNS

- Monetary values are not censored either at the top or at the bottom of the distribution.
- The sample data provide an accurate representation of income and tax liabilities.


	Sample Aggregate	Population Aggregate	Difference	
	(1)	(2)	(3)	
Number of Taxpayers (million)	19.5	19.5	0.0%	
Gross Labor Income	394.1	393.3	0.2%	
Gross Capital Income	46.3	46.6	-0.8%	
Gross Self-Employment Income	25.8	26.5	-2.6%	
Taxable Income	374.7	375.0	-0.1%	
Tax Liabilities	65.5	65.6	-0.2%	

Accuracy of the 2015 Cross-Section Data (\in Billion)

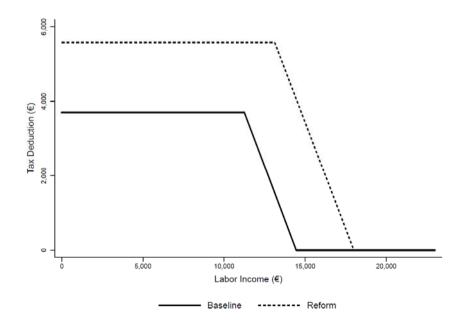

THE SPANISH PERSONAL INCOME TAX Tax structure

• There is a high degree of variation in effective tax rates.

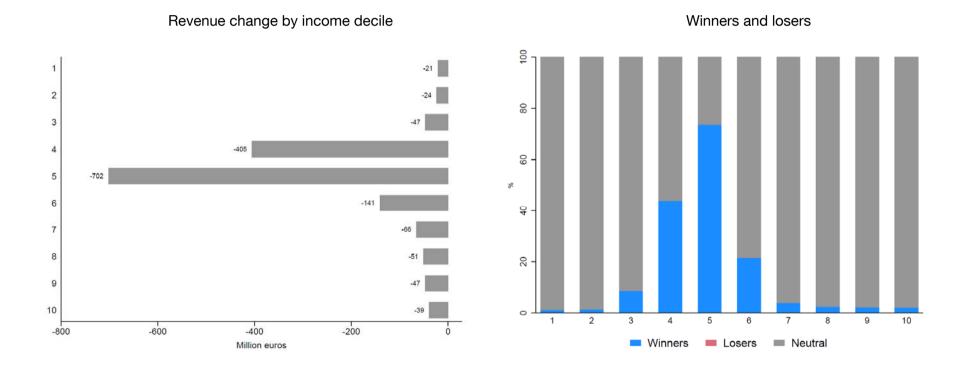
• There is a high degree of variation in effective tax rates.

- The microsimulation tool simulates each taxpayer's tax liabilities as a function of gross income and benefits (data), as well as the parameters of the tax code.
- The effect of reforms is simulated by modifying these parameters:
 - Allocation of income sources to the general or savings tax base.
 - Switch tax benefits off and on, and adjust monetary values
 - Social Security contributions, labor income earners, joint filing, contributions to private pension plans...
 - Family allowance, house purchases, employed mothers, large families, regional credits...
 - Redefinition of tax deductions as tax credits.
 - Changes in tax bands and tax rates of the tax schedule
 - General and savings income.
 - Region-specific tax rates.
- The number of parameters is around 1,500.

- In order to simulate reforms, the sample weights and income data pertaining to 2015 are updated to 2017 values.
 - Net increase in the number of taxpayers by region and change in aggregate income by income source.
 - Data source is official (aggregate) figures published by the Tax Agency.
- Aggregate figures computed from the microsimulation model resemble the corresponding aggregates provided by the Tax Agency.


€bn	Model		Data ^(a)		Difference (%)	
	2015	2017	2015	2017	2015	2017
Number of tax-payers (million)	19.5	19.9	19.5	19.9	-0.0	0.0
Income ("Rendimientos")	446.7	481.9	447.0	482.0	-0.1	-0.0
Tax Base ("Base Liquidable")	374.6	409.5	375.0	409.5	-0.1	0.0
Tax Liabilities before Tax Credits ("Cuota Íntegra")	70.9	79.6	71.0	78.7	-0.3	1.1
Tax Liabilities before Refundable Tax Credits ("Cuota Resultante de la Autoliquidación")	66.9	75.5	67.0	74.8	-0.2	0.9
Tax Liabilities after Refundable Tax Credits	65.4	74.0	65.6	73.0	-0.2	1.3

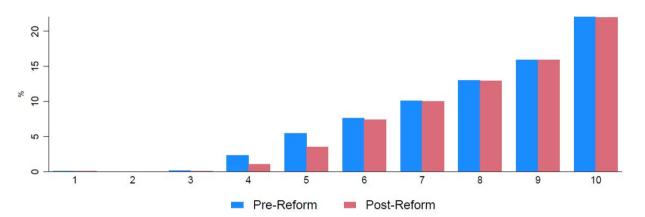
MODEL ACCURACY

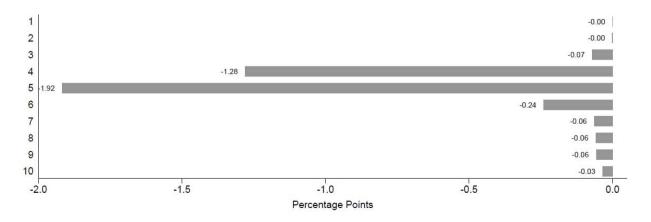

Source: BdE-PIT Microsimulation Model.

(a) Estadísticas de los declarantes del Impuesto sobre la Renta de las Personas Físicas.

- The Draft Law on the State Budget for 2018 contained a number of measures designed to reduce the incidence of the PIT on low income workers and on certain groups of taxpayers:
 - Rise in the income tax threshold from €12,000 to €14,000.
 - Increase in the amount of the tax deduction from labor income earnings between €14,000 and €18,000.
 - Introduction of a new tax credit of €1,200 for a disabled spouse.
 - Increase of €600 in the large-family tax credit, for each child above 3.

