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Technological diffusion as a recombinant process1 

 

Petros Gkotsis and Antonio Vezzani 

European Commission, Joint Research Centre, Seville, Spain 

 

 

Abstract 

In this work we analyse patterns of technological development using patent applications 

at the United States Patent and Trademark Office (USPTO) over the 1973-2012 period. 

Our study focuses on the combinations of technological fields within patent documents 

and their evolution in time, which can be modelled as a diffusion process. By focusing on 

the combinatorial dimension of the process we obtain insights that complement those 

from counting patents. Our results show that the density of the technological knowledge 

network increased and that the majority of technological fields became more 

interconnected over time. We find that most technologies follow a similar diffusion path 

that can be modelled as a Logistic or Gompertz function, which can then be used to 

estimate the time to maturity defined as the year at which the diffusion process for a 

specific technology slows down. This allows us to identify a set of promising technologies 

which are expected to reach maturity in the next decade. Our contribution represents a 

first step in assessing the importance of diffusion and cross-fertilization in the 

development of new technologies, which could support the design of targeted and 

effective Research & Innovation and Industrial policies.  
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1 We are grateful to Alex Coad and the participants of the Eurkind #GCW2016 Conference 
"Innovation, Employment, the Environment" (Valencia, 2016) and the 16th Schumpeter Conference 
on Evolutionary Economics (Montreal, 2016) for their useful insights and comments. We are 
responsible for any omission or remaining mistake. This Working Paper is issued in the context of 
the Key Enabling and Emerging Technologies for Competitiveness (KeyTEC) activities, carried 
out by the European Commission's Joint Research Centre (JRC). 
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1. Introduction 

 
In the Schumpeterian system, business cycles are related to the occurrence of 

innovations in time (Schumpeter, 1939). Innovations tend to appear in clusters that 

shape technological development and the way the economy works. However, an 

explanation of the way new technologies emerge was beyond the scope of 

Schumpeter's work and as a result the way these clusters arise is still undetermined. 

Recently, in an attempt to foresee the occurrence of new innovation waves, a growing 

body of innovation literature focused on the emergence of new technologies. A 

common understanding on what an emerging technology is, and how it can be 

detected, has not been reached yet. However, the relative fast rate of growth of a 

technology (or scientific field) is one of the most frequent attributes considered as a 

condition for emergence (Rotolo et al., 2015). Nevertheless, recent contributions 

recognize the importance of looking at the co-development of technologies as well 

(e.g. Dernis et al., 2015). Verhoeven et al. (2016) highlight the superior performance of 

patents combining IPC codes which had never been combined before; recombining 

knowledge in original ways may lead to superior innovative performances.  

The idea of knowledge recombination can be traced back to Weitzman, who described 

innovation as an endogenous combinatoric process where new knowledge is created 

by re-combining previous one. Thus, the number of possible "untried combinations of 

existing ideas eventually grows much faster than anything else in the economy" 

(Weitzman, 1996 p.211), but the capacity of exploring and realizing new combinations 

grows at a much lower pace, constraining the knowledge generation process (and 

growth). Despite the interest on this idea, an analysis of its actual features is still 

missing. Indeed, the focus of the new micro-level studies has been largely on the 

cognitive dimension of knowledge recombination. For example, Gruber et al. (2013) 

analyse the relation between the inventors backgrounds (scientist or engineer) and 

their capacity to produce inventions spanning over a broader set of technologies, 

while Jones (2008) discussed the possible educational burdens posed by the 

increasing technological complexity. 

In a knowledge recombination framework, the more a technology is combined with 

others the greater its importance within the overall production of new knowledge. As 

a result, the probability for a technology to emerge could be related to its diffusion in 

the technological development process. Therefore, insights on the characteristics of 

technological diffusion in the knowledge space may provide a basis to better 

understand how technologies emerge. Here diffusion is seen as a time dependent 

stochastic process causing a spread of a specific technology in the knowledge space. In 

this respect, diffusion should be understood differently from the concept of 

"innovation diffusion" (Rogers, 1983), which represent the common understanding in 

innovation studies. For us diffusion is an attribute defining the spread of technologies 

from a "production" rather than an adoption point of view. Understanding the 

combinatorial dimension of technological diffusion will shed new light on 

technological development. In what follows we will analyse the degree of integration 

of different technologies in the knowledge base relying on the standard technological 

classification used to classify patent documents. 
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2. Recombinant knowledge and technological diffusion  

 
Technological competition has become global and the race for the top has moved from 

the control of natural resources to the development of high technology products 

allowing pushing further the technological frontier. Technological competition has 

increased and the rate of patenting invention increased drastically since the nineties. 

This attracted the attention of academics and policy makers because understanding 

technological development and forecasting new promising (emerging) technologies is 

key to designing targeted interventions - especially in case of limited resources - 

aiming at fostering countries' competitiveness.  

Despite the interest they have attracted from the research community, a consensus of 

what emerging technologies are, has not been reached yet. For example Porter et al. 

(2002) stressed the potential impact of emerging technologies on the economy, while 

others focused on the uncertainty characterizing the process of emergence (Boon and 

Moors, 2008) or on their  novelty and growth potential (e.g. Small et al., 2014). 

