

Creation date	Creator	Editor	Approver
03/09/2021	Y. Jin	Y. Jin	J. Thimonier

Version	Creator	Date	Comments
v0.5	Y. Jin	29/09/2021	Draft test plan
v0.6	Y. Jin	28/10/2021	Final test plan
V1.0	Y. Jin	04/11/2021	Final test plan
V1.5	J. Thimonier	07/02/2022	T1-T4 tests results
V2.0	J.Thimonier	18/03/2022	Minor modifications
V2.1	J.Thimonier	24/03/2022	Minor modifications

I. Table of Contents

١.	Table of Contents	2
I.	Introduction	3
١١.	SCPTime technology	3
i.	Description of the alternative Timing technologies	3
ii.	. SCPTime [®] architecture	3
III.	Test objectives	4
IV.	Tests at JRC	5
i.	Test architecture	5
ii.	. Needed infrastructure at JRC	7
iii	i. Tests description & result	8
	1. T1F: System verification	8
	2. T2H: Short term clock stability with GNSS connection1	0
	3. T2L: Short term clock stability without GNSS 1	1
	4. T3E: Medium term clock stability1	3
V.	Tests in France	4
i.		
ii.	. Tests description & result	5
	1. T4H: Resilience and network monitoring: Connection loss to SCPTime supervision	6
	2. T4I: Resilience and network monitoring: SCPTime time distribution point loss	7
	3. T4J: Resilience and network monitoring: SCPTime network loss1	9
VI.	Appendixes 2	2
i. sy	Appendix 1: Examples of SCPTime's device monitoring service Dashboard and different ynchronization state of device on Dashboard	.2
ii.	. Appendix 2: ADEV, TDEV and MTIE of ATS when synchronized with GPS connected 2	4
iii w	 Appendix 3: ADEV, TDEV and MTIE of ATS for its holdover mode vith GPS unplugged for 24h	.5
iv w	 Appendix 4: ADEV, TDEV and MTIE of ATS for its holdover mode vith GPS unplugged for 14 days	.7

I.Introduction

This document describes the SCPTime technology offering an alternative timing service and the test plan that is related to the demonstration activities to be conducted at JRC and in France.

II.SCPTime technology

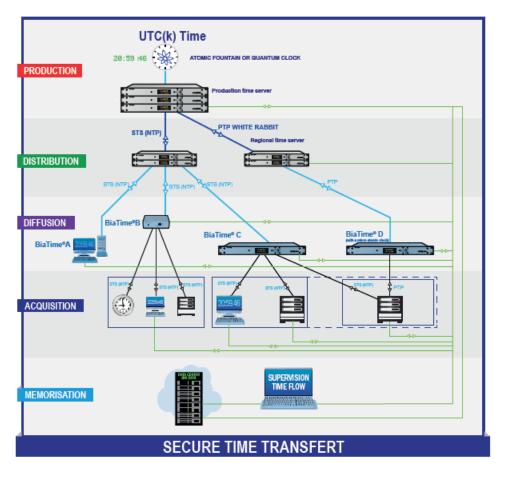
i. Description of the alternative Timing technologies

SCPTime[®] is the result of 5 years of R&D by bringing together knowhow, technologies, and expertise from the French Time/Frequency ecosystem.

SCPTime[®] is intended to make the legal time (UTC time, as defined by authorities of a country, a region, or an organization) available to the largest number of users, in a secured and traceable way from its source to the end user, to meet cybersecurity and regulatory requirements. It is in line with the trends towards a digital society by addressing the challenges of sovereignty and cybersecurity of time arising from the digital economy.

It is designed for the distribution and dissemination of secure, traced and certified "legal time" with target levels of accuracy, in TaaS (Time as A Service) mode

ii. SCPTime[®] architecture


SCPTime[®] architecture is connected upstream to the legal time (UTC time) as its reference time source, and comprises Production, Distribution, Diffusion & Acquisition systems.

The time can be distributed over an IP network via standard time protocols such as NTP or PTP, or via a secure version of the NTP protocol called STS, which ensures the integrity of the time information between two systems if the transport infrastructure does not provide sufficient security.

SCPTrace, the built-in traceability system in SCPTime[®], will provide evidence for administrative or legal process such as reconstitution of the events in logical order, delivery of certificates of conformity relating to legal or industrial requirements.

Through SCPTrace[®], SCPTime[®] offers a total traceability of time and the related security to provide an accurate and certified time.

One complete entity of SCPTime® architecture is composed of the following components as a minimum:

Schema 1-1: SCPTime architecture

- A reference time source: Provided by legal time authority of a country, a region, ... or high-performance atomic clock with good stability, or similar (quantum clock...)
- A Time production system: The production system is connected directly to the UTC reference time source and delivers time signal to Distribution system.
- A Time distribution system: The location of distribution sites shall be defined according to economic activities (close to the end users). The distribution site can be coupled with a datacenter.
- > A Time broadcasting system (Diffusion system): Cloud or on-premise BiaTime Boxes.
- A supervision system: From production to acquisition, time data is monitored and reported through SCPTrace[®] supervision flow. The complete data is collected, analyzed and archived.
- > An acquisition system: Software agents to be installed on devices which require time synchronization from time broadcasting system.