- Revenue change: €-1.5 bn (-2.4%).
- Around 3 m taxpayers affected (16% of the total).

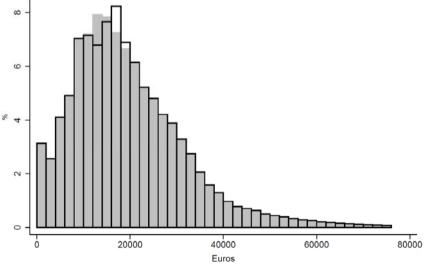


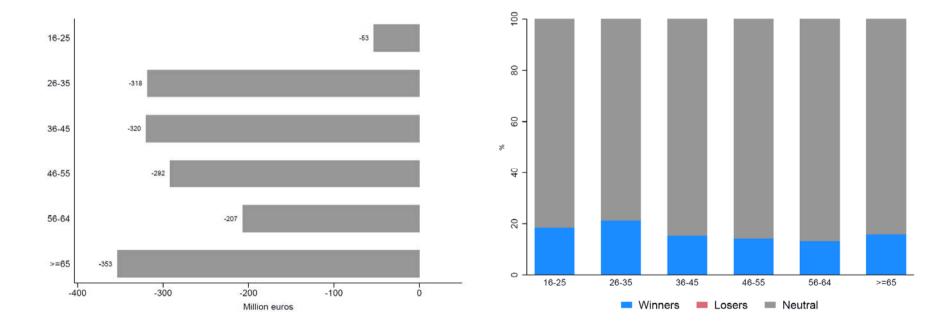

• Winners would pay close to € 500 less on average.

	Total			Winners		
Deciles	Population	Gain (+) or loss (-)	Avg. gain or loss	Number	%	Avg. gain
	millions	million €	€	millions		€
1	1,9	21	10,8	0,0	1,1	946,5
2	1,9	24	12,3	0,0	1,2	1.027,6
3	1,9	47	24,1	0,2	8,6	281,5
4	1,9	405	208,0	0,9	43,9	473,9
5	1,9	702	360,2	1,4	73,7	489,0
6	1,9	141	72,3	0,4	21,6	335,2
7	1,9	66	33,8	0,1	4,0	855,4
8	1,9	51	26,3	0,0	2,4	1.102,6
9	1,9	47	24,4	0,0	2,2	1.094,6
10	1,9	39	20,3	0,0	2,0	990,5
Total	19,5	1.544	79,3	3,1	16,1	493,3

WINNERS AND LOSERS BY INCOME DECILE

• Effective average tax rates would decrease by close to 2 percentage points in the 5th decile.

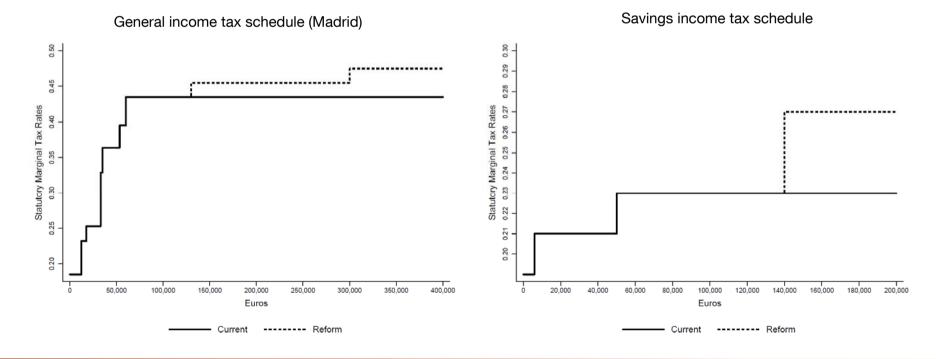



• The change in some inequality measures reflects the gains of taxpayers in the middle of the income distribution.

INEQUALIT	INEQUALITY MEASURES (AFTER-TAX)							
Indices	Pre-Reform	Post-Reform	Change (pp)					
90/10	6,3	6,3	-0,0025					
90/50	2,1	2,0	-0,0151					
50/10	3,1	3,1	0,0213					
75/25	2,5	2,5	-0,0001					
75/50	1,5	1,5	-0,0115					
50/25	1,6	1,6	0,0124					
Gini	0,38	0,38	-0,0016					

Pre-Reform Dost-Reform

• Young workers and retirees would benefit relatively more.



Revenue change by age group


Winners and losers

EXAMPLE II The 2019 Draft Law on the State Budget

- The previous simulations do not account for behavioral reactions as a result of the reform ('morning-after effects').
- A recent agreement for the 2019 Draft Law on the State Budget devises an increase the top marginal tax rate.
 - General income: +2 pp from €130,000 and +4 pp from €300,000.
 - Savings income: +4 pp from €140,000.

- Revenue change (absent behavioral reactions): €+800 m (1.1%)
- Around 100,000 taxpayers affected (5% of taxpayers in top income decile)
- Losers would pay €7,600 in additional taxes on average

TAX REVENUE AND PROGRESSIVITY Guner, López-Segovia, and Ramos (2019)

- How much more revenue can a (Spanish) government raise in the long run by making income taxes more progressive?
- Approach (as in Guner, Lopez Danieri and Ventura, 2016):
 - Build a standard life-cycle model with heterogeneity (idiosyncratic shocks)
 - Parameterize the model to be consistent with facts on inequality and taxes paid in Spain.
 - Parametric representation of effective taxes paid.
 - Use this framework to compute how government revenue changes in the long-run with the progressivity of taxes (i.e. changes in the tax function).
 - In the previous framework, second-round effects can be accounted for if the new tax function is estimated according to the simulated post-reform tax liabilities.