Recently, Rotolo et al. (2015) contributed to the discussion by proposing a framework 

to conceptualize emerging technologies. In their view, these share five basic 

characteristics: radical novelty; fast growth; coherence; potential socio-economic 

impact; uncertainty.  

Clearly, in order to grow fast (or faster than others), technologies should be developed 

and adopted by an increasingly large number of inventors and users. In this respect 

emergence is intrinsically related to the concept of diffusion, which in economics dates 

back to 1957 when Griliches analysed the diffusion of hybrid corns based on epidemic 

models. Mansfield (1963) discussed the rates at which a firm adopting new techniques 

proceeds to substitute old ones with these new ones and concluded that in order for 

economies to benefit from innovation, the diffusion process should proceed at a 

sufficiently fast pace. As pointed out by Dosi (2013) the basic forces driving 

technological diffusion are the spread of information/knowledge and the expectation 

of profits, while development/adoption costs and the uncertainty surrounding new 

technologies represent barriers to diffusion. Rogers defines diffusion as "the process by 

which an innovation is communicated through certain channels over time among the 

members of a social system. It is a special type of communication, in that the messages 

are concerned with new ideas." (Rogers, 1983 p.5). In his view, time is a crucial element 

when analysing the diffusion of knowledge or new ideas. The rate of adoption here is 

understood as the speed at which an innovation is adopted by members of a social 

system. 

Given that innovations are linked, to a certain extent, to patents, this conceptualization 

of the innovation diffusion process could lead to an assessment of technological 

performances based on different metrics based on patent counts. However, this 

approach can be affected by differences in patent propensity across industries, 

products and time. For example the iPhone - introduced in 2007 - was protected with 

a bundle of about 200 patens, while the Airbus filed around 380 patents during the 

development of the A380 (commercialized in the same year). In 2013 Apple held more 
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than 1300 patents for the iPhone5 and its related software.2 An alternative approach 

is to rely on information contained in patent documents in order to build metrics 

measuring the number of combinations of distinct technologies in the knowledge 

space.  

In fact, innovation can be understood as an endogenous combinatoric process where 

new knowledge is created by re-combining previous one (Weitzman, 1996). According 

to Weitzman (1998) new knowledge builds itself upon combining existing knowledge 

in useful ways non-previously conceived. An analogue to the production of new ideas 

from the biological field is the development of new plant varieties by cross-pollinating 

existing ones. In this view, the technological discontinuities characterizing the rising of 

new technological paradigms (Dosi, 1982 1988) may be seen as part of the cumulative 

knowledge process, representing novel ways of combining existing knowledge. 

In this view technological change can be seen as a macro process driven by the 

diffusion of specific technologies in the technical knowledge space via the formation of 

new (successful) technological combinations at the micro scale (e.g. patent document 

level). In other words, the focus shifts on the extent to which a given technology is 

combined with others to give rise to new applications. Diffusion therefore could be 

observed in the (increasing) number of ways a given technological field is combined 

with others.  

This conceptualization of the knowledge creation process could be also linked to the 

idea of cross-fertilization of technologies in the development of new products. Patent 

analysis is particularly suitable in this framework, because patents are linked to the 

creation of new (technical) knowledge and can be seen as precursors of new 

products/processes. Moreover, Dernis et al. (2015), comparing publication and patent 

data, found that in some cases the acceleration in the development of science may 

follow the acceleration in the development of technologies. The authors also 

highlighted the importance of cross-fertilisation of scientific domains in identifying the 

emergence of new technologies.  However, taking into account the uncertainty 

involved in the technological development (Martino, 2003) especially in the case of 

technologies at their infancy, an ex-ante identification of (successful) new technologies 

could represent a prohibitive task. Given the difficulties in forecasting emerging 

technologies, developing a methodology to identify those technologies closer to the 

maturity phase is of great importance for the support of the policy process. These 

technologies are expected to drive economic growth in the medium term.  

In this work, we attempt to contribute to the discussion on technological development 

by analysing the spread of technologies in "knowledge production".  Our point of 

departure is the combination of technological fields in patent documents and their 

evolution over time. In other words, we start from the co-occurrences of technologies 

(IPC codes) within patent documents to analyse the degree of interconnection of each 

specific technology in the technological knowledge base.  Co-occurrences of 

technologies in patent documents have been already used in the literature (Breschi et 

al., 2003; Bar and Leiponen, 2012) to compute relatedness or distance between 

technologies. However, this approach does not take into account the dynamic nature 

                                                           

2 For more information: http://www.ipeg.com/intellectual-property-in-our-daily-lives. 

http://www.ipeg.com/intellectual-property-in-our-daily-lives
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of the knowledge creation process, where a technology may change its relatedness (or 

position) with the rest of the system because of diffusion. Probably, the papers closer 

to ours are those of Krafft et al. (2011) - where network analysis measures were 

applied to study the knowledge base evolution of biotechnologies – and Youn et al. 

(2015) which attempt to provide a quantitative characterization of the combinatorial 

process underpinning inventive activity, with a focus on the combinations that have 

been already realized among the theoretically possible ones. Our rationale is that the 

increase of combinations mirrors the increasing importance of a specific technological 

field in the development of new technological applications and possibly of new 

technological knowledge as well. 