III.Test objectives

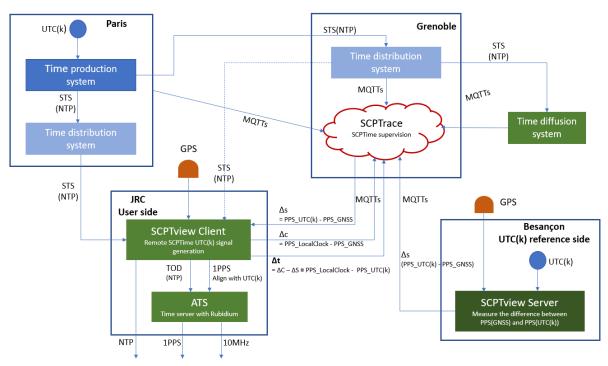
The main test objective is to demonstrate that the SCPTime timing service proposal answers the minimum technical requirements specified by EU Commission, which are listed as follows:

- 1. SCPTime timing service is resilient to GNSS failure
- Timing accuracy provided by SCPTime timing service and delivered to user end is < 1μs compared with UTC
- 3. Timing service provided by SCPTime is traceable to UTC

- 4. SCPTime timing service is resilient and redundant to different modes of failure
- 5. The availability of SCPTime timing service is >99%

The demonstration activities have been conducted at JRC and in France, which have different objectives. Tests planned at JRC focus on the holdover accuracy measurement during the GNSS failure, while the objective of the demonstration in France (Paris and Grenoble) is to give an overview of the whole SCPTime France infrastructure as well as its network resilience capacity and the SCPTime timing service availability.

IV.Tests at JRC


i. Test architecture

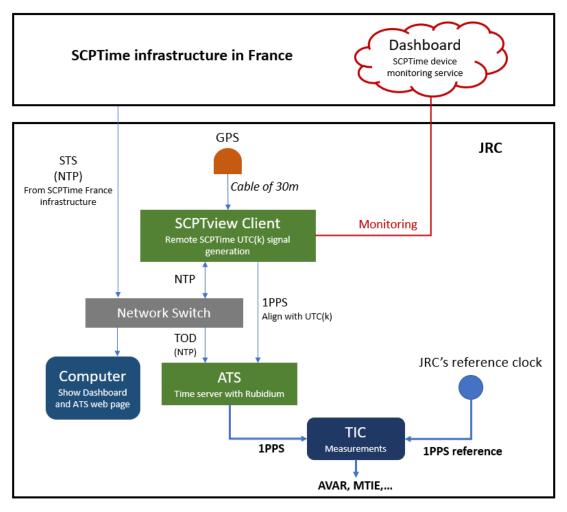
The test architecture for our "Alternative Positioning, Navigation and Timing (PNT) Services" project will be the SCPTime France architecture, which is a French national scale platform and is connected upstream to the UTC(OP) as its reference time source. It comprises Production, Distribution and Diffusion systems.

SCPTrace, the built-in traceability system in SCPTime, will provide evidence for administrative or legal process such as reconstitution of the events in logical order, delivery of certificates of conformity relating to legal or industrial requirements.

SCPTime implements the SCPTview technology by using GNSS signal to obtain an accuracy of a few tens of nano seconds compared with UTC(k) for SCPTime timing service that is delivered to user end.

The architecture diagram *Schema 1-1* shows the demo setup at JRC integrating SCPTView and its interconnection with SCPTime infrastructure in France.

Schema 2-1: SCPTime France infrastructure with SCPTview technology


As shown in Schema 2-1:

- The SCPTview server is connected to the reference time UTC(k) and the GPS source.
- SCPTview server measures the PPS difference between the reference time UTC(k) and GPS time => " Δs = PPS_UTC(k) - PPS_GNSS".
- SCPTview server sends the Δs to SCPTime's supervision system SCPTrace.
- SCPTrace then transfers the Δs value got from SCPTview server to SCPTview Client
- SCPTview Client gets the Δ s value from SCPTrace and meanwhile sends the PPS difference between GNSS and its local clock to SCPTrace => " Δ c = PPS_LocalClock PPS_GNSS".
- The PPS difference between local clock and reference time is thus calculated by SCPTview Client and sent to SCPTrace => " $\Delta t = \Delta s \Delta c = PPS_LocalClock PPS_UTC(k)$ ".
- According to the calculated Δt, SCPTview Client phase shifts its 1PPS output signal from the Δt value to align with the PPS of reference time UTC(k) in distance.

Besides, an ATS (time server with rubidium) or similar device (other devices in development) at JRC will synchronize with SCPTview Client's 1PPS output signal which is aligned with the PPS signal of UTC(k). This ATS or similar device will deliver a 1PPS signal and a 10MHz signal as well as a timing service by NTP.

When the GNSS signal is lost, SCPTview Client will no longer calculate the offset between its local clock and UTC(k). Therefore, it will not be able to phase shift its 1PPS output signal to make it be aligned with the PPS of reference time UTC(k) in distance. It will stop delivering 1PPS signal to the ATS (or similar device). However, the ATS (or similar device) will ensure the holdover and continue to deliver timing service when maintaining accuracy based on its internal rubidium.

The tests at JRC will assess the SCPTview equipment's accuracy and holdover capacity to UTC(k) by taking the 1PPS output signal of the ATS or similar device and comparing it with JRC's reference clock in short term and medium term when the GNSS signal is lost. The *schema 1-2* shown below presents the tests set up at JRC:

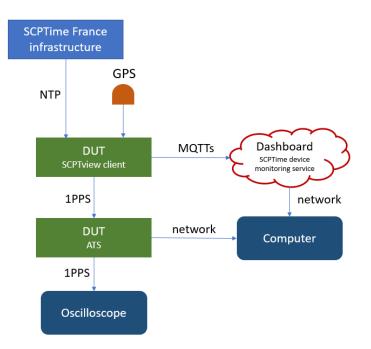
Schema 2-2: Test set up at JRC

ii. Needed infrastructure at JRC

To realize the test setup at JRC, the following infrastructure is needed:

- Indoor room with stabilized temperature between 19°C and 23°C.
- A 19" rack cabinet with 4U available which can support 10Kg.
- Power supply: 230V AC up to 200W.
- A GNSS (GPS) signal brought by a coaxial cable with SMA connector.
- 2 IPv4 addresses on the same LAN.
- SCPTime equipment accepts DHCP or explicit configuration. In the latter case, JRC must provide the network configuration.
- If JRC has any DNS server, SCPTime can use it. If not, SCPTime will use theirs.
- Concerning internet access, one of the IP addresses should access internet on:
 - o port TCP8883 (MQTTs)
 - o Port UDP123 (NTP) (assuming the firewall is stateful)
 - o Port UDP53 (if no DNS Server on LAN)
- A computer with Chrome/Firefox explorer for connection to SCPTime device monitoring web page "Dashboard" and to SCPTime time server web page.

iii. Tests description & result


The table below shows the test scenarios that have been conducted at JRC. The tests were conducted and validated by European Commission auditors, during the period between Nov. 2021 to Jan. 2022.