THE MODEL

- Life cycle economy: j=1, ..., R, ... N
- Households:
 - They value consumption and dislike work.
 - Face idiosyncratic earning shocks and life uncertainty.
 - They can save in the form of riskless capital but they cannot borrow.
- The government:
 - Consume every period an amount G, which is financed through taxation.
 - Taxes household income with a progressive tax schedule (T).
 - Additionally, levies a flat tax on capital, consumption, and labor income to finance the social security system.
- Working households decide how much to work and how much to save each period.
- There is a revenue maximizing degree of progressivity:
 - Through the direct effect on revenue and the disincentive on labor supply and capital accumulation.

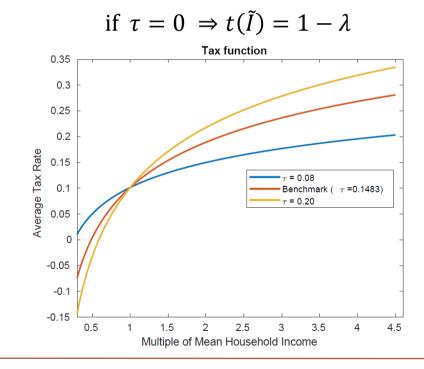
DG ECONOMICS, STATISTICS AND RESEARCH

- Estimate the parametric relation between gross income and taxes paid.
- For each tax return, we compute:

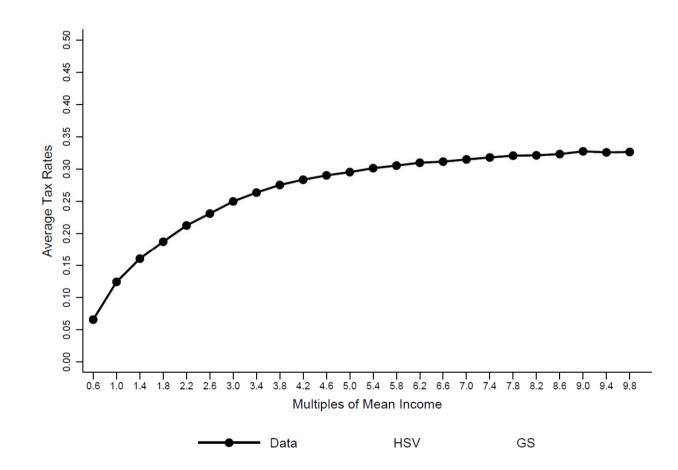
Average effective tax rate = $\begin{cases} \frac{\text{Tax liabilities}}{\text{Gross income}} & \text{if tax liabilities} \ge 0\\ 0 & \text{if tax liabilities} < 0 \end{cases}$

• And estimate (Heathcote, Storesletten and Violante, 2017):

$$t(\tilde{I}) = \begin{cases} 0 & \text{if } \tilde{I} < \bar{I} \\ 1 - \lambda(\tilde{I})^{-\tau} & \text{if } \tilde{I} \ge \bar{I} \end{cases}$$

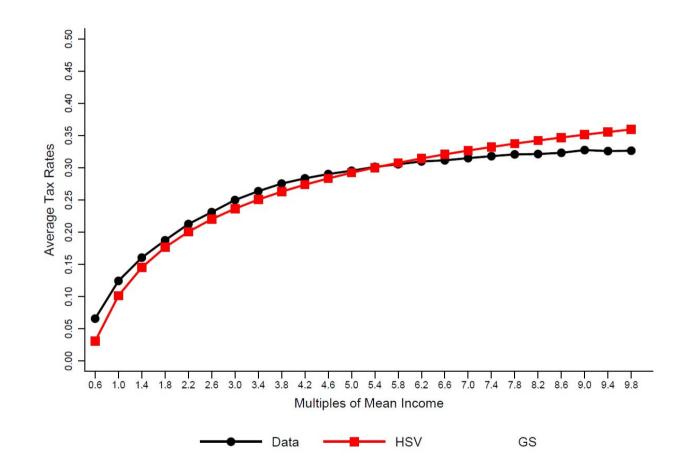

- $t(\tilde{I})$ is the average tax rate.
- \tilde{I} stands for multiples of mean gross income.
- \overline{I} is chosen so as to minimize the mean squared error.

- τ determines the progressivity of the tax function:
 - Average tax rate:


$$t(\tilde{I}) = 1 - \lambda(\tilde{I})^{-\tau}$$

• Hence:

$$\frac{1 - t(x\tilde{I})}{1 - t(\tilde{I})} = \frac{\lambda(x\tilde{I})^{-\tau}}{\lambda(\tilde{I})^{-\tau}} = x^{-\tau} = \frac{1}{x^{\tau}} < 1 \quad \text{if } \tau > 0 \text{ and } x > 1$$

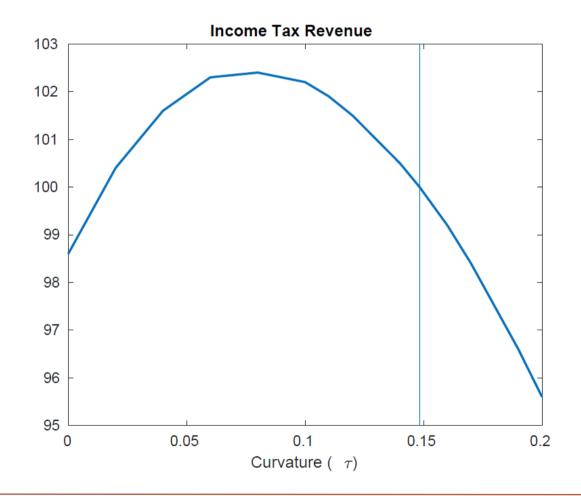


AVERAGE TAX RATES BY MULTIPLES OF INCOME Data

AVERAGE TAX RATES BY MULTIPLES OF INCOME

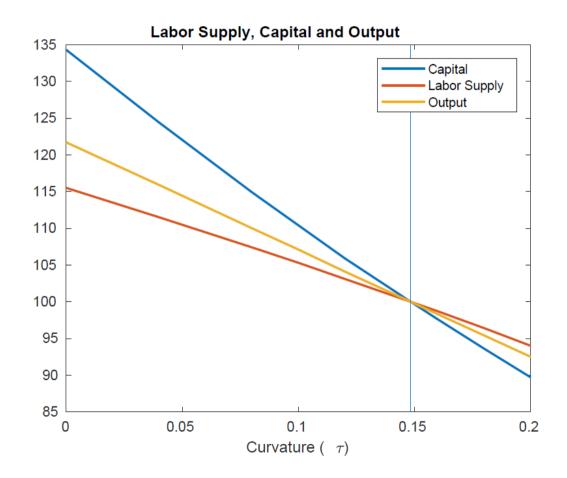
Data and functional form

- $\lambda = 0.8995; \tau = 0.1483; \overline{I} = 49\%$
 - Measures in 2019 Draft Law on State Budget would lead to $\tau = 0.1490$.


