

The Bohunice V1 NPP Final Conceptual Decommissioning Plan and what was next

Selected Lessons Learned and Good Practices from Bohunice V1 NPP Decommissioning

The First Knowledge Product prepared based on Council Regulation No. 2021/100 by Bohunice Programme

- **1.** Introduction to JAVYS and V1 NPP
- 2. General Context
- 3. Goal
- 4. The Need for this Knowledge Product
- 5. Development of the V1 NPP Final Conceptual Decommissioning Plan (FCDP)
- 6. Conceptual set-up of the decommissioning projects
- 7. Conclusions
- 8. Value
- 9. Abbreviations
- **10.** References

Ministry of Economy of the Slovak Republic is the sole JAVYS, plc. shareholder.

Overtake of responsibility, activities, staff structure, technology & property at 1.4.2006 from the company "Slovenské elektrárne". V1 NPP RPV Installation (1976) / Removal (2021)

Company's nuclear activities:

- A1 NPP and V1 NPP Decommissioning
- RAW Management (from cradle to grave)
- Nuclear Spent Fuel Management
- Institutional RAW & Collected RCM Management
- Tasks related to new NPP/DGR construction

V1 NPP RPV Installation (1976) / Removal (2021)

1. The company JAVYS (developer of KP1) and V1 NPP introduction – cont.

BASIC INFORMATION ABOUT V1 NPP

Financed by Slovak and European Union financial resources

2. General Context of Knowledge Product No.1

- Requirement of Council Regulation (Euratom)
 2021/100 [1]
- Sharing of knowledge tool for increasing of efficiency of the three Programmes` implementation
- Support to relevant
 European Stakeholders in
 Decommissioning area

Tangible output of prepared knowledge that enables action of selected users

- <u>Tangible</u> = explicit knowledge, delivered as a document, service or event
- <u>Prepared</u> = packs knowledge in a format that maximizes impact
- <u>User driven</u> = Is it developed for users
- <u>Actionable</u> = triggers action and eases practical implementation

V1 NPP Knowledge Product topics proposed for years 2021-2027

1		2		3	4
V1 NPP Conceptual Decommissioning Plan and what was next (for 2021)	Manag materia from th decom	ement of al coming ne V1 NPP missioning	How to strategy Reactor decomm	select the y for NPPs rs missioning	Decontamination of building surfaces with subsequent demolition of civil buildings
5 Site procedu measureme the process remediation	ures and nts in of of site	6 Release of from administra control	the site tive	7 Summary experience V1 NPP decommis	of e from the ssioning

Goal: to provide relevant European stakeholders with comprehensive description of decommissioning processes

What is the goal?

Provide users with relevant insights

- selection of optimal decommissioning strategies
- initial decommissioning projects set-up (planning, costing, licensing aspects of nuclear facility decommissioning)

Who may benefit?

Experts

Mid-level managers

Operators, regulatory bodies

- Involved in the preparation of decommissioning processes
- Responsible for the preparation of National decommissioning programs
- Young professionals in schools of decommissioning

))

Based on IAEA predictions the intensity of decommissioning is expected to increase in the immediate future

()

Typically, each nuclear facility decommissioning process starts with a Preliminary Conceptual Decommissioning Plan (FCDP), while still in operation by its operator

Many FCDP that will be prepared in the forthcoming years may benefit from the experiences share in this knowledge product

IAEA perspective on World-wide/European NPP shut down [2]

5. Development of the V1 NPP Final Conceptual Decommissioning Plan (FCDP)

Goal of the FCDP

To select the optimal decommissioning alternative and demonstrate its financial, technical and environmental feasibility / expedience for relevant stakeholders

To provide crucial reference document for EIA process/Stage Decommissioning plan/ Decommissioning Database and updating of National Programme

Key aspects of the FDCP

1

Based on preliminary CDP, which considered knowledge of NPP (design/development/ operation/safety issues, cost estimation and new available best technologies /technics, etc.)[4]

