Is the whole Benford
phenomenon merely an
llusion?




This could be so because
Benford’'s Law Is depended
on our arbitrarily invented
positional number system
as It focuses on the
symbolic digits of numbers.



Admittedly, a decisive digital
pattern does exist for our
positional number system.




Benford’s Law for our number system




A number In a data set:

478,932



The first digit on the left:

478,932

T



285.29
5330.22
1722.16

494 .17
3516.80
4385.23
1965.46
3247.99
1482.64

251.12

185.35
1504.49
815.06
362.48
5049.66
2443.98
3.61
753.80
1165.04
7345.52

2579.80
1764.41
3686.84
1388.13
2414.06
2204 .12
1347.30
1781.45
4647.39
1368.79

27.11
574.46
1501.61
1817.27
387.78
1224.42
271.23
593.59
1219.19
4112.13




Focus on 1st digits

285.29
2330.22
1722.16

49417
3516.80
4385.23
1965.46
3247.99
1482.64

25112

185.35
1504 .49
815.06
362.48
2049.66
244398
361
753.80
1165.04
7345.52

2579.80
1764.41
36386.84
1388.13
2414.06
2204 .12
1347.30
1781.45
4647.39
1368.79

2711
274.46
1501.61
1817.27
387.78
1224 42
27123
293.59
1219.19
411213







Benford's Law - 1st Digits
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Data Is random, but...

The 1st digit Is not so random!
The 1st digit is almost predictable!






Let us consider other number systems:



Roman Empire Territory

A

*° ‘

North Africa

27 BC - 395 AD




The Roman Empire

Emperor Julius Caesar, 100 BC — 44 BC



The Roman Empire

Pax Romana (Roman Peace), 27 BC - AD 180



The Roman Empire

Pax Romana (Roman Peace), 27 BC - AD 180



Roman Numerals




Roman Numerals

90 =50+10+10+ 10+ 10
=L+ X+ X+ X+ X

= LXXXX
90 =100-10

=C=-X

= XC



Terribly inefficient !



...yet elegant and beautiful...






IS there dBenford-like-law’ for
Roman Numerals?



DLXXXV
CDIV
DCLXXVII
LMXLIII
DLXVI
CCIX
DCIX
DCVC
MMCLII
DCII

CCLXXX
MVIII
LDXV
DCCX
LXXII
MCMXI
LDXII
LXVII

IV
LXXXIV

XVII
CDXLII
LXXVII
CCCVCIV
XLIV
CDV
XXVIII
CIX

XXVI
CCCXXI

XClII
VCIII
CMVLIII
LXVII

LI

CXXII
CDXLII
DCLV
CCCLXVI
XXXII




Focus on 1st numeral

DLXXXV
CDIV
DCLXXVII
LMXLITI
DLXVI
CCIX
DCIX
DCVC
MMCLII
DCII

CCLXXX
MVIII
LDXV
DCCX
LXXII
MCIVIXI
LDXII
LXVII

v
LXXXIV

XVII
CDXLIII
LXXVII
CCCVCIV
XLIV
CDV
XAV
CiX

XAVI
CCCXXI

XCII
VCIl|
CMVLIII
LXVII

LIl

CXXII
CDXLITI
DCLV
CCCLXVI
XXX




| V X L C D M

1 5 10 | 50 | 100 | 500 | 1000

| V X L C D M
3% | 3% | 15% | 23% | 30% | 20% | 8%
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NO!

No law I1s found here!

Distinct data sets yield distinct
1st-numeral proportions.

There exists no pattern!



WHY?

Just because Roman Numerals are
inefficient?

NO!

That lack of a pattern has nothing to
do with number-systerafficiency!






Ancient Egypt Territory

3000 BC - 30 BC



Ancient Egypt




Ancient Egypt




t Egypt

Ancien




Egyptian Numerals
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Egyptian Numerals

Lkl muo 000



Egyptian number system

» Egyptian (as early as 3000 BCE)
— How would you write 3,2447?
— How would you write 21,2377
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Terribly inefficient !



Is there dBenfora-like-law’ for
Egyptian Numerals?



NO!

No law Is found here!

There exists no pattern!






Positional Number System Base 10



An example from positional number system base 10:

7205.38 I1s defined as:

7*103 + 2*102 + 0*101 + 5%10° + 3*10"1 + 8*102.

It combines multiplications ¢) and additions%)
of powers of teni0ON).

It’s quite peculiar!



Positional number system base 10 is truly a sort of
a scheme

an algorithm

a process

a procedure



Should Benford’'d.aw then be
considered simply aarbitrary?!



Our positional number system,
completed during the Renaissance
Period Is extremely efficient .

But it's still arbitrary !



Our positional number system
wasinvented by us.




The meanings of the verbs to
discover and to Invent are distinct.