 
 

3. Data and methodology  

 
We analyse the technological development using patent applications at USPTO over 

the last 40 years (1973-2012). USPTO was chosen due to the availability of data 

covering a long period of time, not available in other large Intellectual Property 

Offices. The choice of applications over granted patents is due to the lag in granting 

that limits the availability of data in the recent years. Until 2000, the proportion of 

granted applications was around 90%. However, the recent surge in patent filings 

resulted in a longer lag between application and granting year, this in turn drastically 

lowered the share of granted patents in most recent years (to 60% in 2010). 

In order to study how the combinations of technological fields evolve along time, we 

use some simple metric from the network analysis theory. In particular, for each year 

considered we build network graphs using the International Patent Classification 

(IPC) technological classes at the four digit level as nodes and their co-occurrences 

within patent documents as edges.3 

From these networks we then compute the degree of node 𝑖, 𝑑(𝑛𝑖), which counts the 

number of ties (connections) incident on a node (IPC class).4 The degree of a node 

measures the activity of the entity it represents (Wasserman and Faust, 1994) and can 

be interpreted as a measure of the immediate risk/probability that a distinct 

technology becomes relevant for the rest of the network.  In this way we can 

investigate how different technological solutions emerge, diffuse, grow and decline 

over time. Indeed, although we focus on technological diffusion by monitoring the 

number of connections between the nodes of the network (the degree), we also 

consider the growth dimension in terms of patent filings.  

                                                           

3 In network analysis, the structure of a network is characterized in term of nodes (the entities 
within the network) and ties or edges (relationships or interactions) that connect them. 
4 Although more sophisticated network measures are available, we opted for the degree because of 
its simplicity and fitness with the concept discussed in the paper. We are aware that the degree may 
suffer from 'spurious' co-occurrences, but we expect that even if this is the case, these to co-
occurrences would disappear in the following year. Moreover, 'spurious' co-occurrences may 
represent unsuccessful combinations and we cannot exclude them a priori.     
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Our focus on the degree of a technology in the technical knowledge network and its 

evolution over time closely resembles the diffusion process as generally understood in 

the innovation literature. The adoption of innovations by consumers/firms has been 

analysed as a diffusion process by a number of researchers (e.g. Rogers, 1983; 

Rosenberg, 1976) who have highlighted a number of stylized facts recently reviewed 

and discussed by Dosi and Nelson (2013); these are also relevant in this case.   

Diffusion is a time dependent process that can generally be represented by s-shape 

curves. The shape of the curve is defined by the rate of adoption, which may vary 

greatly among technologies; some new ideas diffuse relatively rapidly, showing a quite 

steep s-curve. However, only some innovations succeed in diffusing and among them 

there are some with very asymmetric profiles. In other words, innovations show very 

different lag profiles between their introduction and the start of the diffusion. The 

analysis of our processed data reveals similar behaviours for the technological fields 

represented by the IPC classes. 

In order to analyse the diffusion process of technologies, we fit the evolution of their 

degree by using two different functional forms. In particular we use and compare the 

logistic (L) and the Gompertz (G) functions. These distributions have been normally 

used in the diffusion literature because of their suitability to fit s-shaped processes. 

However, differently from the Logistic, the s-shaped curve from the Gompertz function 

is not symmetric around its inflection point, where the concavity changes (Berger, 

1980). In other words, the Gompertz function is more appropriate to fit asymmetric 

diffusion processes.  

The logistic and Gompertz curves could be written as: 

𝐿(𝑡) =  
𝐷

1+𝑎∗𝑒𝑥𝑝−𝑠1(𝑡−𝑡0)   and   𝐺(𝑡) =  𝐷𝑒−𝑏∗𝑒𝑥𝑝−𝑠2𝑡
, with   𝑙𝑖𝑚𝑡→∞𝐿(𝑡), 𝑙𝑖𝑚𝑡→∞𝐺(𝑡) = 𝐷 

where 𝑠1and 𝑠2represent the steepness (or growth paramenter) of the curve, t is the 

time (with 𝑡𝑜 representing the sigmoid's midpoint), a and b are two constants. Finally, 

D represents the maximum possible degree for a given technology. Estimating 

maximum values in diffusion processes is a notoriously difficult problem; in this case 

the two most straightforward values for D are represented by the theoretical and 

empirical maximum degree of the network. The former is represented by the number 

of existing IPC4 codes (642), while the latter is represented by the highest degree 

observed in the data (465). An alternative approach would be to let D as an additional 

parameter to be estimated; however our tests have shown that for a number of IPC4 

this would result in D values much higher than the possible theoretical maximum. 

Given this and the non-linear nature of the problem which requires initial guesses for 

the parameters, we decided to set D equal to 465 in order to reduce the uncertainty 

related to the initial choice of the parameters.5 The choice resulted in a more reliable 

distribution of the estimated parameters.    

