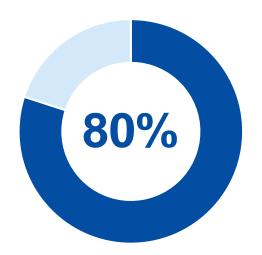


Seismic and energy retrofit of buildings

Overview of the pilot project


Georgios Tsionis European Week of Regions and Cities 20 October 2020

European building stock

European building stock

Buildings in EU constructed before 1990 Buildings in EU located in seismic regions and designed with inferior safety requirements

40%

Buildings in seismic regions that need both energy and seismic retrofit

65%

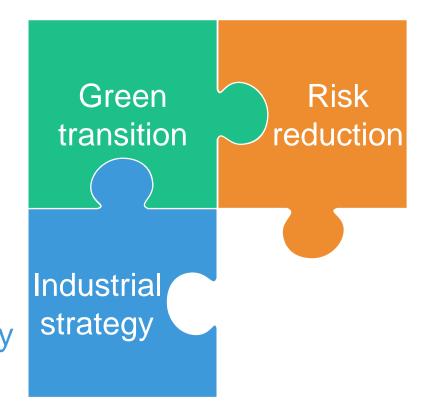
Green Deal

Renovation wave

New European Bauhaus

Energy Performance of Buildings

Policy goals



Policy goals

New Industrial Strategy for Europe New Circular Economy

Action Plan

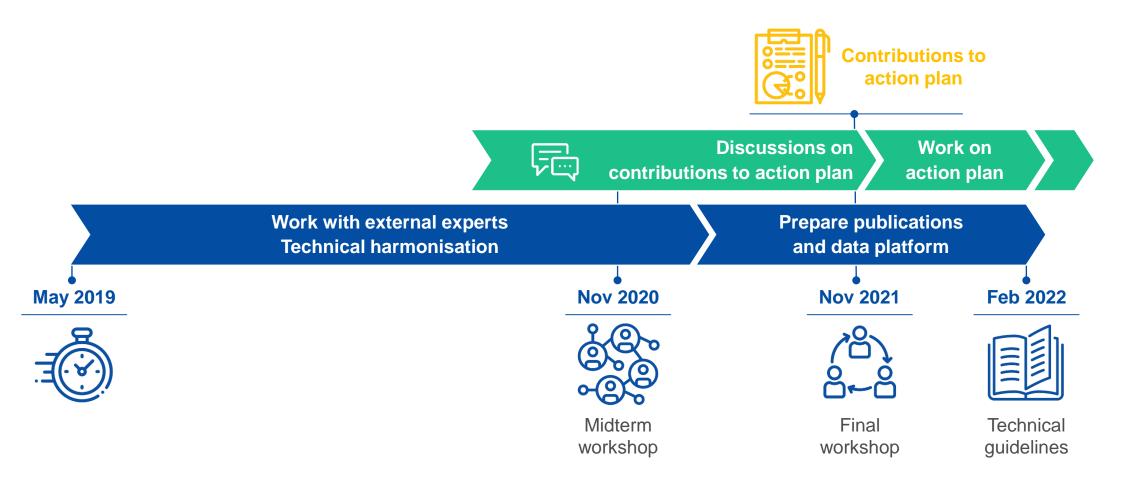
Policy goals

European Pilot Project

Integrated techniques for the seismic strengthening and energy efficiency of existing buildings

Scope

Define solutions that, at the same time and in the least invasive way, can both reduce seismic vulnerability and increase energy efficiency in such a way to produce a significant positive environmental impact



Objectives

- Define tools and guidelines
- Stimulate the use of integrated solutions
- Create awareness
- Increase resilience of the built environment

Timeline

Pilot project actions

Stakeholders' engagement

Action 1

Overview and classification of technologies for seismic strengthening and energy upgrading of existing buildings

Identification of building typologies that require renovation

Review of technology options for the **seismic upgrading** of existing buildings

Review of technology options for the **energy upgrading** of existing buildings

Action 2

Analysis of technologies for combined upgrading of existing buildings

Review of **technology options** for combined seismic and energy upgrading

Analysis of **novel technologies** for combined seismic and energy upgrading

Methodologies for assessing the combined effect of upgrading

Review of **methods to assess improvement** of seismic safety and energy efficiency

Definition of a method for a combined assessment of the upgrading

Implementation of methods on case studies

Action 4

Regional impact assessment and proposals in support of an action plan

Identify **priority regions for renovation** based on risk and socioeconomic indicators