We discovered:

We discovered:

F=MA
F = GM;M,/R*

We invented:

Positional Number System

843.7 = 8*10% + 4*10" + 3*10° + 7*10™*

al-Khwarizmi




We are so used to reading, writing,
calculating, and working with
numbers, from very young age, that
we tend to associate them with
something * divine ’ or ‘ absolute .


















This is why we tend to
believe that our numbers are
the ‘natural "and the ‘ only’
proper way to express
guantities.



Other number systems seem
‘funny "and ‘ game-like’, or appear
only as ‘ intellectual exercise



We need to break out of this
mathematical orthodoxy and dogma.



“STOPY
“THIS IS HERESY!”




“Thou shall praise and
respect our splendid and
divine number system each
and every day of your life! ”



But In reality our number
system has no such divine
mathematical aura!



Hence Benford’s Law, being so
iIntimately involved with our
number system that it Is
actually stated In terms of Its
symbols (diqits), is arbitrary
just as well!




This realization leads one to
suspect that LOG,,(1+1/d) for
the 1st digits does not account
for the full story of the
phenomenon, and that there
exists possibly a more
universal and non-arbitrary law.



| et UsS summarize:

What's wrong with Benford’'s Law?

We place the real guantities In the
physical world into arbitrary and

artificial envelops (digital symbols), and
then we Insist on counting those
envelops, looking for patterns in the
envelops — namely: Benford’s Law!?



Digital

; representation
quantity




An envelop for a quantity:




An envelop for a quantity:

@



An envelop for a quantity:




Benford’s Law merely counts these envelops:




Physical Reality Versus Digital Perception

Benford’s Law Is highly prevalent in the physical
world.

But first everything has to be recorded in our
positional number system; then data is converted
into 1st digits; and then LOG  ,(1+1/d) Is found!

Our digits serve as a lens of sorts.



Isee
LOG(1+1/d)
everywhere

@
@
The natural °
phenomenon é
observed
]



Two radically different Interpretations
of the Benford phenomenon are given

First: REAL & PHYSICAL

Second:  ILLUSIVE & NUMERICAL




Two radically different Interpretations of
the Benford phenomenon are given

First:

This is truly a physical phenomenon existing indepe ndently
of us and our way of recording data.

It is a physical law of nature.

Second:

This digital pattern found in physical data is simp ly due to
our own peculiar way of counting values by way of t heir
digital representations,

The phenomenon has NO independent physical existenc e
outside our digital perception.



As an analogy for the second
interpretation, a child wearing red

eyeglasses may believe that every physical
object in the world Is  red.




“Daddy, how come everything
In the world iIs red?”



The red color on her eye glasses Is
arbitrary , and that’s why the fact
that everything appears red Is
arbitrary as well.

Had she been wearing green eye
glasses, everything would then
appear green.






The natural ®
y A\ ® phenomenon
observed

Il mvxxm ® 900 ° ) :,_'Basem nar\
Roman Numerals ' : _ >
“I can not observe any pattern in the “| observe Benford’s

data! Could anybody help me construct a
measure such that all observers would
agree upon? But | refuse to adapt
another number system, | am emaotionally
attached to mine.

Law very clearly,
1st digits are as in
LOG,,(1+1/d)!”



It Is necessary that they should all come up with
a universal and primitive statistical measure
agreed by all observers for this clearly and
easily observable physical phenomenon.



In other words, that a singular quantitative
statement should be formulated which would
be identical for all planetary observers, being
number system invariant.



And that singular quantitative statement Is:

GLORQ!



The General Law of
Relative Quantities

GLORQ (acronym)



THE IDEA: That universal and primitive
measure to be agreed on by all planetary
observers could be a mathematical expression
relating to the commonly observed histogram
of the data in question (as this shall be shown
soon to be of such universal character).




But what aspect of histograms could it be?




One characteristic common to all Benford
obeying data sets is their overall skewed
histogram falling on the right

This implies having many small values, but
only very few big ones.

This Is a nearly universal feature in random
data, being number system invariant.
Therefore, a precise quantitative measure of
such a fall in histograms may serve as a
general law.



Histogram of the Mass of
800 Known Exoplanets

Count
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Exoplanet Mass (in units of Jupiter)




Histogram of Time between all 19,452
Earthquakes Occurring in 2012

Count
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Histogram of USA Population for all its

19,509 Cities and Towns in 2009

Count
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Indeed,
small IS numerous,

big Is rare.



Hence let’'s change the agenda:

Instead of digits , let’s focus on
histograms of data sets, and their
guantitative structure preferring the
small over the big.






Do histograms depend on the number
system in use”?

What happens to a histogram when we
switch to another number system?

Does the visual picture of a histogram
change?



NO!



Here Is the histogram of a
singular real-life data set viewed
through the prism of several
number systems. Clearly, Its
visual aspect, the relative sizes
of the bins, Its shape, etc., are
fixed (invariant).