                                                           

5 The maximum empirical degree (465) was observed in 2004 for code G06F. We have tested both 
maximum values (empirical and theoretical) and the results of the estimations do not differ 
significantly. The time to maturity is slightly longer when assuming that all technologies will finally 
become fully interconnected. 
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By comparing the goodness of fit obtained from the different functional forms, we are 

able to choose which one is the most appropriate for each specific IPC4. Once the 

functional form has been selected, we can derive our estimates for the current rate of 

the diffusion process and the time to maturity. The former is computed as the first 

derivative of the function in the last year of observation, 2012. The first derivative 

provides the slope of the function, measuring the rate of change of the degree: the 

number of new IPC codes combined with a given IPC code in 2012. The latter is 

instead obtained by projecting the functional form from 2013 on and computing the 

second derivative of the function in each year. The second derivative measures how 

the rate of change is itself changing, therefore a value lower than zero indicates that 

the process decelerates. We classify a technology as mature in the year when the 

second derivative is negative for the first time. By doing so we define a technology as 

mature when its diffusion process decelerates, meaning that it can still continue to 

diffuse (albeit at a slower pace) and, most important, to give economic returns since 

we do not link technological diffusion/maturity with market performances. 

 
 

4. Results and discussion  

 

4.1 Describing the diffusion process 

The number of active IPC codes in USPTO has slightly increased during the period of 

analysis. In 1973, 619 different IPC4 codes have been used within patent documents; 

this number has reached its maximum value (632) in 2004 to slightly decrease since 

then to 626 in 2012. This change in the number of network nodes would suggest using 

the normalized degree6 to compare data between different years. However, the change 

in IPC codes is rather small and the correlation between the degree and the 

normalized degree is extremely high (0.999). Therefore, we decided to present degree 

statistics that allow to better understand the actual dimension of the phenomenon 

under study. Figure 1 shows the number of patents filed at the UPSTO each year 

between 1973 and 2012 (left axis), together with the mean degree of the 

corresponding IPC4 network (right axis). Over the years both the mean degree and the 

total number of patents have increased. However, after 2004 the two seem to diverge: 

while patent filings decreased between 2004 and 2008 to then recover, mean degree 

experienced a big drop between 2004 and 2006 and then stagnated. 

The drop in the mean degree is unexpected and followed a long period during which 

the density of the technology network steadily increased. This result would suggest 

that the complexity of the technological knowledge generation process was limited in 

recent years. However, such a conclusion would require additional and more specific 

evidence. Moreover, we should point out that this fact coincided with the end of the 

                                                           

6 The normalized degree is obtained by dividing the degree by the number of network nodes minus 
one; this allows comparisons among networks of different sizes.  
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reform period for the last update of the IPC classification, although after each revision 

of the classification patent documents are reclassified accordingly.7  

 

Figure 1: Patent applications and mean degree of IPC codes  

 
Note: authors' calculations on USPTO data, 1973-2012. 

 
 
At the IPC4 level the correlation between patent filings and degree is not particularly 

strong (0.487). In order to test for predictive causality between the two data series 

(Diebold, 2001), we ran a Granger causality test (Granger, 1969) on the annual 

changes of the degree (∆d) and number of patents (∆p) for each IPC4 code. In 58.4% of 

cases the null hypothesis that ∆p (∆d) does not Granger-cause ∆d (∆p) cannot not be 

rejected at the usual 5% significant level; for these technologies lagged changes in 

diffusion are not statistically related with present changes in patent applications, and 

vice versa. For 21.8% of technologies ∆d “Granger-causes” ∆p but not the other way 

round. In 11.4% of cases ∆p “Granger-causes” ∆d and, finally, in the remaining 8.4% of 

cases we find evidence of Granger causality in both directions. These results suggest 

that our approach of introducing a social network perspective in the analysis of patent 

data complements patent counting statistics providing additional insights for the 

understanding of the technological diffusion process. 

Our results suggest that the majority of IPC codes have increased in degree over the 

period considered. The average value of change in degree is 1.048, the median is 

0.718, implying an increase in the complexity of technologies developed during the 40 

years considered (figure 2). Only about 10% of IPC classes experienced a decrease in 

their degree. Moreover, the distribution is right skewed, with a few technologies 

diffusing much more than the rest. 

 

 

                                                           

7 The transitional revision period started in 1999 and in 2005 the basic period of reform was 
completed.  
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Figure 2: Average degree changes of IPC codes distribution 

 
Note: authors' calculations on USPTO data, 1973-2012. 

 
The increased density of the network of IPC4 codes, which is linked to an increase in 

complexity of technologies/applications over time, is evident in figures 1 and 2. This is 

the result of a general increase in complexity for most technological fields, with a small 

number of technologies experiencing a particularly high increase. For illustration 

purposes we report the 10 technological fields with the highest average degree 

increase in figure 3. It is interesting to note that 5 among these 10 technologies are 

related to machinery and material development and testing (b23p, b32b, b82y, b05d, 

f16m)8, 2 directly linked to data processing (g06f, g06q), 2 to medical applications 

(a61m, a61b) and one to electronics/electric components manufacturing (h05k). 