TAX REVENUE IN THE LONG RUN

• Different values of τ:

Tax Revenue – Model								
	$\tau = 0.00$	0.08	0.148 (BM)	0.16	0.18			
Output	<mark>121.7</mark>	110.0	100	<mark>98.3</mark>	95.4			
Hours	113.6	106.5	100	98.9	96.9			
Labor supply	115.5	107.4	100	98.7	96.4			
Capital	134.3	114.9	100	97.6	93.6			
Revenues								
Income tax	<mark>98.4</mark>	102.3	100	<mark>99.2</mark>	97.5			
Corporate inc.tax	104.3	103.1	100	99.3	97.9			
Consumption tax	121.6	109.7	100	98.4	95.6			
All taxes	<mark>115.8</mark>	<mark>108.0</mark>	100	<mark>98.5</mark>	96.0			


TAX REVENUE AND PROGRESSIVITY

• Relationship between *τ* and revenue:

MACRO AGGREGATES AND PROGRESSIVITY

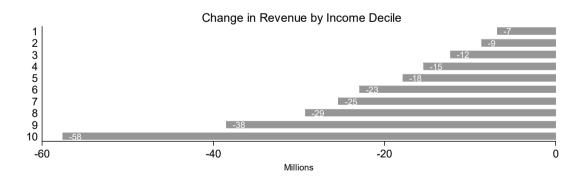
• Aggregate output, labor supply and capital:

BANCODE ESPAÑA Eurosistema

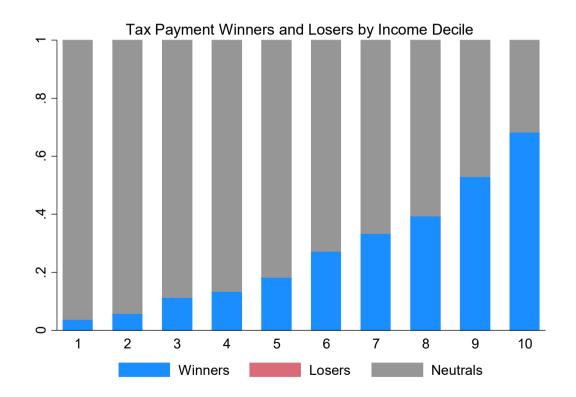
The Banco de España Indirect Tax Microsimulation Model

- The tool allows for the simulation of changes in the VAT on 119 nondurable goods and for modifications on excise duties levied on 4 goods.
- The households' behavioral reaction is accounted for by the estimation of a demand system.
 - Following a reform, households can redistribute expenditure between non-durable goods.
- Data:
 - Spanish Household Expenditure Survey:
 - Around 22,000 households each year.
 - Info on household expenditure for 255 commodities.
 - Consumer Price Index
 - Monthly-region prices for 119 goods.

- Policy parameters:
 - Tax rates of 255 commodities, aggregated to 119 goods.
 - Exempted (0%), super-reduced (4%); reduced (10%); standard (21%).
- Estimated behavioral parameters:
 - Coefficients from a Quadratic Almost Ideal Demand System (Banks, Blundell, and Lewbel, 1997) on 13 non-durable good categories:
 - Provides own-, cross-price, and income elasticities, as well as parameters on socio-demographic characteristics.


Income elasticities

Cross-price elasticities


- Simulation of decrease of VAT rates on cultural services from 21% to 10%:
 - Revenue change: € -234 m (0.47%).

VAT Revenue by Income Decile

- Simulation of decrease of VAT rates on cultural services from 21% to 10%:
 - Winners would be concentrated on the top income decile

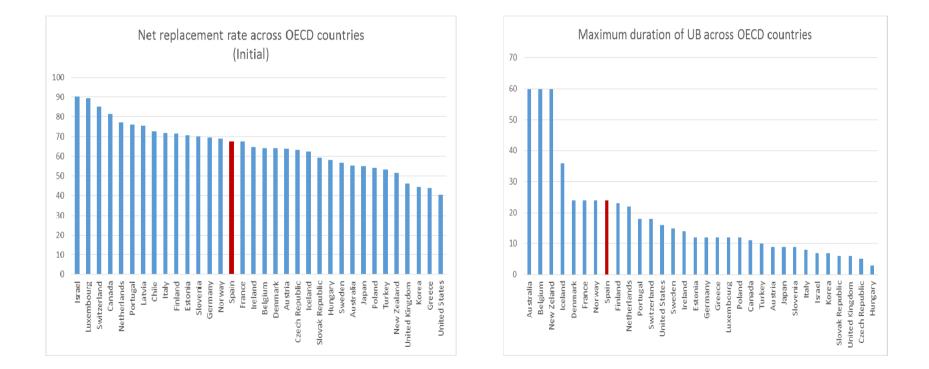
BANCODE ESPAÑA Eurosistema

Simulation of Unemployment Benefits

MICROSIMULATION OF UNEMPLOYMENT BENEFITS Guillamón, Izquierdo, and Puente (in progress)