Defined alternatives must consider immediate and deferred decommissioning options, [4]

Included proposal of conceptual decommissioning projects scope/division set-up

Outputs of FCDP must be in accordance with National Programme for handling of SF and RAW [5]

Legislation context of V1 NPP FCDP

V1 NPP FCDP a reference for

- B6.2 Report on EIA process
- B6.3 The First Stage Decom. Plan
- B6.4 V1 NPP Decom. Database

Legislation context of V1 NPP FCDP

V1 NPP FCDP a reference for

- B6.2 Report on EIA process
- B6.3 The First Stage Decom. Plan
- B6.4 V1 NPP Decom. Database

5. Development of the V1 NPP Final Conceptual Decommissioning Plan (FCDP)

TIP 1

Ensure that level of details in the FCDP is sufficient to feed the EIA report

)

TIP 2

Promote early interaction with Regulatory authorities to facilitate FCDP approval

())

TIP 3

Consider requirements of all relevant stakeholders regarding NPP operation termination and decommissioning processes

5. Development of the V1 NPP Final Conceptual Decom. Plan (FCDP)

Conceptual Decommissioning Plan updates:

- more accurate estimation of components and civil structure volumes, weights, radiation characteristics
- analysis of parameters for operation
 termination (D3) [6] and RAW management
 facilities availability (D8) [7]

Steps in the FCDP Plan preparation of V1 NPP [3]

- Part 1: Introduction (V1 NPP FCDP need and purpose)
- Part 2: Description of Initial status of V1 NPP and input assumptions and data
- Part 3: Definition of preparatory decommissioning activities
- Part 4: Analysis of decommissioning options
- Part 5: Cost estimation and financial arrangements
- Part 6: Complex comparison of decommissioning options - MCA analysis
- Part 7: Conclusions

Consider expert consultancy support when developing FCDP for the first time

Part 2 - Initial status of V1 NPP and input assumptions and data

Expected initial status of systems and equipment at the start of decommissioning:

- status of systems and equipment
- necessary modifications
- infrastructure (processing facilities, raw repository, etc.)
- preparedness of personnel

Initial assumptions for individual options

- list of civil buildings to be removed
- balance of Conventional, Hazardous and Radioactive materials (dismantling, demolition)
- data on dose rates in the rooms
- technical procedures (decontamination, dismantling, logistics of materials, including storage areas)

Other input data

- working time
- price data,
- labour input,
- consumption of materials, etc.

Keep the qualified personnel familiar with the nuclear facility

TIP 5

Part 3 - Definition of preparatory decommissioning activities

- Separation of the V1 NPP from other nuclear facilities remaining in operation.
- Preparation and implementation of V1 NPP final shutdown and termination of operation.
- Assessment of the state/condition of V1 NPP at the start of decommissioning.
- Ensure the availability of qualified personnel for decommissioning.
- Development of documentation for the V1 NPP decommissioning.
- Provision of new and/or modified infrastructure for the V1 NPP decommissioning.
- Other tasks, such as assessment of legal, technical and other assumptions and requirements for handing-over of the V1 NPP site for decommissioning purposes.

Consider interfaces of surrounding facilities with decommissioned nuclear facility

TIP 6

Examples of preparatory decommissioning activities and projects related to their implementation