Positional Number System Base 10
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Positional Number System Base 4

1 2 3 101112 13 2021 22 233031 32 33 100
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Clearly, the message conveyed In
a given histogram Is universal,
Irrespective of the number
system Is use!



Histogram Invariance Principle

Since statistical distributions
(PDF) are simply the continuous
forms of discrete histograms
(infinity refined), the principle is
very general:

PDF - density distributions are
number-system invariant!






The ‘histogram vista’ of Benford’s Law:



all numbers from 1 to 2 such as:
1.00, 1.15,1.49, 1.76, 1.93, 1.97, 1.99
are with first digit 1 .

all numbers from 10 to 20 such as
10.0, 13.8, 15.2, 16.8, 18.2, 18.8, 19.6,
are with first digit 1 .

all numbers from 100 to 200 such as
100, 123, 141, 165, 176, 195, 197, 198
are with first digit 1 .



Digit 1 leads on these sub-intervals:

etc. ...

1, 2),

10, 20),

100, 200)
1000, 2000).
10000, 20000).

...€elc.



Digit 1 leads on these sub-intervals:

‘1 2 10 20 100 200 1000 2000

and these segments are expanding on the x-axis



The ‘histogram vista’ of Benford’s Law Is:

An infinite system of 9-bin histograms,
expanding by an inflation factor of 10,

and all aggregated into a singular overall set
of proportions.



For example:

Data on USA population regarding all
Its 19,509 cities and towns in the 2009

Census survey.



From : 1 | 10 | 100 | 1000 | 10000 | 100000 | All Data| Al Data
Up to: 10 | 100 | 1000 | 10000 | 100000 1000000| Count |Proportion
Bin 1 4 | 56 | 1565 | 2718 | 1222 | 168 | 5733 | 29.4%
Bin 2 2 | 86 | 1420 | 1437 | 537 | 47 | 3538 | 18.1%
Bin 3 1 | 75 | 1116 | 843 | 290 | 16 | 2341 | 120%
Bin 4 2 | 98 | 941 | 624 | 171 | 11 | 1847 | 95%
Bin 5 2 | 123 | 813 | 460 @ 153 | 8 | 1559 | 8.0%
Bin 6 4 | 148 | 721 | 388 | 101 8 | 1370 | 7.0%
Bin7 2 | 148 | 826 | 311 | 75 4 | 1166 | 6.0%
Bin 8 4 | 181 | s02 | 202 | 60 3 | 1082 | 53%
Bin 9 6 | 150 | 489 | 212 | 45 2 904 | 4.6%
Number of Cities| 27 | 1085 | 8202 | 7285 | 2654 | 267 | 19500 | 19500
Data Proportion | 0.1% | 5% | 42% | 37% | 14% | 14% | 100% | 100%




US Population on (1, 10)

1-10

Count
A SR U T -

12 3 45678910




US Population on (10, 100)

10 - 100

Count

10 20 30 40 50 o0 70 80 90 100




US Population on (100, 1000)

100 - 1,000

Count

100 200 300 400 500 600 700 800 900 1000




US Population on (1000, 10000)

1,000- 10,000

Count

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000




Count

US Population on (10000, 100000)

10,000 - 100,000
1500

1000

500

10000 20000 30000 40000 50000 60000 70000 80000 390000 100000




US Population on (100000, 1000000)

Count

100,000 - 1,000,000
200

150

100

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000




Fusing all the histograms into a singular
aggregated “histogram” (bar chart):

7z




Fusing these histograms together:

All Mini Histograms Combined
T000

6000

5000

4000

Count

<000

2000

1000

Not any particular range - generic




Digital distribution of any data set Is
nothing but the aggregated ‘histogram’ of

the various 9-bin histograms, constantly
expanding and inflating by a factor of 10,

standing between 0.01, 0.1, 1, 10, 100,
1000, 10000, and so forth.



In the continuous _ case Benford’s Law Is
nothing but the aggregated areas under the
curve of the 9 -sub -intervals standing
between integral powers of ten such as 0.01,
0.1, 1, 10, 100, 1000, 10000, and so forth.

(d+1)x10'nt

Prob(1st digitisd) = Z f f(x)dx

int
int=—co " (@)*10

Int = the set of all the integers Z



This vista beginsto exonerate
Benford’s Law from the arbitrariness
of our unigue number system!



Benford’s Law now begins to
stand on a solid foundation |

Benford’'s Law now begins its
journey of becoming Independent
of any number system!



Surely these histograms are deliberately
constructed over a very particular  partition

of the entire x -axis range according to the
cyclical way first digits occur  In our number
system, yet:

this Is an exogenous issue!

We can now easily imitate the histogram
structure within Benford’'s  Law and generalize
it and free it from our number system!






l.  An infinite set of histograms
Il. Each histogram is with D bins
Ill.  All constantly expanding by inflation F

IVV. No relationship exists between D and F
and they are free to assume any value



Number System Base 10

There are D = 9 bins, expanding by a factor of F = 10




Number System Base 4

There are D = 3 bins, expanding by a factor of F = 4.