Our top technological fields partly overlap with those reported as bursting by Dernis 

et al. (2015). However, the focus there was on the acceleration in the co-development 

of patented technologies given by the number of patents related to specific IPC4 (or 

                                                           

8 G06f – Electric digital data processing; B32b – Layered products [i.e. products built-up of strata of 
flat or non-flat (e.g. cellular or honeycomb) form]; B23p – Other working of metal; combined 
operations; universal machine tools; B82y - Specific uses or applications of nano-structures; 
measurement or analysis of nano-structures manufacture or treatment of nano-structures; B05d - 
Processes for applying liquids or other fluent materials to surfaces, in general; H05k - Printed 
circuits; casings or constructional details of electric apparatus; manufacture of assemblages of 
electrical components; G06q - Data processing systems or methods, specially adapted for 
administrative, commercial, financial, managerial, supervisory or forecasting purposes; systems or 
methods specially adapted (same); F16m - Frames, casings, or beds, of engines or other machines 
or apparatus, not specific to an engine, machine, or apparatus provided for elsewhere; stands or 
supports; A61m - Devices for introducing media into, or onto, the body (...); devices for transducing 
body media or for taking media from the body (…); devices for producing or ending sleep or stupor; 
A61b - Diagnosis; surgery; identification. 
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IPC7) pairs. Moreover, the unit of analysis in their study was the IP5 Patent families9 

rather than USPTO patent.  

 

Figure 3: The 10 IPC codes with the highest average change in degree  

 
Note: authors' calculations on USPTO data, 1973-2012. 

 
What is common in patent literature and in studies to support policy making is to 

count patents per IPC code as a metric to assess technological performances. However, 

this approach can be affected by differences in patent propensity across industries. In 

particular, the patent propensity, measured by the number of patents over R&D 

investments, largely depends on the costs associated to the development of new 

applications. We argue that our method, by focusing on the connections among 

technologies should be less prone to such type of bias. Here we perform a simple test 

to demonstrate the differences between the two approaches. For this test, we rank 

IPC4 codes according to the average increase in degree and number of patents over 

the last forty years.  The top 10% of codes from the two rankings are then selected to 

count the number of occurrences for each IPC1 class; the relative number of 

occurrences (share) is presented in figure 4.    

Fractional counting of patents results in the high growth of "Physics" and "Electricity" 

related codes (generally understood as information and communication technologies, 

ICT), with more than 50% of high growth codes belonging to these 2 categories. 

Considering high diffusing codes provides very different insights: "Human necessities" 

and "Performing operations; Transporting" (which includes materials) are the 

categories that stand out from the others. 

 

 

 

                                                           

9 IP5 Patent families are defined as families of patents filed in at least two IPOs, one of which should 
be amongst the top patenting offices worldwide: European Patent Office (EPO), Japan Patent Office 
(JPO), Korean Intellectual Property Office (KIPO), United States Patent and Trademark Office 
(USPTO), State Intellectual Property Office of the People’s Republic of China (SIPO). 
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Figure 4: Distribution of top 10% growing codes aggregated at IPC1 level  

Degree average growth versus patent application average growth 

 
Note: authors' calculations on USPTO data, 1973-2012.         
                                                                                                                                                                                                                                                                                                                                            
A large part of technological development (which also led the ICT revolution) is 

related to the development of new materials and apparatus. This is also reflected by 

the stronger focus put on developing new medical instruments in the recent decades. 

 

4.2 Fitting the diffusion process 

In this section we first compare the results obtained by fitting the diffusion paths with 

the logistic and Gompertz distributions and then discuss the level of maturity 

expressed by the time to maturity of each IPC code. In particular, we fit the empirical 

data at the IPC4 level with both functional forms and then select the appropriate one 

on the basis of the goodness of fit; because the number of estimated parameters in the 

same for both (two), we select the functional form which provide the lowest residual 

sum of squares (RSM). Some tests to select between the two distributions have been 

proposed (e.g. Frances, 1994), however they assume that data has a monotonic 

behaviour, which is not the case for many of the IPC4 codes. 

The results of our test show that the Gompertz is more appropriate in 53% of cases, 

while the Logistic should be preferred in the remaining 47%. However, it is also 

interesting to note that the correlation between the year of maturity from the two 

functions is very high (𝜌 = 0.926) and both yield the same year of maturity in 15% of 

cases.  

Table 1 shows descriptive statistics in order to compare between the two functional 

forms and to assess the overall results obtained by systematically selecting the best 

fitting function (BestFit). Times to maturity obtained from the Logistic tend to be 

longer than those estimated with the Gompertz. This is particularly evident when 

considering the tenth percentile (p10) of the time to maturity distribution: in case of 

the logistic the corresponding value is positive (not yet mature), while in the 
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Gompertz case it is negative suggesting that at least 10% of technologies have already 

reached their maturity phase. In both cases there is a number of technologies for 

which the time to maturity is estimated at 157, this is due to the fact that we compute 

diffusion patterns over a theoretical period of 200 years. For technologies with a 

flat/decreasing diffusion profile it is not possible to estimate a maturity year and 

therefore this is set equal to 157.10 However, the times to maturity obtained from the 

Gompertz show higher variability than those obtained from the Logistic. By 

systematically selecting the best fitting curve we balance the results from the two 

curves.   