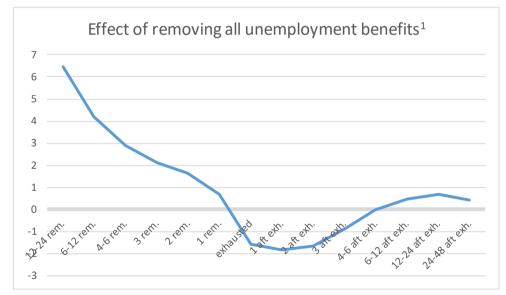
- Joint estimation of the impact of the duration and generosity of unemployment benefits on the exit from unemployment.
 - Compare the relative incidence of duration and generosity.
 - Simulate potential reforms.
- Data: Social Security registries (Continuous Sample of Working Histories, MCVL)
 - Administrative dataset comprising each year a 4% random sample of the population with any relation with the Spanish Social Security.
 - Relationships stem from employment, unemployment benefits, and pensions.
 - For each individual, all changes in labor market status and work characteristics are recorded since at least 1980.
 - Last wave is 2017.

• Eligibility:


- Become involuntarily unemployed.
- At least 12 months of contributions in the last 6 years.
- Benefits:
 - During the first 6 months: 70% of the average wage in the last 6 months.
 - From the 6th month onwards: 50% (60% before July 2012).
 - Caps and floors apply, depending on family characteristics.

• Duration:

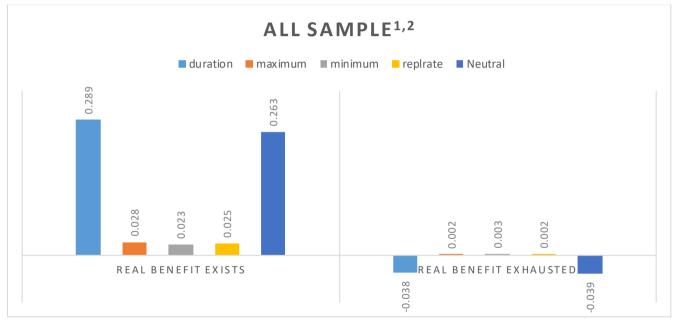
- 12 to 18 months of contributions in the last 6 years give rise to 4 months of unemployment benefits.
- From then on, every 6 months of contributions entitle 2 months of UB.
- Benefit spell cannot exceed 24 months.


THE UNEMPLOYMENT BENEFIT SYSTEM IN SPAIN OECD context

• Both the replacement rate and maximum duration are above the OECD average.

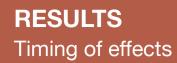
EMPIRICAL APPROACH

- Estimate a linear model of the monthly probability of finding a job against:
 - Replacement ratio.
 - Monthly dummies before and after the exhaustion of the benefit.
 - Interactions with gender, skill, age group, and business cycle.
 - Controls: individual fixed-effects, seasonality...

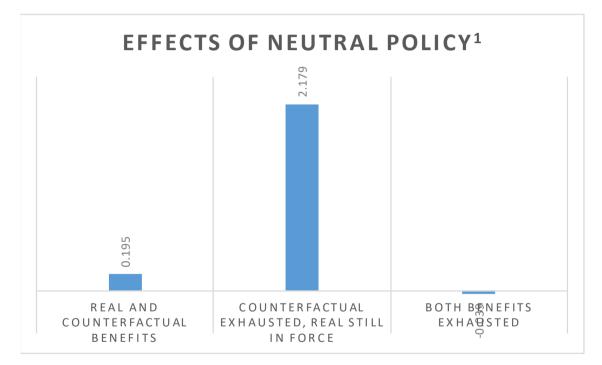


(1): Average effect on monthly probability of finding a job, in percentage points

SIMULATION OF REFORMS

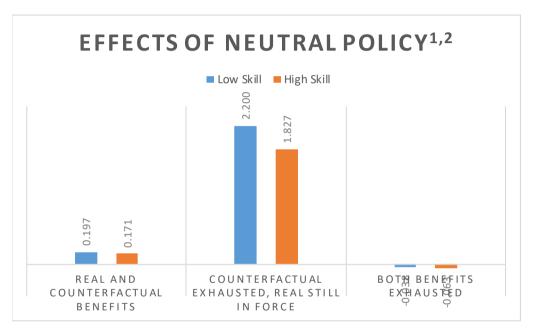

- Ex-ante revenue neutral reform: 5% reduction in the benefit spell and 2 pp increase in the replacement rate, keeping caps and floors constant.
- Empirical approach:
 - Compute the probability of finding a job by individual-month, based on the estimated model.
 - Construct the counterfactual by recalculating the probability according to the new policy parameters.
 - The effect of the reform is estimated as the difference in both probabilities.

• Results suggest that the probability of employment would slightly increase in the period before benefits are exhausted.

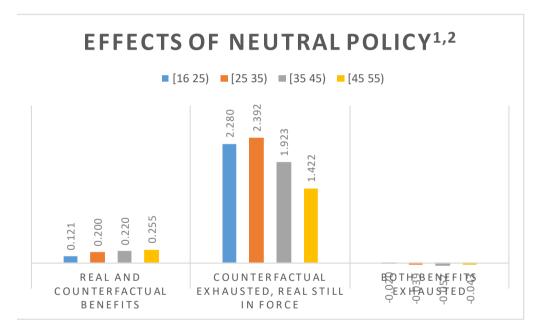


(1): Average effect of indicated policy on monthly probability of finding a job, in percentage points

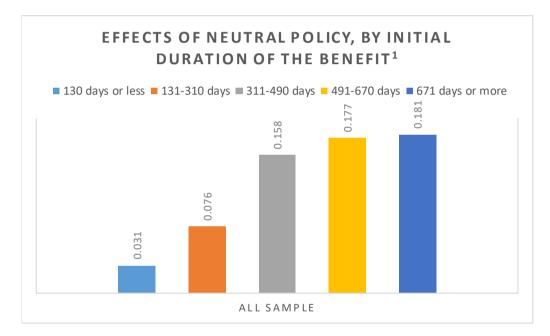
(2): Net average effect over the whole spell for each policy is: 0.144pp for duration, 0.0042pp for maximum, 0.0037pp for minimum, 0.0040pp for replrate and 0.1177pp for neutral


• Estimated effects are larger during the months in which, as a result of the policy, the benefits are exhausted.