Test ID	Test name	Duration	Measurements	Metrics (if quantative)
T1F	System verification: Nominal operation	-	Dashboard, 1PPS	Fail/Pass, demo
	Short term clock stability (with GNSS connected): Synchronization connection=			
T2H	1day	24h	Dashboard, 1PPS	AVAR, MTIE
	Short term clock stability:			
T2L	GNSS loss = 1day	24h	Dashboard, 1PPS	AVAR, MTIE
	Medium term clock stability:			
T3E	GNSS loss = 14 days	14 days	Dashboard, 1PPS	AVAR

Table 1-1: Test scenarios at JRC

1. T1F: System verification

	T1F		
Test ID			
Test name	System verification: Nominal operation		
Test place / Date	JRC / 22-11-2021		
	Set up DUTs and verify that they are connected to SCPTime France infrastructure and UTC(OP) is delivered to the DUTs at JRC with some		
Objective	delay.		
	 DUTs ready to go (devices led and front interface) Data - Dashboard 		
Output	3. Data - 1PPS		
Time to execute	-		
Metrics	Pass/fail, descriptive, quantitative		

Schema 2-3: System verification set up at JRC

Set up:

•

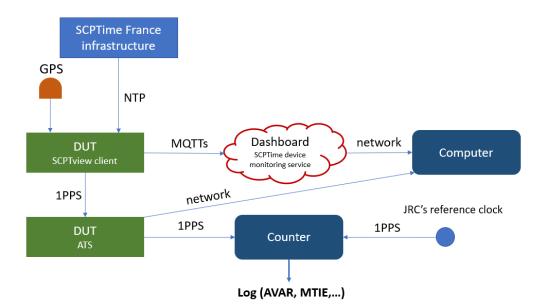
- Set up DUTs assembly according to the setup schema 2-2 and 2-3.
- Connect SCPTview Client and ATS to power supply (230VAC).
 - Turn on SCPTview Client and ATS
 - Devices are turned on
- Connect SCPTview Client's GNSS input to the GPS antenna.
- Connect the network switch to internet to communicate with SCPTime France infrastructure.
- Connect the RJ45 connector of SCPTview Client to the network switch that is connected to SCPTime France infrastructure by internet.
- Connect the computer to the network switch that is connected to SCPTime France infrastructure by internet.
- Wait and check the led of SCPTview Client
 - SCPTime client's led is set to green
- Connect to SCPTime supervision's device monitoring service "Dashboard" on computer by internet (see Appendix 1)
 - Connection to Dashboard OK
- Verify the information of SCPTview Client on Dashboard => SCPTview is in synchronized state (see Appendix 1)
 - Status: Synchronized
 - Sync.state: Synchronized
- Connect the Ethernet input of ATS to the network switch to get the ToD (time of day) from SCPTime client with NTP.
- Connect the PPS input of ATS to 1PPS output of SCPTview Client which is aligned with UTC(k) to get the PPS source.
- Synchronize ATS with the PPS output of SCPTview Client.
- Connect the 1PPS output signal of ATS to oscilloscope and check the signal's characteristics
 - o Voltage

- Pulse width
- Rising edge velocity
- Falling edge velocity

Results			
Item	Expected result	Observed result	
SCPTView Client front panel	LED is green	Ok	
ATS front panel	External PPS locked LEDs are green	Ok Ok	
ATS output	1PPS output is measured	Ok	
SCPTime Dashboard	SCPTViewClient = gtcvojrc Sync state = Synchronized	Ok	

Comments / Metrics

Once the network configuration is done, the setup takes a couple of hours. We experiment a lack of strength with GNSS signal, resolved by adding a signal amplifier. We also correct the 1 PPS output for cable delay, the exact same value as it is corrected on UTC(IT) 1PPS signal : 300ns


1 PPS offset between SCPTime setup and UTC(IT) measure: ~250ns

Conclusion

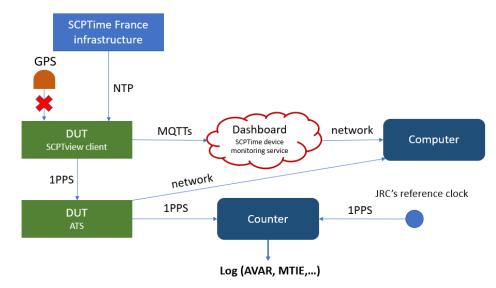
Offset is less than 1 μ s. Test result: Success

2. T2H: Short term clock stability with GNSS connection

Test ID	т2н
	Short term clock stability with GNSS connection: Synchronization = 1
Test name	day
Test place / Date	JRC / from 11-12-2021 to 14-12-2021
	To assess the short-term time stability when GNSS is connected and
Objective	the server is synchronized for 1 day
	1. Devices led and front interface
	2. Data - Dashboard
Output	3. Data - 1PPS
Time to execute	24h
Metrics	Descriptive, quantitative, AVAR, MTIE vs UTC time

Schema 2-4: Short term stability set up (with GNSS)

Set up:


- Execute T1F.
- Connect the JRC's reference clock to the Counter as the reference 1PPS signal.
- Disconnect the 1PPS output of ATS from the oscilloscope and connect the output to the Counter to compare the signal with the reference signal.
- Run experiment for 24h, monitoring performance.

