robROSE

An approach for dealing
with imbalanced data in
fraud detection

Sebastiaan Hoppner

joint work with
Iréne Ortner, Bart Baesens & Tim Verdonck

Benford’s Law

II......_ Conference
10-12 July 2019 - Stresa, Italy




Credit transfers

Initiator Channels Payment Beneficiary
Engine
Ol ]

i




Hacking

|



Hacking

Step 1: the fraudster
installs malware on the
’ customer’s device
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Hacking

Step 2: when the customer
uses their device, the fraudster

’ steals their credentials ’
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Hacking

Step 3: the fraudster uses the
stolen credentials to book a

fraudulent credit transfer ‘
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Phishing / vishing
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Phishing / vishing

Step 1: a fraudster tricks a customer ‘

into sharing their credentials ‘




Phishing / vishing

Step 2: the fraudster uses the stolen ‘
credentials to book a fraudulent
credit transfer
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CEO fraud

Step 1: the fraudster impersonates
the CEO and convinces an
employee to book a credit transfer
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CEO fraud

Step 2: the deceived employee
‘ books the fraudulent credit transfer ‘
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Problem: imbalanced data

* Binary classification
legitimate vs fraud
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Problem: imbalanced data

* Binary classification
legitimate vs fraud

(_ongra"’uiafioﬂs; X
it only took you

* Imbalanced data 65299 seconds JERCIS
(very) large difference in number of '
observations of both groups

* Credit card fraud
less than 1 out 10m transactions
(< 0.00001%)

* Typically very few “cases of interest”
compared to legitimate observations
(20% - 0.01%)




Original data




Logistic regression




Classification tree (CART)
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“How to reduce imbalance in training data?”

Reduce # legitimate cases Increase # fraud cases
* Random under-sampling: e Random over-sampling:
randomly sub-sample sampling with replacement
legitimate cases of fraud samples

* Generate synthetic
minority/fraud cases



“How to reduce imbalance in training data?”

Reduce # legitimate cases Increase # fraud cases
* Random under-sampling: e Random over-sampling:
randomly sub-sample sampling with replacement
legitimate cases of fraud samples
* Generate synthetic
minority/fraud cases

Evaluate model on imbalanced “original” test data !!!




SMOTE -
Synthetic Minority Over-sampling Technique

Chawla, Bowyer, Hall & Kegelmeyer (2002)
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ROSE - Random Over-Sampling Examples

Menardi & Torelli (2014)
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ROSE - Random Over-Sampling Examples

1. Randomly select an observation x; from the minority group

2. Estimate normal density distribution N (x;, H)
o selected observation x; as center
o smoothing matrix H = diag(h4,...,hy)
1/(d+4)

hq=((d_f2)n) 6, (q=1,...,d)

0, = sample standard deviation of g-th variable of minority group

3. Generate a new observation from this normal density estimate
Menardi & Torelli (2014)
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Robust ROSE

* [dentify “outlying” minority cases based on Mahalanobis distance (MD)
using the robust MCD! estimator

1 Rousseeuw and Van Driessen (1999)



Robust ROSE

* [dentify “outlying” minority cases based on Mahalanobis distance (MD)
using the robust MCD! estimator

* Synthetic cases generated only for minority cases x; with
MD?(x;) < x5(1 — ), e.g. « = 1% =>» “non-outlying” minority cases

1 Rousseeuw and Van Driessen (1999)
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probability o< 1 / (shortest distance from x; to majority case)
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Robust ROSE

1. Select x; from the “non-outlying” minority group with
probability o< 1 / (shortest distance from x; to majority case)

2. Estimate normal density distribution N (x;, H)
o selected observation x; as center
o smoothing matrix H = MCD covariance matrix estimate on
“non-outlying” minority group

3. Generate a new observation from this multivariate normal density



robROSE
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source: kaggle.com, made available by Andrea Dal Pozzolo et al., Calibrating Probability with Undersampling for
Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015

* Transactions made in two days by credit cards in September 2013
by European cardholders

e 497 frauds out of 284,807 transactions = 0.172% is fraud
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TP
P+FP

Out of all cases classified as

fraud, how many are actually
fraud?

* Precision =

IV
P+FN

Out of all fraud cases, how
many are detected?
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e Recall =
T

e Evaluation measure:
area under precision-recall curve Recall
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58.88% 67.52% 67.52% 68.45%
Logit SMOTE + Logit ROSE + Logit robROSE + Logit
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AUC-Precision-Recall curve (%

68.61%
SMOTE + CART

71.16%
ROSE + CART

71.29%
rooROSE + CART




Thank you

SMOTE
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