Base 10 number system is a scheme of 10=9 + 1

Base 4 number systemis a schemeof 4 =3+ 1

Our number system is restricted to:
F=D+ 1

Our number system is restricted to:

(Base) = (# of 1st Digits) + (1)



Number System

= the base

D = the # of 1st digits

GLORQ

F = the inflation factor

D = number of bins in each histogram



For GLORQ, there is RO reason whatsoever
we should restrict D and F as such, hence:

(Inflation F) # (D # of Bins) + (1)



(Inflation F) and (D # of Bins)

are two independent values

without any strict relationship



let us free ourselves of our number
system!

Let us be totally flexible in how we choose
D and F!

Let's try any D and F combination!



For example, let us consider:

F=D+38

F=D+2

F=D-5

F=7*D

F = Any Arbitrary Number



We begin on the left from the O
origin with an infinitesimally small

bin width called W (approaching
zero width in a limiting sense).

W—>0



For example:



An infinite set of 3-bin histograms
expanding by an inflation factor of 2.












Lower case d signifies bin-rank.

Q Q Q
|
W N =



D=3 F=2

Are we Imitating our own positional number system?
NO!

This can NOT be interpreted as a number system!
here F <D
but number systems are always with

F>D+1



Let us empirically examine real-life data for
any consistent pattern in bin scheme results:



A 3-bin scheme, with an expansion factor 11,
namely: D=3 F =11,
starting at the origin,

with an initial small width W = 0.002,
yields:

Time between all 19,452 earthquakes in 2012 {0.636, 0.221, 0.143}
USA population of all 19,509 cities in 2009 {0.603, 0.242, 0.154}
Price List of 8079 items www.mdhelicopters.com {0.606, 0.248, 0.145}
Exponential 0.5% Growth, 3233 Periods from 600 {0.618, 0.226, 0.157}
USA Market Capitalization on Jan 1, 2013 {0.610, 0.238, 0.152}




A 7-bin scheme, with an expansion factor 4,
namely: D=7 F =4,

starting at the origin,

with an initial small width W = 0.007,

yields:
Time between earthquakes in 2012 {0.262, 0.184, 0.144, 0.122, 0.112, 0.092, 0.084}
US population, 19,509 cities in 2009 {0.257, 0.188, 0.152, 0.123, 0.108, 0.091, 0.082}

Catalog 8079 items mdhelicopters.com  {0.255, 0.190, 0.141, 0.121, 0.118, 0.091, 0.084}
Exp 0.5% Growth, 3233 Periods from 600 {0.263, 0.178, 0.143, 0.128, 0.109, 0.095, 0.084}
US Market Capitalization, Jan 1, 2013 {0.240, 0.192, 0.145, 0.132, 0.110, 0.098, 0.084}



A 4-bin scheme, with an expansion factor 8,

namely: D =4
starting at the origin,

F =8,

with an initial small width W = 0.0008,

yields:

Data Set

Time Between Earthquakes

USA Population Centers

LOG Symmetrical Triangular (1, 3, 5)
k/x over (1, 1000000)

Exponential Growth, B=1.5, F=1.01
Lognormal, Location=5, Shape=1
Lognormal, Location=9.3, Shape=1.7
Varied Data - Hill's Model

Chain U(U(U(U(U(0, 5666)))))

BinA BinB BinC

48.3%
48.9%
48.8%
49.3%
47.9%
49.1%
48.6%
46.3%
47.8%

25.0%
23.1%
24.1%
21.7%
23.7%
23.3%
23.7%
25.3%
24.1%

15.3%
16.0%
15.4%
16.3%
15.6%
15.6%
15.8%
16.2%
16.1%

BinD

11.5%
12.0%
11.7%
12.7%
12.8%
12.1%
11.9%
12.2%
12.0%




A 7-bin scheme, with an expansion factor 3,

namely: D =7/
starting at the origin,

= =

3,

with an initial small width W = 0.0008,

yields:

Data Set BinA BinB BinC BinD BinE BinF BinG
Time Between Earthquakes 224% 18.1% 155% 13.1% 11.7% 10.1% 9.0%
USA Population Centers 226% 18.9% 154% 13.1% 109% 99% 9.1%
LOG Symmetrical Triangular (1, 3, 5) 23.0% 17.8% 15.0% 13.0% 11.5% 10.2% 9.4%
k/x over (1, 1000000) 21.5% 17.9% 152% 13.4% 125% 10.3% 9.2%
Exponential Growth, B=1.5, F=1.01 226% 18.0% 150% 129% 11.7% 10.4% 9.4%
Lognormal, Location=5, Shape=1 23.1% 18.1% 149% 13.2% 11.4% 102% 9.1%
Lognormal, Location=9.3, Shape=1.7 228% 18.3% 15.2% 129% 11.5% 10.2% 9.2%
Varied Data - Hill's Model 22.0% 20.1% 156% 13.1% 10.3% 9.5% 9.4%
Chain U(U(U(U(U(0, 5666))))) 23.2% 17.8% 156% 13.3% 10.8% 10.2% 9.1%




It works!
Proportions are consistent across data sets.
Other D and F combinations, and using

several other real-life physical data sets,
also gave remarkably stable proportions.