Results			
Item	Expected result	Obtained result	
SCPTView Client front panel	LED is green	Ok	
ATS front panel	External PPS locked	Ok	
	LEDs are green	Ok	
ATS output	1PPS output is connected to counter	Ok	
SCPTime	SCPTViewClient = gtcvojrc	Ok	
Dashboard	Sync state = Synchronized	UK	
Detailed result, metrics, and comments; see appendix 2			

Conclusion	
Offset does not exceed 1µs for a period of 24 hours Test result: Success	

3. T2L: Short term clock stability without GNSS

Test ID	T2L
Test name	Short term clock stability: GNSS loss = 1 day
Test place / Date	JRC / from 07-01-2022 to 10-01-2022
Objective	To assess the short-term time stability and synchronization when GNSS is lost for 1 day
	 Devices led and front interface Data - Dashboard
Output	3. Data - 1PPS
Time to execute	Up to 24h
Metrics	Descriptive, quantitative, AVAR, MTIE vs UTC(IT) time

Schema 2-5: Short term stability set up without GNSS connection

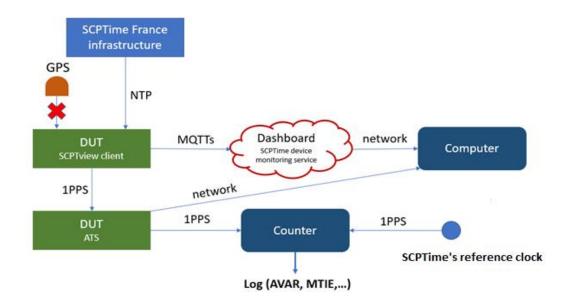
Set up:

•

- Execute T2H.
- Unplug the GNSS input of SCPTview Client (after 24h of synchronization since SCPTview Client and ATS have been synchronized).
- Verify the device led of SCPTview Client after the GPS disconnection
 - SCPTview Client's led is set to orange (holdover) and then quickly to red (freerunning)
- Verify the SCPTview Client information on Dashboard => SCPTview Client is in freerunning (see Appendix 1):
 - Status: Unsync
 - Sync.state: Freerunning
 - Verify the device's front interface of ATS
 - \circ $\;$ ATS is in "running with autonomy" state $\;$
- Run experiment for 24h, monitoring performance.

Results			
Item	Expected result	Obtained result	
SCPTView Client	LED is red	Ok	

front panel		
ATS front panel	Text: No Sync Sync LED is Off	Ok Ok
ATS HOLL pallel	Alarm LED is blinking Red	Ok
ATS output	1PPS output is connected to counter	Ok
SCPTime Dashboard	SCPTViewClient = gtcvojrc Sync state = Holdover for few seconds, then free running for 6 minutes, then unsync for the rest of the test	Ok
Detailed result, me	trics, and comments: see appendix 3	


Detailed result, metrics, and comments: see appendix 3

Conclusion

Drift does not exceed 1 μs for a period of 24 hours Test result: Success

4. T3E: Medium term clock stability

Test ID	T3E
Test name	Medium term clock stability: GNSS loss = 14 days
Test place / Date	SCPTime Lab / from 24-12-2021 to 09-01-2022
Objective	To assess the medium-term time stability and synchronization when GNSS is lost for 14 days
	 Devices led and front interface Data - Dashboard
Output	3. Data - 1PPS
Time to execute	14 days
Metrics	Descriptive, quantitative, AVAR, MTIE vs UTC(IT) time

Schema 2-6: Medium term stability set up without GNSS connection

Set up:

- Due to lack of time, the medium-term tests could not be carried out at JRC, Ispra.
- We reproduced as closely as possible the assembly in place at the JRC in our lab at La Mure.
- Endpoint measurements are conducted by SCPTime engineers and scientists with an HP53132A Universal Frequency Counter

Results			
Item	Expected result	Obtained result	
SCPTView Client front panel	LED is red	Ok	
	Text: No Sync	Ok	
ATS front panel	Sync LED is Off	Ok	
	Alarm LED is blinking Red	Ok	
ATS output	1PPS output is connected to counter	Ok	
SCPTime Dashboard	SCPTViewClient = gtcvojrc Sync state = Holdover for few seconds, then free running for 6 minutes, then unsync for the rest of the test	Ok	
Detailed result, metrics, and comments: see appendix 3			

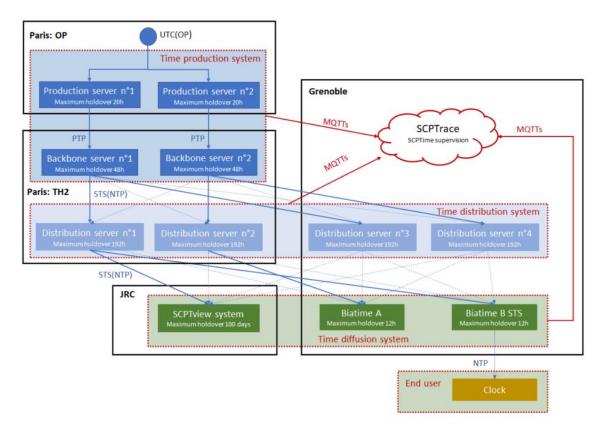
Risks considered:

Risk	Probability	Severity	Action
Data recording fails	medium	high	monitor data frequently
Component fails	low	high	monitor data frequently

V.Tests in France

i.Test architecture

As shown in schema 3-1, the UTC(OP) can be distributed over an IP network via standard time protocols such as NTP or PTP, or via a secure version of the NTP protocol called STS, which ensures the integrity of the time information between two systems if the transport infrastructure does not provide sufficient security.


SCPTime devices are connected to SCPTrace via MQTTs. Through SCPTrace, SCPTime offers a total traceability of time and the related security to provide an accurate and certified time.

Every time system (production, distribution, diffusion) in SCPTime France infrastructure has multiple backup servers to ensure the continuity of service with very high resiliency both on hardware systems and software. Besides, every SCPTime time server has its own holdover capacity. The holdover capacity/duration of each SCPTime device is designed based on the requirement of ATTS Certification for each SCPTime infrastructure level.