(1): Average effect on monthly probability of finding a job, in percentage points



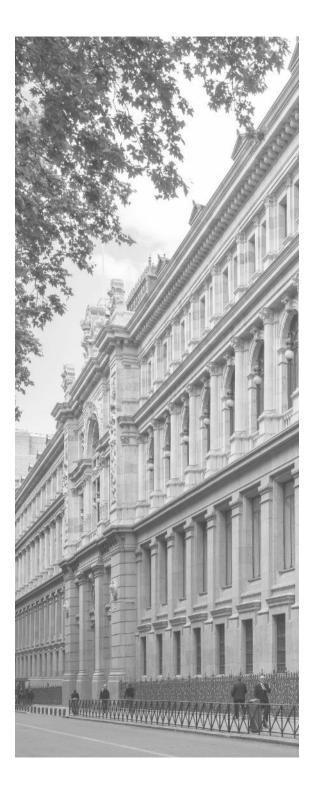
• For both high and low skilled workers the probability of finding a job would increase.


(1): Average effect on monthly probability of finding a job, in percentage points(2): Net average effect over the whole spell is: 0.109pp for low skilled and 0.097pp for high skilled

• The uptick in employment would concentrate on young workers.

(1): Average effect on monthly probability of finding a job, in percentage points
(2): Net average effect over the whole spell is: 0.083pp between 16 and 25, 0.117pp between 25 and 35, 0.111pp between 35 and 45 and 0.104pp between 45 and 55

• The effects would be higher for those with longer benefit spells.



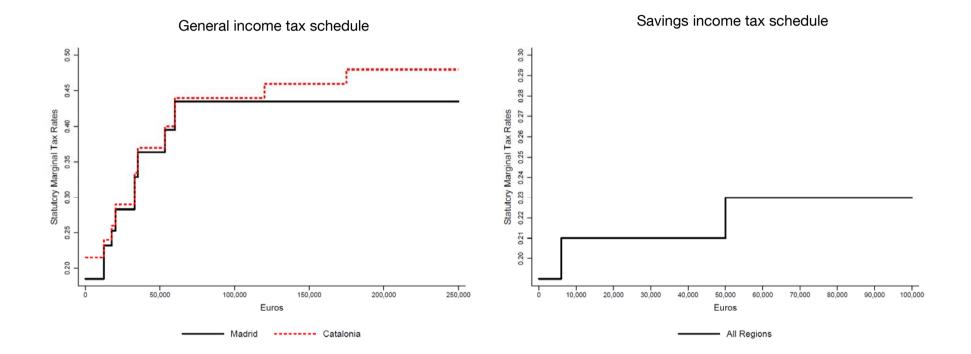
(1): Average effect on monthly probability of finding a job, in percentage points(2): Net average effect over the whole spell is: 0.117pp in recessions and 0.102pp in expansions

THANK YOU FOR YOUR ATTENTION

DG ECONOMICS, STATISTICS AND RESEARCH

THE SPANISH PERSONAL INCOME TAX

Tax deductions


Quantiles	Social Security Contribu- tions	Labor Income	Joint Filing	Contribu- tions to Private Pensions	Other
	(1)	(2)	(3)	(4)	(5)
Bottom					
1%	3.8%	36.4%	26.4%	1.8%	31.6%
1-5%	4.0%	71.3%	11.4%	2.2%	11.0%
5-10%	3.6%	84.9%	4.7%	1.9%	5.0%
Quintiles					
1st (bottom 20%)	4.2%	82.7%	6.0%	1.8%	5.3%
2nd (20-40%)	9.2%	79.2%	8.3%	1.6%	1.7%
3rd (40-60%)	22.7%	58.7%	14.2%	2.5%	1.9%
4th (60-80%)	28.4%	53.7%	12.4%	3.4%	2.1%
5th (80-100%)	32.9%	43.2%	9.7%	10.2%	3.9%
Top					
90-95%	36.9%	40.4%	8.7%	10.4%	3.6%
95-99%	34.8%	34.5%	7.7%	17.8%	5.2%
1%	25.5%	28.2%	6.9%	27.2%	12.1%
Total	20.0%	62.8%	10.3%	4.0%	2.9%

Sources of Individual Tax Deductions (2015)

Notes: This table shows the distribution of different tax deductions across the income distribution. Each row adds up to 100.

THE SPANISH PERSONAL INCOME TAX Statutory marginal tax rates

• Tax schedules

THE SPANISH PERSONAL INCOME TAX Tax credits

Quantiles	Family Allowance	House Purchases	Employed Mothers	Large Families	Regional	Other
	(1)	(2)	(3)	(4)	(5)	(6)
Bottom						
1%	98.1%	0.0%	0.7%	0.8%	0.0%	0.4%
1-5%	95.3%	0.0%	2.2%	1.8%	0.0%	0.7%
5-10%	93.8%	0.1%	3.2%	2.1%	0.0%	0.8%
Quintiles						
1st (bottom 20%)	95.3%	0.4%	2.4%	1.4%	0.0%	0.5%
2nd (20-40%)	93.7%	2.8%	1.8%	0.8%	0.6%	0.3%
3rd (40-60%)	86.5%	7.5%	1.3%	0.6%	1.5%	2.7%
4th (60-80%)	86.1%	8.9%	1.2%	0.5%	1.1%	2.1%
5th $(80-100\%)$	83.5%	10.9%	0.9%	0.9%	0.5%	3.3%
Top						
90-95%	82.7%	11.5%	0.9%	1.0%	0.5%	3.4%
95-99%	80.7%	12.5%	0.7%	1.3%	0.5%	4.3%
1%	77.1%	11.3%	0.4%	1.8%	0.3%	9.0%
Total	88.7%	6.3%	1.5%	0.8%	0.8%	1.8%

Notes: This table shows the distribution of different tax credits across the income distribution. Each row adds up to 100.