Review implementing measures

Identify and compare scenarios for intervention

Stakeholders' engagement

Involvement during the project through workshops on technical and policy issues

Dissemination and outreach

Open and free data to support regional policies

Output

Building typologies most needing upgrading

Classification of technologies

Selection of best combined renovation technique

Method to assess the benefits gained from integrated retrofit

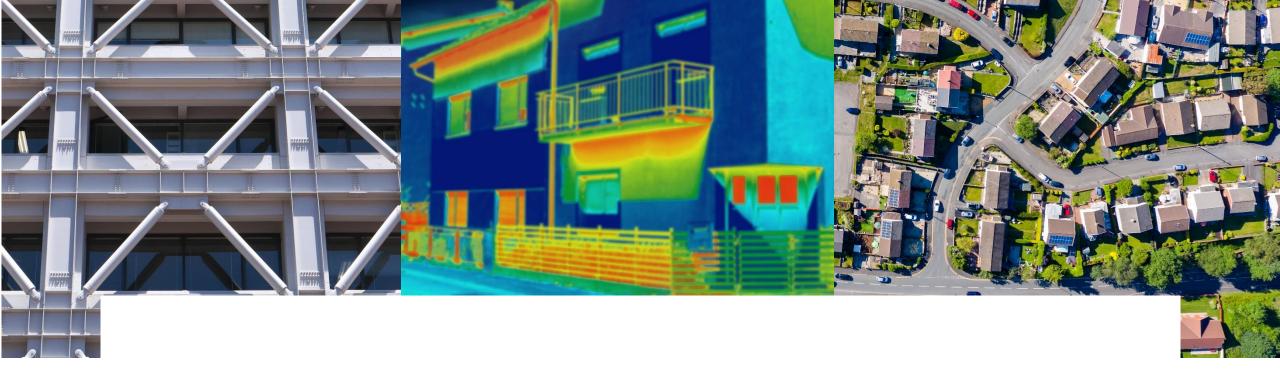
Output

Regions where renovation can achieve highest impact

Retrofit scenarios and impact analysis

Web platform for sharing data, knowledge and best practices

Pilot project workshop, 16-19 November 2020


- **16 Nov** Overview of pilot project and stakeholder's views Regional impact assessment and proposals for an action plan
- **17 Nov** Overview and classification of technologies for seismic strengthening and energy upgrading of existing buildings
- **18 Nov** Analysis of technologies for combined upgrading of existing buildings
- **19 Nov** Methodologies for assessing the combined effect of upgrading Conclusions, recommendations and further steps

The JRC Pilot Project team

Artur Pinto Silvia Dimova Paolo Negro Georgios Tsionis **Dionysios Bournas** Konstantinos Gkatzogias **Daniel Pohoryles** Elvira Romano Maria Luisa Sousa Desislava Strezova Martin Poljansek Maria Fabregat

@EU_ScienceHub @Euinmyregion #EURegionsWeek

JRC-REEBUILD@ec.europa.eu

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide 2: (left to right) Jorge Vidal, @unsplash.com; smuki, ©stock.adobe.com; Angelo Giordano, Pixabay; Slide 8: Chlorophylle, ©stock.adobe.com; Slide 9: Zigmunds, ©stock.adobe.com; Slide 10: kokliang1981, ©stock.adobe.com; Slide 12: (top left & counter clockwise) gheatza, ©stock.adobe.com; blankstock, ©stock.adobe.com; ylivdesign, ©stock.adobe.com (x2 images); blankstock, ©stock.adobe.com; Slide13: (top to bottom) gheatza, ©stock.adobe.com (x2 images); Artco, ©stock.adobe.com; Slide 14: (top to bottom) Arcto, ©stock.adobe.com; blankstock, ©stock.adobe.com; Slide 15: (top to bottom) blankstock, ©stock.adobe.com (x2 images); Arcto, ©stock.adobe.com; Slide 16: (top to bottom) ylivdesign, ©stock.adobe.com; Tsvetina, ©stock.adobe.com; Slide 17: (top to bottom) ylivdesign, ©stock.adobe.com (x2 images); blankstock, ©stock.adobe.com; Slide 22: (left to right) Khun Ta, ©stock.adobe.com; smuki, ©stock.adobe.com; whitcomberd, ©stock.adobe.com