The purpose is to ensure a holdover capacity of 5μ s for production time system servers, 10ms for distribution time system servers and 150ms for diffusion time system devices. Thus, after calculation, production servers are configured with 20h's maximum holdover time while backbone servers,

distribution servers and diffusion devices are configured with 48h, 192h and 12h respectively. SCPTview system hasn't been defined yet in ATTS requirement, so for the moment, SCPTview system is configured with 100-day holdover which ensures a holdover capacity of 150µs.

Demonstration in France will show the SCPTime time service's resilience capacity and network monitoring by applying different kinds of failures, including device failure and network failure.

Schema 3-1: SCPTime France infrastructure

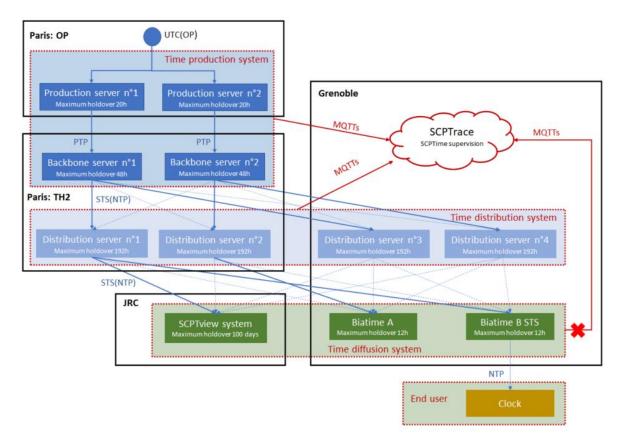
ii.Tests description & result

The table below shows the test scenarios that have been conducted during the demonstration activities in France.

The tests were conducted by SCPTime and validated by European Commission auditors.

Test ID	Test name	Duration	Measurements	Metrics (if quantative)
	Resilience and network			
	monitoring: Connection to			
T4H	SCPTime supervision loss	1h	SCPTime Dashboard	Demo
	Resilience and			
	network monitoring: SCPTime			
T4I	time distribution loss	1h	SCPTime Dashboard	Demo
	Resilience and			
	network monitoring: SCPTime			
T4J	network failure	1h	SCPTime Dashboard	Demo
14J			SCPTime Dashboard	Demo

Table 2-1: Test scenarios in France


1. T4H: Resilience and network monitoring: Connection loss to SCPTime supervision

Test ID	Т4Н
	Resilience and network monitoring: Connection loss to SCPTime
Test name	supervision at the diffusion point
Test place/ Date	France / 03-02-2022
	Verify that the connection loss to SCPTime supervision system of
	Diffusion time device will not immediately disturb the delivery of
Objective	SCPTime timing service to end user
Output	Data - Dashboard
Time to execute	1h
Metrics	Descriptive

a) Description

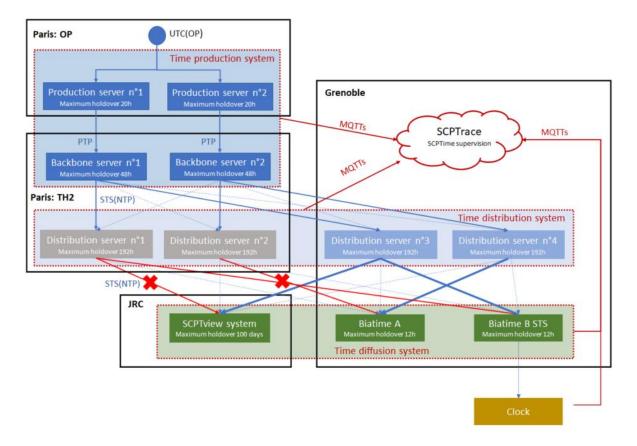
Initial condition:

- All the SCPTime devices are connected to SCPTrace and SCPTime France infrastructure is working well.
- All the SCPTime devices are online and synchronized.
- The Biatime B STS is synchronized with the Distribution server (see schema 2-1).
- A clock is synchronized with Biatime B STS which is the only possible synchronization server for the clock (see schema 3-1).
- Biatime B STS is in "Synchronized" state on SCPTime supervision's device monitoring service "Dashboard".

Schema 3-2: Biatime B STS disconnected from SCPTrace in SCPTime France infrastructure

Actions:

- Disconnect the Biatime B STS from SCPTrace (disable its MQTTs port) without disconnecting it from network
 - Connection loss to SCPTime supervision
- Verify the Biatime B STS's synchronization information on SCPTime Dashboard => Biatime B STS is in Offline state (see Appendix 1)
 - Biatime B STS's "Status" on Dashboard: Offline
- Verify that the front panel LED of the Biatime B is Steady Orange, meaning being in holdover mode
- Verify that Biatime B STS continues to deliver time to the clock in Biatime B STS's holdover mode by checking the clock's synchronization state => Clock stays being synchronized with Biatime B STS
 - Clock is in "Synchronized" state (multicolor display)


b) Results		
Output	Result expected	Observed
Biatime B STS's information on SCPTime Dashboard	Status: Offline	Ok, status observed after 2s
Biatime B STS LED on front panel	LED: Steady orange	Ok, observed after 15s
Clock's synchronization state	Clock's display is multicolour	Ok, no impact

2. T4I: Resilience and network monitoring: SCPTime time distribution point loss

a) Description	
Test ID	T4I
Test name	Resilience and network monitoring: SCPTime time distribution loss
Test Place / Date	France / 03-02-2022
Objective	Verify the changeover between different SCPTime distribution points to ensure the SCPTime timing service delivery to end user after a distribution point loss
Output	Data - Dashboard
Time to execute	1h
Metrics	Descriptive

Initial condition:

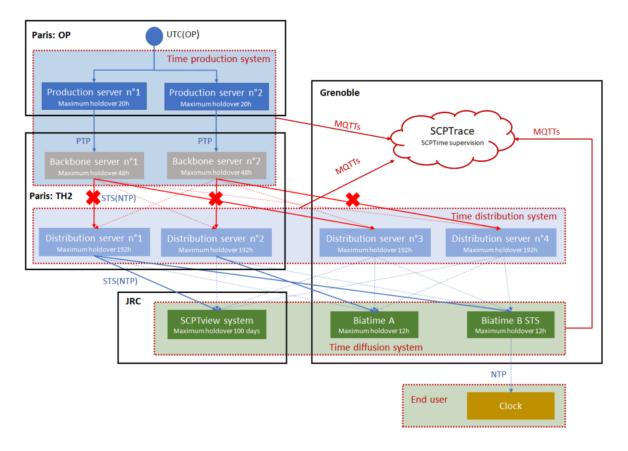
- All the SCPTime devices are connected to SCPTrace and SCPTime France infrastructure is working well.
- All the SCPTime devices are online and synchronized.
- The Biatime B STS is synchronized with a random Distribution server STS output.
- Biatime B STS is shown in "Synchronized" state and synchronized with a random Distribution server STS output on SCPTime Dashboard.

Schema 3-3: One SCPTime time distribution point loss

Actions:

- Downtime the Distribution server STS output to simulate the SCPTime time distribution point loss (inhibit the server NTP output).
- Verify the Distribution server STS output information on SCPTime Dashboard => Distribution • server STS output is freerunning.
 - Distribution server STS output "Status" on Dashboard: Freerunning
- Verify the Biatime B STS's synchronization status and its sync server on SCPTime Dashboard
 - o Biatime B STS receives another upstream server and synchronizes with the new available Distribution server.
 - Biatime B STS continues to diffuse time to its downstream devices 0
 - Biatime B STS's "Status" on Dashboard: Synchronized 0
 - Biatime B STS's "Sync.state" on Dashboard: holdover then Synchronized 0

b) Result		
Item / Action	Expected result	Observed result
Get Synchronization	Dashboard:	Biatime B is
server of Biatime	Biatime B STS gt205890 is synchronized with	synchronized with
gt205890	a distribution STS ouput = gtxxxxxx	gt185430d
	Clock is synchronized with gt205890	Clock Ok
Switch off the	Dashboard:	
Distribution STS	Distribution STS output gt185430d goes	Ok, observed after
output gt185430d	Freerunning	3s


gt205890 receive a new upstream server	New sync server is gt185431a, observed after 2s
gt205890 goes holdover then synchronized	Ok, synchronized after holdover of 60s
Clock desynchronizes for a few seconds then resynchronizes	Ok, resynchronized after 40s

3. T4J: Resilience and network monitoring: SCPTime network loss

a) Description	
Test ID	Т4Ј
Test name	Resilience and network monitoring: SCPTime network failure
Test place / Date	France / 03-02-2022
Objective	Verify that SCPTime network failure will not disturb immediately the SCPTime timing service delivery to user end
Output	Data - Dashboard
Time to execute	1h
Metrics	Descriptive

Initial condition:

- All the SCPTime devices are connected to SCPTrace and SCPTime France infrastructure is working well.
- All the SCPTime devices are online and synchronized.
- The Distribution servers are synchronized with the Backbone servers.
- The Diffusion devices are synchronized with the Distribution servers.
- Backbone servers and Distribution servers are all shown in "Synchronized" status on SCPTime Dashboard.

Schema 3-3: SCPTime network failure

Actions:

- Disconnect all the Backbone servers' NTP output from network to simulate the network failure between Backbone servers and Distribution servers.
- Verify the Backbone servers' NTP output information on SCPTime Dashboard => Backbone server NTP outputs are in Critical_online and Freerunning state (see Appendix 1)
 - Backbone server NTP output's "Status" on Dashboard: Critical_online
 - Backbone server NTP output's "Sync.state" on Dashboard: Freerunning
- Verify the Distribution server's synchronization status on SCPTime Dashboard
 - Distribution server pass into "holdover" state (see Appendix 1) and continues to deliver time to diffusion servers during 192h
 - Distribution server's "Status" on Dashboard: Got_state_ip
 - o Distribution server's "Sync.state" on Dashboard: Holdover
 - o Distribution server's "Sync.server on Dashboard: -(Empty)
- Verify the Biatime B STS's synchronization state on SCPTime Dashboard
 - Biatime B STS stays in "Synchronized" Status and "Synchronized" Sync.state
 - o Biatime B STS continues to diffuse time to its downstream devices

b	Resul	t
\sim	nesui	C .

Output	Result expected	Observed
		Ok, status
Backbone server NTP output's information	Status: Critical_online	observed after
on SCPTime Dashboard	Sync.state: Freerunning	2 s

		Ok, status
Distribution server's information on	Status: Unsync	observed after
SCPTime Dashboard	Sync.state: Holdover	2s
Biatime B STS's information on SCPTime	Status: Synchronized	Ok na imnaat
Dashboard	Sync.state: Synchronized	Ok, no impact
Clock	Synchronized (multicolour)	Ok, no impact

VI.Appendixes

- i. Appendix 1: Examples of SCPTime's device monitoring service Dashboard and different synchronization state of device on Dashboard
 - Synchronized state:

Device gt_187908			
Device information Chart Alerts			
Status information		General information	
Status	Synchronized 2021-10-01 09:5	6:46 UTC Device type	Biatime B STS
Last MQTT connection	2021-05-31 14:32:57 UTC	Designation	Test de Yihuan
Last sync. server	gt_183054b - Distribution server STS output	Commissioning date	2020-11-13 00:00:00 UTC
Status of the last sync.	Synchronized 2021-10-01 09:5	6:46 UTC First connection date	2021-01-01 00:09:24 UTC
Known public IP	10.9.0.63	Disabled Date	
Firmware version	20210202	Configuration	{}
Possible upstream devices	 gt_183054a - Distribution server STS output gt_183054b - Distribution server STS output gt_185434a - Distribution server STS output gt_185434b - Distribution server STS output 		
Synchronisation Chart			
gt_187908 sts gt_18301	4b gt_183054 ntp gt_194813b gt_194813 ptp gt_182210a	gt_182210	