The goodness of fit is particularly good, with an average R-squared above 0.9 for both 

the Logistic and the Gompertz curves. The median value is even higher than the 

average one and the interquartile range (difference between the 25th and 75th 

percentile) is really small; this suggests that it is only for a very low number of IPC4 

codes that the two curves do not perform well.11 

 

Table 1: Times to Maturity, Goodness of fit and Diffusion Rates for IPC4 codes  

Results for Logistic, Gompertz and their combination 

Descriptive 
Statistics 

Maturity R-squared Diffusion rate 

Logistic Gompertz BestFit Logistic Gompertz BestFit Logistic Gompertz BestFit 

Average 60.9 54.0 56.2 0.924 0.932 0.933 2.5 2.1 2.4 

p10 1 -16 -5 0.864 0.875 0.877 0.2 0.3 0.3 

Median 45 39 41 0.959 0.959 0.960 2.1 1.8 2.0 

p90 157 157 157 0.984 0.984 0.984 5.1 4.3 4.8 

Coeff. Var.  0.91 1.15 1.04 0.13 0.10 0.10 0.91 0.84 0.91 

IQR 83 100 88 0.051 0.047 0.048 2.8 2.3 2.5 
Note: authors' calculations on USPTO data, 1973-2012. 

 
Finally the average diffusion rate, calculated in the last year available, is slightly higher 

than 2 (Degrees per year). Consistent to the time to maturity almost 10% of the 

technologies are not diffusing or are diffusing at a really low rate. 

In Table 2 we present the distribution of technologies based on their stage of maturity. 

Based on the results obtained previously with the best fit we attempt to single out 

technologies which may reach maturity in the next three decades. About 15% of IPC4 

codes have been classified as already mature. The most interesting cases are 

represented by the IPC4 codes which are expected to mature within the next 10 years. 

This period represents a reasonable interval to get reliable estimates.  

These correspond to about 11% of IPC4 classes and are reported in the Appendix 

(table A.1), ordered by the estimated diffusion rate. On the top of the table we find: i) 

wind motors - F03D; ii) biocidal, pest- repellant, pest attractant or plant growth 

regulatory activity of chemical compounds or preparations - A01P; iii) analogue 

                                                           

10 In these cases the resulting fits resemble a straight line.   
11 This is further supported by plotting and visually checking the data and the corresponding fits for 
each IPC4 code. In the few cases where the fit is poor data appears to be randomly scattered. 



 

JRC-IPTS Working Paper on Corporate R&D and Innovation – No. 07/2016 

 P
ag

e 
1

3
 

computers - G06G; iv) apparatus for enzymology or microbiology - C12M; and, v) 

propulsion of electrically- propelled vehicles - B60L. Among these codes F03D and 

C12M were also classified as long run fast growing technologies by Evangelista et al. 

(2015).12 

 

Table 2: Classifying technologies based on their time to maturity 

Stage Share 

Mature 15.3% 

t <= 10 11.1% 

10< t <= 20 9.5% 

20 < t <= 30 7.4% 

Other 56.7% 
Note: authors' calculations on USPTO data, 1973-2012. 

 

In figure A.1 we also provide an example of fitting for nanotechnologies and data 

processing systems or methods, where the Logistic and Gompertz are projected in 

time. These technologies are good examples of diffusing technologies at different rates. 

Nanotechnologies are of particular interest, because they are relatively new with the 

first filing in 1987 and the pace at which they are combined with other technologies is 

rapidly growing. 

About 17% of the IPC4 codes are expected to reach maturity between the next ten and 

thirty years. In table 2, codes associated to times to maturity longer than thirty years 

or for which is not possible to compute a change in sign of the second derivative 

within the time span considered are classified as others.  

 

 

5. Conclusions 

 
In this paper, we considered diffusion as an attribute defining the spread of 

technologies from a technology production point of view. More specifically, diffusion 

of a technological field was proxied by the number of ways it is combined with others 

within patent documents. The main aim was to analyse diffusion patterns in order to 

provide new evidence on the technological development process, which we think is 

crucial for detecting the rise of new technological paradigms.  

During the 1973-2012 period, we observe an increase in the average degree (number 

of connections), which suggests that the density of the technological knowledge 

network increased. This implies an increase in the number of combinations for each 

technology, which suggest an increased complexity in the development of new 

technological applications and possibly of new technological knowledge. This 

                                                           

12 These technologies were identified among those with the highest growth in term of patent 
applications for 2 consecutive periods (over the 1992/95-2008/11 interval) at the EPO. 
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increased complexity poses new challenges on creating (the right) high qualified jobs 

profiles and calls for the design of educational policies that will enable people to adapt 

to the upcoming technological paradigm(s). This can be also linked to the idea of an 

increasing complexity of the product space discussed by Hidalgo et al. (2007) where it 

is argued that more-sophisticated products are developed in countries/regions which 

form a densely connected core. In this framework, countries/regions "move through 

the product space by developing goods close to those they currently produce" (p. 482). 