Pre-decommissioning activity	Related projects	Refe	erence	Schedule [month/year]	Costs
0. Coordination, management and super-vision of	PMU Consultant, phase 1	A1.1	BIDSF	10/03 -12/07	
pre-decommissioning activities	PMU Consultant, phase 2 A		BIDSF	12/07 -12/11	
1. Separation of V1 NPP from the other SE EBO fa	cilities remaining in operation				
	Relocation of emergency response centre	A3-C	BIDSF, [18]	08/06 -06/08	
Replacement of services that V1 NPP provides for	Modification (separation) of the power supply system of V1 NPP and V2 NPP and SE VYZ	A5-A	BIDSF, [18]	11/07 -07/12	ocument V1 NPP
other installations and facilities at SE EBO site (e.g.	Modification of heating and steam distribution system	A5-B1	BIDSF, [18]	03/06 -02/07 Fir	al Conceptual
heating, process steam, back-up services, safety functions) and provision of new and/or modified	Reliable heat and steam supply: Reconstruction of the auxiliary boiler station at the Bohunice site	A5-B2	BIDSF, [18]	04/05 -05/06C	commissioning Plan
services for V1 NPP systems (e.g. water, steam, heating, electricity)	Modification of cooling and service water systems, and raw water inlet system	A5-C	BIDSF, [18]	01/09 -12/09	
	Replacement of operating fluids of the V1 NPP, V2 NPP and SE VYZ	A5-D	BIDSF, [18]	12/11 -12/12	
Physical separation of V1 NPP from the SE EBO facilities remaining in operation	Reconstruction of area protection system AKOBOJE	A3-A	BIDSF, [18]	03/06 -04/10	
2. Preparation and realisation of V1 NPP final shu	tdown and termination of operation				
Establishment of a radioactive waste and spent fuel	Report on Bohunice V1 NPP decommissioning and historical waste management strategy	A1.1 (D8)	BIDSF, [11]	07/04 -07/05	
management strategy	Spent fuel management	A5-E	BIDSF	04/06 -12/06	
Development of operating documentation amendments for the operation termination period Personnel training for new tasks in connection with	Development of comprehensive documentation necessary for V1 NPP decommissioning licensing phase and decommissioning implementation phase	A2.1	BIDSF	06/06 -07/11	
operation termination after the final reactor shutdown	phase and decommendation phase				
Tropolitic		07 P	BIDSF, [11],	01/06 12/06	

opportunity to optimize decommissioning supporting operation

Part 4 - Analysis of decommissioning options

Immediate and continuous dismantling of facilities and demolition of civil structures. **Option 2** Safe Enclosure with 30 years Surveillance (SES)

Safe entombment of ALL ACTIVE FACILITIES and OBJECTS for a period of 30 years. **Option 3** Reactor Safe Enclosure with 30-years surveillance (RSE)

Safe entombment of REACTOR in reactor shaft for a period of 30 years. **Option 4** Zero Option

NO dismantling, NO demolition and NO active parts entombment action(s) after shut down of NPP to be taken. This status to last for an indefinite period.

- **1.** Application of PSL (Proposed standardized list)
- 2. Development of WBS / comprehensive appraisal per each assessed option
- 3. Relevant parameters calculated based on PSL items in following areas
 - Time sequence of civil buildings decommissioning
 - Overall Decommissioning time schedule
 - Estimation of labor for each PSL items in implementation period
 - Material Flow Estimation
 - Investment costs
 - CED estimate
 - Gaseous and liquid discharges for relevant PSL items

Consider international Lessons Learned, Best Available Techniques and National specifics. It has direct impact on results

No.	Characteristic output parameter	Value	Unit
1	Collective effective dose		manSv
2	Duration of the decommissioning process under the authorisation for decommissioning		year
3	Labour hours needed		10 ³ man hr
4	Amount of liquid RAW (before processing at salinity 200 g/dm ³)		m ³
5	Radioactivity of gaseous effluents		Bq
6	Radioactivity of liquid effluents		Bq
7	Amount of released metals		t
8	Amount of recyclable building waste		t
9	Amount of communal waste		t
10	Number of FCC for NSR (Near Surface Repository)		FCC (*)
11	Number of FCC for IS RAW (Interim Storage of Radioactive Waste)		FCC (*)
12	Time load of site by radioactivity		year

(*) FCC: Fibre Concrete Container

Part 5 - Cost estimation and financial arrangements

Application of PSL (Proposed standardized list) items for costing purposes in decommissioning of nuclear facilities – document of IAEA and OECD/NEA, 1999 (now ISDC)