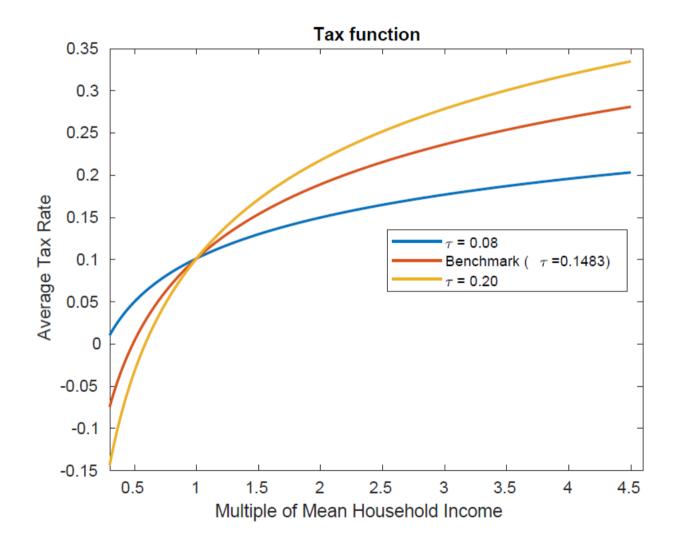
• Losers would pay €7,600 in additional taxes on average.

		Total		Losers					
Deciles	Population	Gain (+) or loss (-)	Avg. gain or loss	Number	%	Avg loss			
	millions	million €	€	millions		€			
1	2,0	0	-0,0	0,0	0,0	0,0			
2	2,0	0	-0,0	0,0	0,0	0,0			
3	2,0	0	0,0	0,0	0,0	0,0			
4	2,0	0	-0,0	0,0	0,0	0,0			
5	2,0	0	0,0	0,0	0,0	0,0			
6	2,0	0	0,0	0,0	0,0	0,0			
7	2,0	0	0,0	0,0	0,0	0,0			
8	2,0	0	0,0	0,0	0,0	0,0			
9	2,0	0	0,0	0,0	0,0	0,0			
10	2,0	-800	-401,7	0,1	5,3	7.645,5			
Total	19,9	-800	-40,2	0,1	0,5	7.645,0			

WINNERS AND LOSERS BY INCOME DECILE

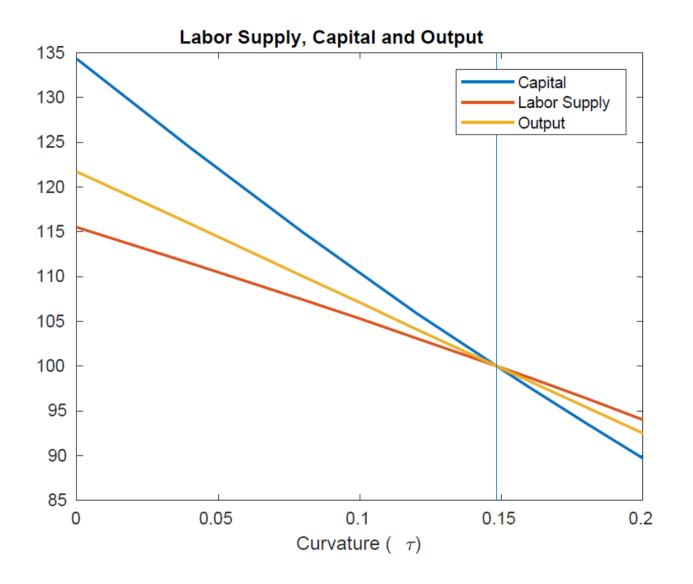
Parameter Values									
Parameter	Value	Comments							
Discount Factor (β)	0.983	Calibrated							
		matches K/Y							
Intertemporal Elasticity (γ)	1	Literature							
Disutility of Market Work $(arphi)$	7.5	Calibrated							
		matches hours							
Capital Share (α)	0.35	Calibrated							
Depreciation Rate (δ_k)	0.06	Calibrated							

Parameter Values										
Parameter	Value	Comments								
Aut. Perman. Shocks (ρ)	0.874	estimated								
Var. Persis. Shocks (σ_ϵ^2)	0.0072	Kaplan (2012)								
Var. Perman. Shocks (σ_{θ}^2) Fraction of superstars (π)	0.1295 0.01	Calibrated								
Value of superstar prod. (θ^*)	2.2	Calibrated								
Payroll Tax Rate (τ_p)	0.249	Calibrated								
Cap. Income Tax Rate (au_k)	0.16	Calibrated								
Tax Function Level (λ)	0.899	Garcia-Miralles et al (2018)								
Tax Function Curvature (au)	0.148	Garcia-Miralles et al (2018)								


Shares of Total Gross Income – Model and Data

Quantiles	Data	Model
1%	0.0%	0.3%
1-5%	0.3%	1.7%
5-10%	1.0%	2.6%
Quintiles		
1st (bottom 20%)	<mark>4.6%</mark>	<mark>10.6%</mark>
2nd (20-40%)	10.2%	13.1%
3rd (40-60%)	15.5%	15.9%
4th (60-80%)	22.7%	21.0%
5th (80-100%)	<mark>47.1%</mark>	<mark>39.4%</mark>
Тор		
90-95%	<mark>10.1%</mark>	<mark>8.7%</mark>
95-99%	<mark>11.9%</mark>	<mark>9.2%</mark>
1%	<mark>9.5%</mark>	7.4%