We have found a genuine pattern in data
iIndependently of any number system!



The goal of the SCI@NtISt in this case

here Is to explore and come up with a
generic mathematical expression

that would encompass all possible D and
F cases.



Some empirical results of a variety of D and F comb

Inations:

Bin A

BinC BinD BinE BinF BinG

o0 b WNM

-
=k

41.3%
46.1%
50.0%
93.1%
55.9%
63.6%

32.1%
31.0%
29.9%
27.8%
26.4%
22.1%

26.7%
22.9%
20.1%
19.1%
17.7%
14.3%

a b ON

-
M

32.1%
37.2%
41.4%
43.3%
53.5%

26.7%
26.5%
25.9%
24.6%
21.0%

22.2%
19.9%
18.4%
18.0%
14.9%

19.0%
16.5%
14.3%
14.2%
10.7%

26.7%
36.5%
42.0%

222%
22.5%
22.5%

19.0%
17.0%
15.6%

16.9%
13.3%
11.1%

15.2%
10.6%
8.8%

N SN bh b bA A LA WW W WO

0 A NOON

19.0%
25.9%
32.6%

16.8%
18.4%
12.0%

15.2%
14.3%
13.5%

13.6%
13.0%
11.1%

13.1%
10.6%
9.3%

11.5%
9.8%
8.0%

10.7%
8.0%
6.4%




We seek a mathematical law
that would encompass all these
D & F cases of the previous
table, and including any other
possible combinations of D & F.



Philosophically, a sound approach would
not merely attempt to find out inductively
what Is the best or most fitting expression in
the approximate, but rather argue this by
way of a conceptual postulate which would
lead to an exact mathematical expression
deductively — all the while closely
agreeing with empirical results from real-life
physical data sets.



The Postulate:

The generic pattern in how relative quantities
are found in nature is such that the frequency
of quantitative occurrences is inversely
proportional to quantity.



The Postulate

18
16
14
12
10

Frequency

o N AR O

Doubling of X i Frequency is reduced by half



The Postulate evens the totals
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Total = X*Frequency = Constant




This leads to the explorations of
results from bin systems fitting k/X

distribution on (W, ).
k/X Is defined from W up to infinity .

W does not have to be small.



0df (%) = k(1/X)



We shall impose discrete histograms
onto the k/X continuous curve.



The subsequent tedious mathematical work then
Involves calculating definite integrals of k/X cycle by
cycle, and having sufficiently large number of such
results in order to enable us to decipher the eventual
limit as the number of cycle goes to infinity.



Five features are involved in this construction:

() Avoidance of an upward explosion start of the k/X density at the origin O
which would have been undefined due to a division by O.

(1) Equal spacing (width) of all bins.
(11) Equality between the 1st bin width and the separation of the defined range
from the O origin. Namely, that the length of the step from the origin to the

launch of K/X is also the width of each bin in the 1st cycle. Algebraically it is
expressed as (2w - w) = (w - 0).

(IV) No coordination is employed or attempted whatsoever with any number
system or digits on the x-axis below.

(V) Only positive numbers are involved.



One cycle

k/x over (w, (D+1)w)

0 w 2w 3w =--- Dw (D+1)w




Equating the entire area to one, we obtained:

(D+1)Wk
f —dx =1

s X

K[IN((D+1)W) - In(w)] = 1
K[IN(D+1) + In(w) - In(w)] = 1

K[IN(D+1)] = 1

k =1/In(D + 1)



Evaluating the portion of area hanging over bin #d
(with d running from 1 to D, as In digits), we obtain:

P(d) f(d.+1)w ke y
— — X
dw X
P(d) = [1/In(D+1)]*In(d+1) + In(w) — In(d) — In(w)]
P(d) = [L/In(D+1)]*[In(d+1) — In(d)]
P(d) = [1/In(D+1)]*In[(d+1)/(d)]

and finally:

P(d) = In(1+1/d) / In (D+1).