Calculation of cost for individual psl items based on following structure:

- Labor costs
- Overhead costs
- Investment costs
- Contingency

Costs sensitivity analysis in relation to

- Unit labor costs most sensitive factor
- Unit overhead costs
- Unit prices of consumer costs

Take advantage of software to optimize decommissioning cost calculation and display results in ISDC International Structure for Decommissioning Costing

Time distribution of decommissioning costs in years (Cumulative values in time) per alternative

Part 6 - Complex comparison of decommissioning options - MCA utilization

Scheme of multi-criterial analysis

OBJECTIVE Criteria (Value of criterion specificized by the calculation) SUBJECTIVE Criteria (VALUE of criterion specificized by an expert estimate)

Set of evaluation criteria, their division into groups and classes and determination of criterion weight

No.	Description	Criterion weight	Criterion class
	Safety criteria		•
1	Total CED	10	Objective
	Environmental criteria		
2	Radiation consequences of gaseous effluents to environment	5	Objective
3	Radiation consequences of liquid effluents to environment	5	Objective
4	Time load of site by radioactivity	6	Objective
5	Amount of conventional waste	2	Objective
	Economic criteria		
6	Total costs	8	Objective
7	Time distribution of costs	8	Subjective
8	Labour hours needed	5	Objective
	Implementation criteria		
9	Continuity of manpower and RAW processing facilities utilisation	8	Subjective
10	Time of final site release	7	Objective
11	Preparedness of site for further utilisation	3	Subjective
	Criteria of demands for RAW repositories		
12	Total number of FCC into NSR	8	Objective
13	Total number of FCC into ISRAW	8	Objective

Final results of multi-criterial analysis - the principle "the lowest is the most suitable"

		Contribu	ition of crit	erion to
NO.	Description	0	ption value	;
		IDO	SES	RSE
	Safety criteria			
1	Total CED	11.799	6.949	11.251
	Environmental criteria			
2	Radiation consequences of gaseous effluents to environment	5.662	3.587	5.750
3	Radiation consequences of liquid effluents to environment	5.655	3.590	5.755
4	Time load of site by radioactivity	2.131	7.934	7.934
5	Amount of conventional waste	1.048	2.472	2.480
	Economic criteria			
6	Total costs	8.655	7.764	7.580
7	Time distribution of costs	4.000	10.667	9.333
8	Labour hours needed	5.442	4.889	4.669
	Implementation criteria		-	
9	Continuity of manpower and RAW processing facilities utilisation	4.235	11.294	8.471
10	Time of final site release	2.492	9.254	9.254
11	Preparedness of site for further utilisation	1.000	4.000	4.000
	Criteria of demands for RAW repositories			
12	Total number of FCC into NSR	8.377	7.150	8.473
13	Total number of FCC into ISRAW	10.154	6.923	6.923
	Option value - S _j	70.651	86.473	91.875

Part 7 - Conclusion

Final results of multi-criterial analysis - the principle "the lowest is the most suitable"

The selection of the most suitable V1 NPP decommissioning option based on the multicriterial comparison of the analyzed options had character of recommendation only.

The final and real selection of V1 NPP decommissioning option was made later, based on the FCDP and the **EIA report development** in accordance with Act No. 127/1994 Coll. and of its **submission to / appraisal by the Slovak Ministry of Environment.**

Assignment of decommissioning activities to decommissioning projects

Sufficient projects` scope set-up results in:

- Coverage of all relevant activities
- Reduction of uncertainties /risks
- Increase of project implementation efficiency (exact scope)
- Project Cost reduction
- Effective time/interface schedule
- Easy management and monitoring of projects

Example of whole V1 NPP Implementation Time Schedule – simplified version [8]