Our approach of technological diffusion as a combinatorial process provides results 

which complement those obtained by patent counting. However, by focusing on 

connections among technologies our results should be less affected by differences in 

patent propensity across industries/technologies. A simple comparison between the 

combinatorial and patent counting perspective suggest that the former gives more 

weights to "Human necessities" and "Performing operations; Transporting" (which 

includes materials) related technologies, rather than to "Physics" and "Electricity" 

related codes as the latter. However, the two approaches are not completely unrelated 

and some of the results are overlapping. We believe that our framework of 

technological diffusion can support policy making by focusing on a selected group of 

technologies that are expected to become central in the technological development in 

the next years.  

To this end we model the technological diffusion process with two functional forms 

normally used in the literature, the Logistic and the Gompertz. Consistently with 

previous literature we found that many technologies follow a similar pattern of 

progress but at different diffusion rates. Our empirical application shows that the two 

distributions generally provide very good fits and that there is not a one-fits-all 

(better) distribution to apply to all technological fields. In fact, based on the goodness 

of fit we selected the Gomperzt in 53% of cases and the Logistic in the remaining 47%. 

However, in most cases the results we obtain do not change significantly when 

selecting one over the other, the main differences being that the Logistic tends to 

estimate a longer time to maturity. The time of maturity was calculated for all 

technologies assuming a maximum degree equal to the observed historical one. This is 

an oversimplification of the diffusion phenomenon because the maximum degree may 

depend on the specific technology. Defining the maximum for the diffusion process is a 

notoriously difficult problem and we are currently assessing to what extent it is 

possible to set maximum degrees specific to each technological macro class. Based on 

the calculated time of maturity, technologies were classified to identify those that 

show some potential for maturity in the next decade. 

The identification of a narrow set of promising technologies is of particular interest for 

policy making and can allow the design of targeted and effective Research and 

Innovation (as well as Industrial) policies. This contribution represents a first step in 

directly evaluating the diffusion of technologies and its importance in the creation of 

new technological knowledge. Highly diffusing technologies may be linked to enabling 

and emerging technologies, however more studies are required to understand them 

and the way they diffuse in the technology production. Further analysis of the 

combinatorial structure of each technology from a network perspective can give 
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insights on the actual products related to them and the way new technological 

combinations arise.  

"Knowledge is not simply another commodity. On the contrary.  
Knowledge is never used up. It increases by diffusion and grows by dispersion."  

(D.J. Boorstin)  
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APPENDIX 

 

Table A.1: List of IPC4 with estimated time to maturity within 10 years 

IPC 
Code 

IPC label 

f03d Wind motors 

a01p Biocidal, pest repellant, pest attractant or plant growth regulatory activity of chemical compounds or preparations 

g06g Analogue computers 

c12m Apparatus for enzymology or microbiology 

b60l Propulsion of electrically-propelled vehicles 

b67d Dispensing, delivering, or transferring liquids, not otherwise provided for 

g09g Arrangements or circuits for control of indicating devices using static means to present variable information  

a47b Tables; desks; office furniture; cabinets; drawers; general details of furniture 

b28b Shaping clay or other ceramic compositions, slag or mixtures containing cementitious material (e.g. plaster) 

a62b Devices, apparatus or methods for life-saving 

h04w Wireless communication networks 

f16m 
Frames, casings, or beds, of engines or other machines or apparatus, not specific to an engine, machine, or apparatus provided 
for elsewhere; stands or supports 

g01c Measuring distances, levels or bearings; surveying; navigation; gyroscopic instruments; photogrammetry or videogrammetry 

h02j Circuit arrangements or systems for supplying or distributing electric power; systems for storing electric energy  

g01j 
Measurement of intensity, velocity, spectral content, polarisation, phase or pulse characteristics of infra-red, visible or ultra-
violet light; colorimetry; radiation pyrometry 

b82b 
Nano-structures formed by manipulation of individual atoms, molecules, or limited collections of atoms or molecules as discrete 
units; manufacture or treatment thereof 

b64c Aeroplanes; helicopters 

b81c Processes or apparatus specially adapted for the manufacture or treatment of micro-structural devices or systems 

c40b Combinatorial chemistry; libraries, e.g. chemical libraries, in silico libraries 

b60q Arrangement of signalling or lighting devices, the mounting or supporting thereof or circuits therefor, for vehicles in general 

h04r 
Loudspeakers, microphones, gramophone pick-ups or like acoustic electromechanical transducers; deaf-aid sets; public address 
systems 

e04b General building constructions; walls, e.g. partitions; roofs; floors; ceilings; insulation or other protection of buildings 

g01m Testing static or dynamic balance of machines or structures; testing of structures or apparatus, not otherwise provided for 

b64d 
Equipment for fitting in or to aircraft; flying suits; parachutes; arrangements or mounting of power plants or propulsion 
transmissions in aircraft 

b60k 
Arrangement or mounting of propulsion units or of transmissions in vehicles; arrangement or mounting of plural diverse 
prime-movers in vehicles; auxiliary drives for vehicles; instrumentation or dashboards for vehicles; arrangements in 
connection with cooling, air intake, gas exhaust or fuel supply of propulsion units in vehicles 

a01g Horticulture; cultivation of vegetables, flowers, rice, fruit, vines, hops, or seaweed; forestry; watering  

h02p 
Control or regulation of electric motors, electric generators or dynamo-electric converters; controlling transformers, reactors or 
choke coils 

