robROSE

An approach for dealing with imbalanced data in fraud detection

Sebastiaan Höppner

joint work with Iréne Ortner, Bart Baesens & Tim Verdonck

10-12 July 2019 - Stresa, Italy

Credit transfers

Hacking

Hacking

Hacking Step 2: when the customer uses their device, the fraudster steals their credentials

Hacking

Phishing / vishing

Phishing / vishing

Step 1: a fraudster tricks a customer into sharing their credentials

Phishing / vishing

CEO fraud

CEO fraud

Step 1: the fraudster impersonates the CEO and convinces an employee to book a credit transfer

CEO fraud

• Binary classification legitimate vs fraud

- Binary classification legitimate vs fraud
- *Imbalanced data* (very) large difference in number of observations of both groups

- Binary classification legitimate vs fraud
- *Imbalanced data* (very) large difference in number of observations of both groups
- Credit card fraud less than 1 out 10m transactions (< 0.00001%)

- Binary classification legitimate vs fraud
- Imbalanced data (very) large difference in number of observations of both groups
- Credit card fraud less than 1 out 10m transactions (< 0.00001%)
- Typically very few "cases of interest" compared to legitimate observations (20% - 0.01%)

Original data

Classification tree (CART)

Reduce # legitimate cases

Increase # fraud cases

Reduce # legitimate cases

 Random under-sampling: randomly sub-sample legitimate cases

Increase # fraud cases

- Random over-sampling: sampling with replacement of fraud samples
- Generate synthetic minority/fraud cases

Reduce # legitimate cases

 Random under-sampling: randomly sub-sample legitimate cases

Increase # fraud cases

- Random over-sampling: sampling with replacement of fraud samples
- Generate synthetic minority/fraud cases

Evaluate model on imbalanced "original" test data!!!

SMOTE -Synthetic Minority Over-sampling Technique

Chawla, Bowyer, Hall & Kegelmeyer (2002)

SMOTE

1. Randomly select an observation $oldsymbol{x}_i$ from the minority group

- 1. Randomly select an observation $oldsymbol{x}_i$ from the minority group
- 2. Estimate normal density distribution $\mathcal{N}(x_i, H)$

- 1. Randomly select an observation x_i from the minority group
- 2. Estimate normal density distribution $\mathcal{N}(x_i, H)$
 - \circ selected observation x_i as center

- 1. Randomly select an observation x_i from the minority group
- 2. Estimate normal density distribution $\mathcal{N}(\mathbf{x}_i, H)$
 - \circ selected observation x_i as center
 - \circ smoothing matrix $H = diag(h_1, \dots, h_d)$

$$h_q = \left(\frac{4}{(d+2)n}\right)^{1/(d+4)} \hat{\sigma}_q \quad (q = 1, ..., d)$$

 $\hat{\sigma}_a$ = sample standard deviation of q-th variable of minority group

- 1. Randomly select an observation $oldsymbol{x}_i$ from the minority group
- 2. Estimate normal density distribution $\mathcal{N}(x_i, H)$
 - \circ selected observation x_i as center
 - \circ smoothing matrix $H = diag(h_1, \dots, h_d)$

$$h_q = \left(\frac{4}{(d+2)n}\right)^{1/(d+4)} \hat{\sigma}_q \quad (q = 1, ..., d)$$

 $\hat{\sigma}_a$ = sample standard deviation of q-th variable of minority group

- 1. Randomly select an observation x_i from the minority group
- 2. Estimate normal density distribution $\mathcal{N}(x_i, H)$
 - \circ selected observation x_i as center
 - \circ smoothing matrix $H = diag(h_1, \dots, h_d)$

$$h_q = \left(\frac{4}{(d+2)n}\right)^{1/(d+4)} \hat{\sigma}_q \quad (q = 1, ..., d)$$

 $\hat{\sigma}_q$ = sample standard deviation of q-th variable of minority group

3. Generate a new observation from this normal density estimate

ROSE (h.minor = 1) (default)

ROSE (h.minor = 0.15)

Identify "outlying" minority cases based on Mahalanobis distance (MD) using the robust MCD¹ estimator

- Identify "outlying" minority cases based on Mahalanobis distance (MD) using the robust MCD¹ estimator
- Synthetic cases generated only for minority cases x_i with $MD^2(x_i) < \chi_d^2(1-\alpha)$, e.g. $\alpha = 1\%$ "non-outlying" minority cases

1. Select x_i from the "non-outlying" minority group with probability $\propto 1$ / (shortest distance from x_i to majority case)

- 1. Select x_i from the "non-outlying" minority group with probability $\propto 1$ / (shortest distance from x_i to majority case)
- 2. Estimate normal density distribution $\mathcal{N}(x_i, H)$
 - \circ selected observation x_i as center
 - \circ *smoothing* matrix H = MCD covariance matrix estimate on "non-outlying" minority group

- 1. Select x_i from the "non-outlying" minority group with probability $\propto 1$ / (shortest distance from x_i to majority case)
- 2. Estimate normal density distribution $\mathcal{N}(x_i, H)$
 - \circ selected observation x_i as center
 - \circ *smoothing* matrix H = MCD covariance matrix estimate on "non-outlying" minority group
- 3. Generate a new observation from this multivariate normal density

robROSE

Credit Card Fraud Detection

Anonymized credit card transactions labeled as fraudulent or genuine

source: kaggle.com, made available by Andrea Dal Pozzolo et al., Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015

- Transactions made in two days by credit cards in September 2013 by European cardholders
- 497 frauds out of 284,807 transactions ⇒ 0.172% is fraud

• Precision =
$$\frac{TP}{TP+FP}$$

Out of all cases classified as fraud, how many are actually fraud?

• Recall =
$$\frac{TP}{TP+FN}$$

Out of all fraud cases, how many are detected?

 Evaluation measure: area under precision-recall curve

Thank you

SMOTE

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.

ROSE

Giovanna Menardi and Nicola Torelli. Rose: random over-sampling examples. *Data Mining and Knowledge Discovery*, 28(1):92–122, 2014.