• Holdover state without available upstream server

Device gt_183054

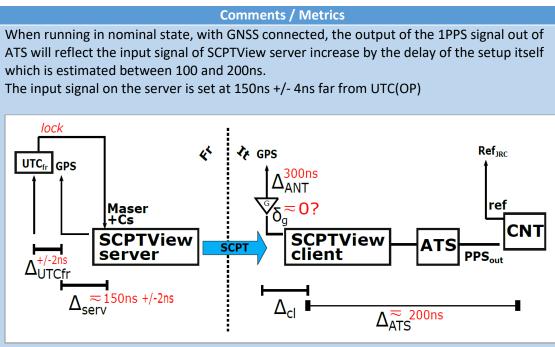
tatus information			General information	
itatus	Got_state_ip	2021-10-01 13:46:11 UTC	Device type	Distribution server
ast MQTT connection	2021-07-06 07:36:38 UTC		Designation	
ast sync. server			Commissioning date	2018-01-12 00:00:00 UTC
tatus of the last sync.	Holdover	2021-10-01 13:46:28 UTC	First connection date	2018-01-12 00:00:00 UTC
nown public IP	10.2.4.106		Disabled Date	
irmware version	2.00 release 20.35		Configuration	{}
ossible upstream devices	gt_187692b - Backbone NTP output gt_194813b - Backbone NTP output			
ynchronisation Chart				

• Unsync and Freerunning state:

Device gt_183054a				
Device information Chart Alerts				
Status information			General information	
Status	Unsync	2021-10-01 13:38:15 UTC	Device type	Distribution server STS output
Last MQTT connection	2021-07-06 07:36:39 UTC		Designation	
Last sync. server	gt183054 - Distribution server		Commissioning date	2018-02-21 00:00:00 UTC
Status of the last sync.	Freerunning	2021-10-01 13:38:14 UTC	First connection date	2018-02-28 00:00:00 UTC
Known public IP	10.2.4.106		Disabled Date	
Firmware version	2.00 release 20.35		Configuration	{}
Possible upstream devices	• gt_183054 - Distribution server			
Synchronisation Chart				
gt_183054a gt_183054 ntp gt_1948	13b gt_194813 ptp gt_182210a gt_182210			

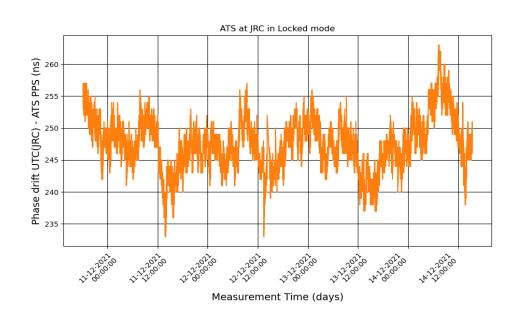
• Critical_online and Freerunning state:

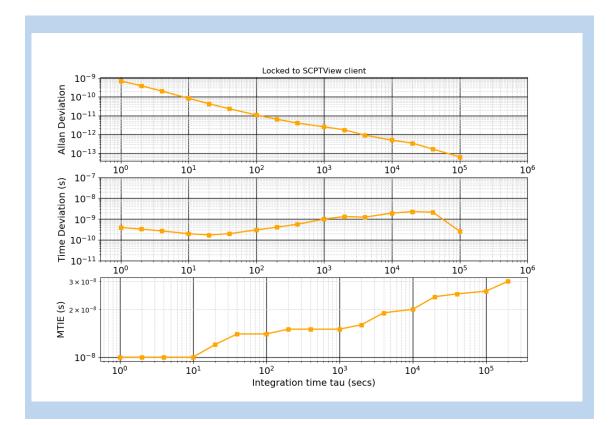
Device	gt_	_187	'692b	
--------	-----	------	-------	--


Device information Chart Alerts				
Status information			General information	
Status	Critical_online	2021-10-01 13:42:40 UTC	Device type	Backbone NTP output
Last MQTT connection	2021-09-29 08:59:29 UTC		Designation	
Last sync. server	gt_187692 - Backbone		Commissioning date	2019-03-15 00:00:00 UTC
Status of the last sync.	Freerunning	2021-10-01 13:42:28 UTC	First connection date	2019-03-15 14:23:33 UTC
Known public IP	10.10.0.21		Disabled Date	
Firmware version	2.00 release 20.35		Configuration	{}
Possible upstream devices	• gt_187692 - Backbone			
Synchronisation Chart				
gt_187692b gt_187692 ptp gt_182209a	gt_182209			

• Offline state:

Device	at	187908


Status information		General information	
Status	Offline	Device type	Biatime B STS
Last MQTT disconnection	2021-10-01 13:57:19 UTC (timestamp from Dashboard)	Designation	Test de Yihuan
Last sync. server		Commissioning date	2020-11-13 00:00:00 0
Status of the last sync.	Synchronized 2021-10-01 13:45:16 UTC	First connection date	2021-01-01 00:09:24 0
Known public IP	10.9.0.63	Disabled Date	
Firmware version	20210202	Configuration	{}
Possible upstream devices	gt_183054a - Distribution server STS output gt_183054b - Distribution server STS output gt_185434a - Distribution server STS output gt_185434b - Distribution server STS output		
Synchronisation Chart			


ii. Appendix 2: ADEV, TDEV and MTIE of ATS when synchronized with GPS connected

ATS output 1PPS is connected to a counter which reference is set to UTC(IT). Measure is the difference in ns between the rising edge of the two signals Data are provided by JRC.