g03b 
Apparatus or arrangements for taking photographs or for projecting or viewing them; apparatus or arrangements employing 
analogous techniques using waves other than optical waves; accessories therefor 

g01l Measuring force, stress, torque, work, mechanical power, mechanical efficiency, or fluid pressure 

a01n 

Preservation of bodies of humans or animals or plants or parts thereof (preservation of food or foodstuff a23); biocides, e.g. as 
disinfectants, as pesticides or as herbicides (preparations for medical, dental or toilet purposes which kill or prevent the growth 
or proliferation of unwanted organisms a61k); pest repellants or attractants; plant growth regulators (mixtures of pesticides 
with fertilisers c05g) 

f28f Details of heat-exchange or heat-transfer apparatus, of general application 

g06n Computer systems based on specific computational models 

f25d Refrigerators; cold rooms; ice-boxes; cooling or freezing apparatus not covered by any other subclass 

b62d Motor vehicles; trailers 
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c07h Sugars; derivatives thereof; nucleosides; nucleotides; nucleic acids 

e04h 
Buildings or like structures for particular purposes; swimming or splash baths or pools; masts; fencing; tents or canopies, in 
general  

h05h 
Plasma technique (ion-beam tubes h01j 27/00; magnetohydrodynamic generators h02k 44/08; producing x-rays involving 
plasma generation h05g 2/00); production of accelerated electrically- charged particles or of neutrons (obtaining neutrons 
from radioactive sources g21, e.g. g21b, g21c, g21g); production or acceleration of neutral molecular or atomic beams 

f04b Positive-displacement machines for liquids; pumps 

g01f Measuring volume, volume flow, mass flow, or liquid level; metering by volume 

a41d Outerwear; protective garments; accessories 

c08f Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds 

h01b Cables; conductors; insulators; selection of materials for their conductive, insulating or dielectric properties  

e05b Locks; accessories therefor; handcuffs 

b60n Vehicle passenger accommodation not otherwise provided for 

e06b 
Fixed or movable closures for openings in buildings, vehicles, fences, or like enclosures, in general, e.g. doors, windows, blinds, 
gates  

f21s Non-portable lighting devices or systems thereof 

a45d Hairdressing or shaving equipment; manicuring or other cosmetic treatment 

e21b 
Earth or rock drilling (mining, quarrying e21c; making shafts, driving galleries or tunnels e21d); obtaining oil, gas, water, 
soluble or meltable materials or a slurry of minerals from wells 

h01s Devices using stimulated emission 

a61j 
Containers specially adapted for medical or pharmaceutical purposes; devices or methods specially adapted for bringing 
pharmaceutical products into particular physical or administering forms; devices for administering food or medicines orally; 
baby comforters; devices for receiving spittle 

a61c Dentistry; apparatus or methods for oral or dental hygiene  

b29l Indexing scheme associated with subclass b29c, relating to particular articles 

a63h Toys, e.g. tops, dolls, hoops, building blocks 

a61g 
Transport, personal conveyances, or accommodation specially adapted for patients or disabled persons (appliances for aiding 
patients or disabled persons to walk a61h 3/00); operating tables or chairs; chairs for dentistry; funeral devices 

e04f Finishing work on buildings, e.g. stairs, floors 

g09b 
Educational or demonstration appliances; appliances for teaching, or communicating with, the blind, deaf or mute; models; 
planetaria; globes; maps; diagrams 

b29d Producing particular articles from plastics or from substances in a plastic state 

b60j 
Windows, windscreens, non-fixed roofs, doors, or similar devices for vehicles; removable external protective coverings specially 
adapted for vehicles  

f16d Couplings for transmitting rotation 

c11d Detergent compositions; use of single substances as detergents; soap or soap-making; resin soaps; recovery of glycerol 

g07f Coin-freed or like apparatus 

c08g Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds  

f16h Gearing 

g01v Geophysics; gravitational measurements; detecting masses or objects; tags 

b29k 
Indexing scheme associated with subclasses b29b, b29c or b29d, relating to moulding materials or to materials for 
reinforcements, fillers or preformed parts, e.g. inserts  

g01p 
Measuring linear or angular speed, acceleration, deceleration or shock; indicating presence or absence of movement;  indicating 
direction of movement 

a61q Specific use of cosmetics or similar toilet preparations 

b41m Printing, duplicating, marking, or copying processes; colour printing 

b22f 
Working metallic powder; manufacture of articles from metallic powder; making metallic powder (making alloys by powder 
metallurgy c22c); apparatus or devices specially adapted for metallic powder 

g10k 
Sound-producing devices (sound-producing toys a63h 5/00);  methods or devices for protecting against, or for damping, noise 
or other acoustic waves in general; acoustics not otherwise provided for 
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Figure A.1: Examples of diffusion process fitting 

 

Data processing systems or methods13 

 

 

 

Nanotechnologies 

 

                                                           

13 The full label is: data processing systems or methods, specially adapted for administrative, commercial, 
financial, managerial, supervisory or forecasting purposes; systems or methods specially adapted for 
administrative, commercial, financial, managerial, supervisory or forecasting purposes, not otherwise provided 
for. 
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