Two cycles

k /x over (w, (D+1)w+DFw)

OW 2w 3w -.- (D+1)w (D+1)w (D+1)w __ (D+1)w
+Fw +2Fw +DFw




Equating the entire area to one, we obtained:

—dx =1

(D+1)w+DFw Ie
| :

K[ In(W*[(D+1) + (DF)]) - In(w)] = 1
K[ In(w) + In[(D+1) + (DF)] - In(w)] = 1
K[ In[(D+1) + (DF)] ] = 1

k=1/In(1 + D + DF)



Evaluating the first portion of area (1st cycle) hanging
over bin #d (d running from 1 to D as in digits), we obtain:

(d+1)w Ie

P1(d) = f ;dx

dw
P1(d) = [1/In(1 + D + DF)]*[In(d+1) + In(w) — In(d) — In(w)]

P1(d) = [1/In(1 + D + DF)]*[In(d+1) — In(d)]



Evaluating the second portion of area (2nd cycle) hanging
over bin #d (with d running from 1 to D, as in digits),
we obtain:

(D+1)w+(d)Fw I

P2(d) = f —dx

(D+1)w+(d—1)Fw X

P2(d) = [1/In(1 + D + DF)P[In((D+1) + dF) + In(w) — In((D+1) + (d-1)F) -In(w)]
P2(d) = [1/In(1 + D + DF)J*[In((D+1) + dF) — In((D+1) + (d-1)F)]

Combining both areas, namely P(d) = P1(d) + P2(d), we get:
P(d) = [1/In(1 + D + DF)]*[ In(d+1) — In(d) + In((D+1) + dF) — In((D+1) + (d-1)F)]
Applying the identity LOG(A) - LOG(B) = LOG(A/B) we finally get:

P(d) = [ In(1 +1/d) + In((L+D+dF)/(1+D+(d-1)F))]/ [In(1 + D + DF)]



Three cycles

k /x over (w, (D+1)w+DFw+DF>w)

Ow (D+1)w  (D+1)w (D+1)w
+DFw +DFw+DFFw




We need to evaluate the following definite integrals:

(d+1)w K (D+1)w + (d)Fw K (D+1)w + DFw + (d)FFw K
f —dx + f —dx + f —dx
dw (D+1)w + (d—1)Fw X (D+1)w + DFw + (d—1)FFw X



Equating the entire area to one, we obtained:

—dx =1

(D+1)w+DFw+DF?w Ie
f 4

K[ In(w) + In[(D+1) + DF + DF?] - In(w)] = 1
K[ IN[(D+1) + DF + DF?] ] = 1

k=1/In(1 + D + DF + DF?)



Evaluating the first and second portion of areas yields the
same results as in the once-expanding bin system except for
the different k constant expression here.

Evaluating the third portion of area hanging over
bin #d (with d running from 1 to D, as in digits), we obtain:

(D+1)w+DFw+(d)F*w [,

P3(d) = f L dx

(D+1)w+DFw+(d—1)F?w X

P3(d) = k (In[w] + In[(D+1) + DF + (d)*F?] - In[w] — In[(D+1) + DF + (d-1)*F?] )
P3(d) = k (In[(D+1) + DF + (d)*F?] — In[(D+1) + DF + (d-1)*F?] )
P3(d) = k* In( [(D+1) + DF + (d)*F?] / [(D+1) + DF + (d-1)*F?] )



Combining all 3 areas, namely P(d) = P1(d) + P2(d) + P3(d),
we finally get:

P(d) = k*In(1 +1/d) + k*In( [1+D+dF]/ [L+D+(d-1)F] ) +
k*In( [(D+1) + DF + (d)*F2] / [(D+1) + DF + (d-1)*F?] )

[1+D+ (d)F] [1+D+DF+ (d)*F?]
In(1 +1/d) + In( ---------m--m-mmmm- I I S —— )

In(1 + D + DF + DF?)



Infinite cycles

Algebraic expressions for bin proportions of K/X distribution for
higher expansion orders perfectly follow the above (clear)

pattern as a seguence of ever increasing terms in the numerator
and in the denominator.

The first 4 elements of this infinite sequence, beginning with a

non-expanding bin system, and ending with a bin system having
four cycles, are as follow:



[1+ (d)]

In(1 + D + DF)
[1+(d)] [1+D+ (d)F] [1+D+DF+ (d)F?]
~ m@+p+pF+DF
[1+(d)] [1+D+(d)F] [1+D+DF+(d)F?] [1+D+DF+DF? + (d)F3]

In(1 + D + DF + DF2 + DF?®)



What is the limit?
Does It exist?

Can we find a close form expression?



With assistance from the distinguished mathematician
George Andrews, a closed form expression for the
limit of the Infinite sequence is obtained inthe F > 1
case, enabling us to succinctly express the general law
of relative quantities.

George Andrews from Pennsylvania State University is
well-known for his extensive work on Ramanujan's Lost
Notebook. He is considered to be the world's leading
expert in the theory of integer partitions.