Shares of Income Tax Payments – Model and Data


Quantiles	Data	Model
1%	0.0%	0.0%
1-5%	0.0%	0.1%
5-10%	-0.1%	0.2%
Quintiles		
1st (bottom 20%)	-0.2%	<mark>1.5%</mark>
2nd (20-40%)	0.7%	<mark>4.3%</mark>
3rd (40-60%)	7.0%	9.0%
4th (60-80%)	19.4%	18.6%
5th (80-100%)	73.2%	<mark>66.6%</mark>
Тор		
90-95%	13.8%	12.6%
95-99%	20.6%	16.0%
1%	21.0%	<mark>21.2%</mark>

REFORMING THE INDIVIDUAL INCOME TAX IN SPAIN (GUNER, LÓPEZ SEGOVIA AND RAMOS, IN PROGRESS)

REFORMING THE INDIVIDUAL INCOME TAX IN SPAIN (GUNER, LÓPEZ SEGOVIA AND RAMOS, IN PROGRESS)

BANCO DE ESPAÑA Eurosistema

Tax Rates								
Percentiles of income	$\tau = 0.148 (BM)$	0.08						
Top 10%	<mark>19.9%</mark>	<mark>15.7%</mark>						
Top 5%	22.8%	17.5%						
Top 1%	<mark>32.3%</mark>	<mark>23.2%</mark>						
	Mar. tax rate							
Top 10%	<mark>29.0%</mark>	<mark>20.7%</mark>						
Top 5%	30.9%	21.9%						
Top 1%	<mark>35.9%</mark>	<mark>25.2%</mark>						

Distribution of Tax Liabilities									
Percentiles of income	0.08								
1st (bottom 20%)	1.5%	4.3%							
2nd (20-40%)	4.3%	7.4%							
3rd (40-60%)	9.0%	11.2%							
4th (60-80%)	18.6%	19.0%							
5th (80-100%	66.6%	58.1%							
Тор									
10%	49.7%	42.4%							
1%	21.2%	17.3%							

	Observed shares	Predicted shares	Income elasticity	Uncompensated own-price elasticity		
1. Food and beverages	0.2775	0.2766	0.715***	-0.109		
2. Alcoholic drinks	0.0106	0.0114	1.010***	-0.993***		
3. Tobacco	0.0219	0.0221	0.846***	-0.833***		
4. Clothing and footwear	0.0739	0.0759	1.385***	-1.011***		
5. Domestic utilities	0.1370	0.1362	0.538***	-0.525***		
6. Household non-durables	0.0402	0.0433	1.548***	-1.969***		
7. Health	0.0382	0.0354	1.901***	-0.524***		
8. Vehicle fuels	0.0635	0.0652	0.973***	-0.159***		
9. Transport	0.0522	0.0520	0.955***	-1.090***		
10. Communications	0.0511	0.0479	0.592***	-0.189***		
11. Leisure and culture	0.0476	0.0478	1.421***	-2.253***		
12. Hotels and restaurants	0.1254	0.1234	1.404***	-0.974***		
13. Other non-durables	0.0607	0.0638	1.224***	-0.572*		

OBSERVED (2015) AND PREDICTED SHARES, INCOME AND OWN-PRICE ELASTICITIES TABLE 9

* p<0.05, **p<0.01, ***p<0.001

SOURCE: BdE VAT Microsimulation Model.

	1. Food and beverages	2. Alcoholics drinks	3. Tobacco	4. Clothing and footwear	5. Domestic utilities	6. Household non-durables	7. Health	8. Vehicle fuels	9. Transport	10. Communications	11. Leisure and culture	12. Hotels and restaurants	13. Other non-durables
1. Food and beverages	-0.109	0.02	-0.009	0.181***	0.216***	-0.079	-0.179***	-0.224***	-0.142**	0.091**	0.170***	-0.379***	-0.272**
2. Alcoholic drinks	0.487	-0.993***	0.104	0.256***	0.715***	-1.959***	-0.281*	-0.806***	0.711***	0.422**	1.852***	-0.874*	-0.645
3. Tobacco	-0.14	0.046	-0.833***	-0.364***	-0.106	0.456	0.556***	-0.027	0.188	0.427***	0.117	-0.61	-0.556
4. Clothing and footwear	0.449*	0.029	-0.120*	-1.011***	-0.404***	0.076	0.042	-0.158**	0.007	-0.053	0.16	-0.462*	0.061
5. Domestic utilities	0.576***	0.067	-0.014	-0.210***	-0.525***	0.118	-0.577***	0.046	0.062	-0.019	0.056	-0.377***	0.258*
6. Household non-durables	-0.784*	-0.489	0.246**	0.135*	0.216	-1.969***	0.944***	-0.176*	-0.058	0.307*	-1.013***	1.468***	-0.375
7. Health	-1.998***	-0.102	0.405***	0.068	-2.356***	1.255***	-0.524***	1.320***	0.253	-1.200***	0.026	-0.252	1.203*
8. Vehicle fuels	-0.925***	-0.109	-0.012	-0. 1 36***	0.021	-0.073	0.569***	-0.159***	-0.032	-0.145*	-0.232*	0.272	-0.011
9. Transport	-0.854***	0.141	0.084	0.046	0.092	-0.022	0.180**	-0.045	-1.090***	0.210**	0.480***	-0.191	0.016
10. Communications	0.522***	0.085	0.197***	-0.015	-0.047	0.277*	-0.651***	-0.176***	0.222**	-0.189***	0.046	-0.334**	-0.530***
11. Leisure and culture	0.746***	0.366	0.041	0.249***	0.025	-0.816***	0.03	-0.375***	0.461***	0.004	-2.253***	1.196***	-1.095***
12. Hotels and restaurants	-1.069***	-0.076	-0.131**	-0.302***	-0.458***	0.496***	-0.047	0.132**	-0.103	-0.187**	0.494***	-0.974***	0.823***
13. Other non-durables	-1.594***	-0.125	-0.257***	0.105**	0.486***	-0.277	0.713***	-0.034	0.002	-0.563***	-1.036***	1.929***	-0.572*