			901 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2010 2010 2010 2010 2010 2010 2010	2027
			2.1.2006 2.2.2011	
			16,3002	
			24.5.201 25.7.2014	
			1.3.2011 3.9.2012	
The dec	contamination of the V1 nucles	ar ^{A5-A1a}	1.10.2007 2.6.2008	
7 Temporary reserve po	ower supply of V1 and V2 NPP of 220 kV till 2012	A5-A1b	1.5.2009 🚃 1.1.2010	
nower	plant primary circuit was delay	ed 5-A2	1.11.2011 1.1.2014	
9 Optime Son Breactr	al heating system - Feasibility study	45-B0	30.12.2012 6.7.2016	
	the failure of the original		1.5.2007 1.4.2010	
12 Reliable heat and stea	am supply: reconstruction of the auxiliary boile station at the	A5-B2	1.6.2005 1.6.2007	
contrac	tor to manage the operation c	of the	1.9.2010 1.3.2013	
14 Modification to site su	pplies of essential fluids systems	A5-D	3.5.2010 2.12.2011	
deconta	amination facility.		2.1.2006 2.1.2009 110,2009	
17 PMU offices relocation	n and NPP V1 decommissioning information centre		1.12.2011 3.2.2014	
18 Equipment for PMU o	ffices and V1 NPP decommissioning information centre	A6-B8.1	19.8.2013 — 17.3.2014	
PMUINTINE E	nd, 30% of the total delay cau	Sedar	14.8.2013 = 14.6.2014	
21 The environmental m	pact assessment report of V1 NPP decommissioning		2.12006 2.5.2007	
22 The WdSteelin	IIIIIdLEQ. plan & other documentation		1.10.2008 1.7.2011	
			1.7.2008 12.2012	
 Since the 	his project was on a critical pat	hof	3.5.2013 3 2.12.2014 TIP 12	
26 Decommissioning sup	aport surveys	B6.6A	26.2.2015 22.2.2018	
the V1	NPP decommissioning it was		3.9.2012 2.7.2014	
29 Free release of decon	nmissioning materials		132010 132013	
30 Refuextende	Cation protection monitoring equipment		Include in your time schedules	
31 Laboratory equipment	necessary for the process of V1 NPP decommissioning			
			sufficient time reserves as a buffer for	
			17.10/2018 10.7/2018	
			unexpected challenges	
			13.2.2013 23.1.2015	
			1.5.2007 1.4.2008	

7. Conclusions

Selection to apply Multi-criterial analysis, during selection of an optimal decommissioning alternative.

RAW preparation

to apply road map for preparation / set up of waste management system

Scope

to learn how to optimize the scope of the decommissioning projects and their time of implementation

Transition

to consider changes in Radiological Risk Profile during the transition from operation to decommissioning with aim to optimize nuclear facility operation

Costing

to learn about International structure for decommissioning costing - ISDC utilization

Logic Network

to use V1 NPP Decommissioning Project Logic Network as example of the first level of decommissioning activities WBS

8. Value

This Knowledge Product, "The Bohunice V1 NPP Final Conceptual Decommissioning Plan" (FCDP) provides end users with valuable knowledge which can help (especially during the FCDP preparation):

- Reduce uncertainties in decommissioning activities (better risks mitigation)
- Save costs based on existing synergies gained from similar projects
- Improve nuclear, radiation and industrial safety in planned projects implementation

The gained knowledge can provide to the end users tools for optimization of their decommissioning activities thus deliver the higher level of efficiency and self sustainability as well.

9. Abbreviations

A1 NPP	Nuclear Power Plant A1	IS R/
B6.1	BIDSF project "The V1 NPP Conceptual Decommissioning Plan "	ISDC
B6.2	BIDSF project "The Environmental Impact Assessment Report of V1 NPP Decommissioning "	JAVY KP1
B6.3	BIDSF project "The V1 NPP Decommissioning 1st Stage Plan & Other Documentation "	NNF
B6.4	BIDSF project "Decommisioning database "	NSR
B7.1	BIDSF project "Personel trainings/education"	OEC
BIDSF	Bohunice International Decommissioning Supporting Fund	014
CDP	Conceptual Decommissioning Plan	DCI
CED	Collective Effective Dose	PSL
C10A	Free Release of Decommissioning Materials	ка
DDB	Decommissioning Database	RAM
DGR	Deep Geological Repository	RCM
EC	European Commission	RSE
EIA	Environmental Impact Assessment	RWN
FCC	Fibre Concrete Container	SES
FCDP	Final Conceptual Decommissioning Plan	SF
IAEA	International Atomic Energy Agency	V1 N
IDO	Immediate Decommissioning Option	WBS