The pages of the mathematical derivation
scripted by George Andrews Iin Sep 2013
follows:
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Let us narrate clearly Andrews' derivation:



The 4th term of the sequence expressed earlier, denoted as S is:

[1+(d)] [1+D+(d)F] [1+D+DF+(d)F] [1+D+DF+DF2 + (d)F*

In(1 + D + DF + DF?+ DF3)

Employing thefinite geometric formula for the terms
iInvolving F, namely:

1+ X+ X+ X3+ ...+ XN =(XN1-1)/(X-1),

the nth term in the sequence is then:






Pulling together all the coefficients of PVER we get:

i ln( 1+ ()P - o )
1

D+(d-DF-1\.. D
1 G sy ) e =

=




In order to obtain a more compact expression, let us define:

4 D+d(F—-1)
B F-1

. D+ (d—1)(F-1)
N F-—1






Since in our context B 1, there is no hope of obtaining any obvious

convergence in terms such a®FM, hence we define=1/F,
creating a quantity f such that O <f1 holds, and which may hopefully
let terms such ad br fN converge.

N-1 Al_l_E
E In I
1






General Logarithmic identity:

IN(X,) + INCX,) + IN(XQ) + ... + IN(X) = IN(X XX 5. .. X))

ZN: ln(xj) = ln(ﬁ %:)

= I =



E
N+In(F)+In(C)+ In (1 - . f“')



It is only at this late stage that we let N gotoi  nfinity!

For F > 1 as in the normal case of expanding bin sc  heme,
0 <f< 1, therefore :

[](I*E'f)
+(1+57)
IS a convergent infinite product since ZT: 0 f‘f IS converging.
- E
(1+5*F) (1+70)  @a+0)
as N — E > = >

(1 + F*fj) ’ (1+g*0) (1+0)



The term In(C) is In(

), and it is finite and insignificant.
F-1

The term In (1 + ?f‘”) is zero as N — .

E E .
lim In (1 - EfN) = In (1 - EO) =mA+0)=m1)=0

N—=w

In( %)
Finally:  lim Sy - __B
- In(F)



Using the definition of A and B above, we get:

(’D+;:i£f-;—1))
(DXEDF=D) )
F-1

In(F)

In(

which is further reduced by canceling out the two (F — 1) terms in the
numerator to arrive at:



The General Law of Relative Quantities:

D + d(F-1)
D + (d-1)(F-1) )

In(F)

In(




The 1st Miracle:

Empirical results from real-life physical
data sets strongly confirm the general law:



D=3and F=11

Time between all 19,452 earthquakes in 2012 {0.636, 0.221, 0.143}
USA population of all 19,509 cities in 2009 {0.603, 0.242, 0.154}
Price List of 8079 items www.mdhelicopters.com {0.606, 0.248, 0.145}
Exponential 0.5% Growth, 3233 Periods from 600 {0.618, 0.226, 0.157}
USA Market Capitalization on Jan 1, 2013 {0.610, 0.238, 0.152}

IN((3 + d(11 — 1))/(3 + (d — 1)(11 — 1))) / In(11) {0.612, 0.238, 0.151}

D=7and F=4

Time between earthquakes in 2012 {0.262, 0.184, 0.144, 0.122, 0.112, 0.092, 0.084}
US population, 19,509 cities in 2009 {0.257, 0.188, 0.152, 0.123, 0.108, 0.091, 0.082}
Catalog 8079 items mdhelicopters.com  {0.255, 0.190, 0.141, 0.121, 0.118, 0.091, 0.084}
Exp 0.5% Growth, 3233 Periods from 600 {0.263, 0.178, 0.143, 0.128, 0.109, 0.095, 0.084}
US Market Capitalization, Jan 1, 2013 {0.240, 0.192, 0.145, 0.132, 0.110, 0.098, 0.084}

In((7 + d(4-1))/(7 + (d=1)(4-1))) / In(4) {0.257, 0.189, 0.150, 0.124, 0.106, 0.092, 0.082}




D=7 F=4

0.30
0.25 mGLORQ [
W Empirical
= 0.20 :
)
E 0.15
o
a 0.0
D.DD I I I I I I
1 2 3 4 5 6 7

Bin Rank

Using the Average of the 5 empirical data sets.
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0.50

0.40

0.30
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0.20

0.10

0.00

Using the Average of the 5 empirical data sets.




The 2"d Miracle:

Digital Benford’s Law is simply a special case of the
general law when bin schemes are constructed under
the constraint F =D + 1.

The term F is then substituted by (D + 1) everywhere in
expression of the general law:



D+ d(F-1)

1 D+d(D+1-1)
GLORQ = n(D+(d—1)(F—1)) ~ (53 a-Dori- 1))
- In(F) - In(D+1)

D+d(D) D(1+d) 1+d
In( 55 a0’ _ (5@’ " T

In(D+1) In(D+1) In(D+1)
In( > 4, S In(1+3)  In(1+3)  LOG(1+3)
In(D+1) ~ In(D+1) ~ In(BASE) _ LOG(10)
LOG(1+%)

1

Benford’s Law



Benford’s Law is merely a sideshow to this
physical law of nature which can be measured and
detected by ways other than our own digital
perceptions.

We are no longer seduced and blinded by the
Incredible efficiency of our number system, and we
are able to acknowledge its arbitrariness.






The General Law of Relative Quantities
does not seek or need any statistical theory
to establish its empirically validated
discoveries, rather the approach is purely
scientific aided by mechanizations and
tools from pure mathematics.




Statistical theory can always be added as
extra machinery after the establishments of
GLORQ, but since real-life data sets strongly
and nearly universally confirm GLORQ with
very small deviations of empirical from
theoretical, it follows that statistical
considerations could only marginally
contribute some minor additions to the whole
edifice of GLORQ.







GLORQ implies that
Proportion (d) > Proportion (d + 1)

Corresponding to the fact that big sizes
are rare and small sizes are numerous.

Corresponding to the fact that the
histogram is falling to the right.



The GLORQ expression could be re-written
via simple algebraic manipulations in order
to emphasis its skewed quantitative
configuration:



GLORQ original expression:

D + d(F—1)
(5T w-—DFr-10
In(F)

Expanding a bit the denominator of the numerator:

D + d(F —1)
P+ @F-1 =-F-1
In (F)

In (

Subtracting (F — 1) and adding (F — 1) on top:

] D4 dF —1) —(F-1) + (F-1
n ( D+ ()(F-1) — (F-1) )
In(F)




Further reducing the numerator:

(F—1)
n+ Sy @rFr-n-—F-n
In (F)

Simplifying the denominator of the numerator:

. (F—-1)
n(l+ 5T mw—DFE=-0
In(F)

Hence the GLORQ expression is inversely proportional to d



“The General Law of Relative Quantities (GLORQ) hinges
on a very subtle mathematical limit, and Alex E. Kossovsky
enlisted my assistance in its mathematical derivation. | am
not an expert on Benford's Law; | am a pure mathematician,
however, my experience over the years is that when intricate
mathematics is required in a theory, then it often follows that
the theory will stand on its own merits. | can assure the
readers that the mathematics behind GLORQ is valid and
sufficiently surprising that it merits serious consideration”.

George Andrews



END
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Benford’s Law

Theory, the General Law of Relative Quantities,
and Forensic Fraud Detection Applications

Cantrary to common infuition that all digits should pocur randomly with equal chances in real data.
empirical examinations consistently show that not il digits are created agual, but rather that low
digits such as [1, 2, 3} oceur much more frequently than hgh dighs such as 7. B, 97 in almeest all
data ypirs, Sisth a5 those retaling 1o gecdoy, chemistry, astronbmy, physics, and engineering, as
wll as in accounting, financial, econametrics, and demoaraphics data sets. This intriguing digital
phanamanan is known as Banlord's L.

This bodk represents an attempl lo ghve 2 comprehensive and in-depth account of all the
thetratical aspects, resufls, causes and axplanations of Benkord's Law, with & strong emplhasis
on the connection to real-lite data and the physical manifastation of the law. n sddition to such a
hird's aye wow af the digital phenomenon, the concephisl dslincions between digits, numbers,
and quanliis are explored; lzading b U kay Fnding hat the phenomensn is achually guantitative
i nature; originating from the fact tha in extrems penarality, nature creales many sl quantibes
b wery few big quantities, comaborating the motto *small is baaulifl”, and that Beretors all tis
is applicable just as well to data writlen in the ancient Boeman, Mayan, Eqyptian, and other dgit-
liess civilizations.

Frasdsters are typically not aware of this digital pattern and tend ko invenl numbers with
approdmalely squal digital frequencies The digital analyst can easily check reparted data for
compliance with tis digital law, enabling the detection of tax evision, Panzi scheras, and other
financial scams. The forensic fraud detection section i writien in @ very concise and reader-
trigncly style: gathering all known mefods and standards in the accaunting and suditing industry;
surnmarlzing and fuzing them inlo a singular coherent whale; and can be understod withaul
deap kisowhatge in statistcal Beory o advanced mathernabs. In asdition, 2 Saital alpatithm is
presented, enabfing he suditor to detect fraud sven when the sophisticated cheater is aware of the
law and iwents numbers accordingly. The algorithm emgplovs a suble inner digital patten within
s Bardard's prattern iteell. This newly discovared patiern is deemed to be nearly universal. belng
guen mong prevalenl tan the Benford phenomenon itsell, 28 11 & found in &l random data sets.
Benford as will as non-Beniord typas.

World Scientific i
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https://www .amazon.com/Benfords-Law -Quantities-
Detection-Applications/dp/9814583685

Aug 2014

https://www .amazon.com/Small-Beautiful-Numerous-
Rare-World/dp/069291241X

June 2017

https://www .amazon.com/dp/172928325X
April 2019
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