IS RAW	Interim Storage of Radioactive Waste
ISDC	International Structure for Decommissioning Costing
JAVYS, Plc	Nuclear and Decommissioning company
KP1	Knowledge Product No.1
MCA	Multi-criterial Analysis
NNF SR	National Nuclear Fund of Slovakia
NSR	Near Surface Repository
OECD/NEA	Organisation for Economic Co-operation and Development / Nuclear Energy Agency
OMEGA	Sophisticated software for decommissioning costing
PSL	Proposed Standardised List
PSL Ra	Proposed Standardised List Radioactive
PSL Ra RAW	Proposed Standardised List Radioactive Radioactive Waste
PSL Ra RAW RCM	Proposed Standardised List Radioactive Radioactive Waste Radioactively Contaminated Materials
PSL Ra RAW RCM RSE	Proposed Standardised List Radioactive Radioactive Waste Radioactively Contaminated Materials Reactor Safe Enclosure
PSL Ra RAW RCM RSE RWM	Proposed Standardised List Radioactive Radioactive Waste Radioactively Contaminated Materials Reactor Safe Enclosure Radioactive Waste Management
PSL Ra RAW RCM RSE RWM SES	Proposed Standardised List Radioactive Radioactive Waste Radioactively Contaminated Materials Reactor Safe Enclosure Radioactive Waste Management Safe Enclosure Surveillance
PSL Ra RAW RCM RSE RWM SES SF	Proposed Standardised List Radioactive Radioactive Waste Radioactively Contaminated Materials Reactor Safe Enclosure Radioactive Waste Management Safe Enclosure Surveillance Spent Fuel
PSL Ra RAW RCM RSE RWM SES SF V1 NPP	Proposed Standardised List Radioactive Radioactive Waste Radioactively Contaminated Materials Reactor Safe Enclosure Radioactive Waste Management Safe Enclosure Surveillance Spent Fuel Nuclear Power Plant V1

- [1] COUNCIL REGULATION (Euratom) 2021/100 of 25 January 2021 establishing a dedicated financial programme for the decommissioning of nuclear facilities and the management of radioactive waste, and repealing Regulation (Euratom) No 1368/2013
- [2] Presentation on Decommissioning scenarios Analysis, Worldwide NPP decommissioning program analysis and prognosis, Mr Christian GLORENNEC IAEA Vienna 2018
- [3] V1 NPP Decommissioning Documentation first stage: Project B6.1 "The V1 NPP Conceptual Decommissioning Plan"
- [4] 541/2004 Collection of Laws, ACT of 9 September 2004 on peaceful use nuclear energy (the Atomic Act) and on changes and amendments to certain laws
- [5] National Programme for the Management of Spent Nuclear Fuel and Radioactive Waste in the Slovak Republic, National Nuclear Fund of Slovakia
- [6] D3-TD-PMU-05004, PRE-DECOMMISSIONING PACKAGE CONCEPTUAL ENGINEERING OF THE PHYSICAL MODIFICATIONS
- [7] D8-TD-PMU-08001, REPORT ON BOHUNICE V1 NPP DECOMMISSIONING AND HISTORICAL WASTE MANAGEMENT STRATEGY D8
- [8] AIF/NESP-036 Guidelines for Producing Commercial Nuclear Power Plant Decommissioning Cost Estimates, 1986
- [9] Detailed Decommissioning Plan of V1 NPP (2014)

THANK YOU FOR YOUR ATTENTION