We observed the behavior of our installation from December 11 to 14 and measured the offset between its output 1PPS signal and the reference 1PPS signal provided by JRC. The peak to peak phase fluctuations are equal to 30 ns. The ADEV and TDEV at long term look good, with low values as 7.5e-14 and 360 ps @ 1day of integration time respectively. MTIE shows maximum error of 27 ns @ 1 day of integration time (in good agreement with the observed peak to peak fluctuation value).

iii. Appendix 3: ADEV, TDEV and MTIE of ATS for its holdover mode with GPS unplugged for 24h

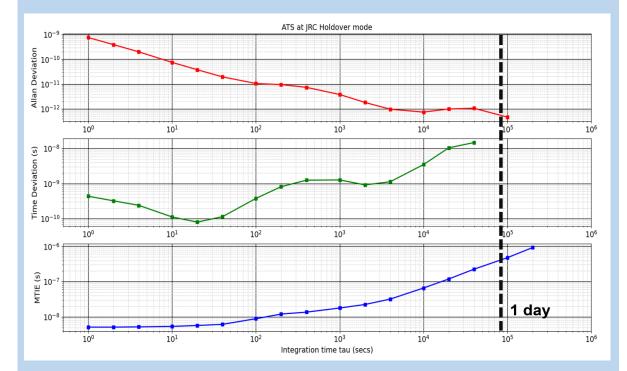
Comments / Metrics

Based on significant data provided by JRC for 24h with GNSS signal lost, here is the analysis from our scientific team:

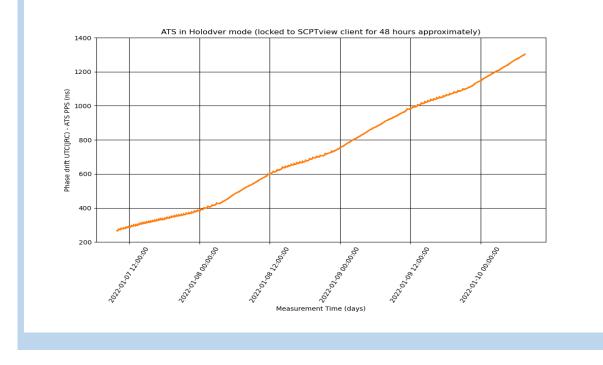
The holdover phase drift over the first day is 289 ns which increases to 387 ns and 401 ns for the second day and third day respectively.

The Holdover Allan Deviation looks good at long term with a value in the low 1e-13 @ 1 day of integration time.

It is expected that the short term (tau = 1 to 100 ns) Allan Deviation is limited due to the resolution of the Time Interval Counter (TIC). The Time Deviation reaches a value less than 50 ns @ half a day of integration time (there is not enough data for the 1 day point calculation).


Following the trend of the time stability for the tau decade (from 10,000 to 100,000 seconds), it is expected that the Time Deviation will reach a value of 500 ns @ 1 day of integration time.

But another quantity known as the Maximum Time Interval Error (MTIE) provides very useful information about the peak value of the time error over a certain period of integration time and is about 500 ns (< 1 μ s) @ 1 day for the 3 day holdover dataset.


Some oscillations with a magnitude of about 10 ns with periodicity ranging from 30 mins to an hour are observed which could be due to perturbation on signals or equipments. But even with these perturbations, the plots show overall good frequency and time stability performance.

Below is a plot comparing the JRC results with our lab tests. The comparison shows good agreement at long term for Allan and Time Deviation, and a bit better at JRC for MTIE.

Environmental conditions, in particular temperature variations, which have not been measured, can significantly influence the results

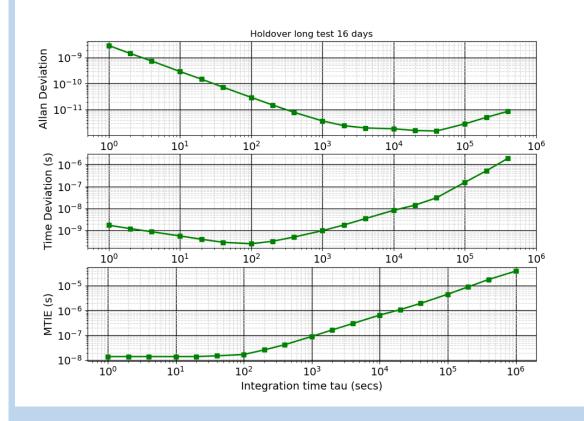
Below is the graph from the raw data given by the TIC:

iv. Appendix 4: ADEV, TDEV and MTIE of ATS for its holdover mode with GPS unplugged for 14 days

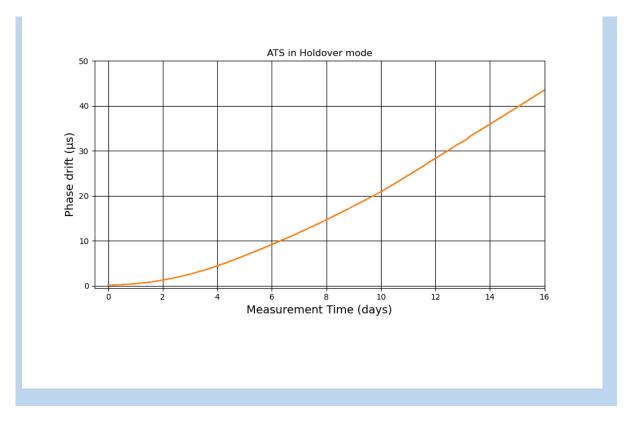
Comments / Metrics

Metric are based on significant data for 16 days with GNSS signal lost, permitting 5.5 days of integration time:

The holdover phase drift over 14 days is 35.9 μs


The Holdover Allan Deviation at long term has a value in the low 1e-11 @ 5.5 days of integration time.

It is expected that the short term (tau = 1 to 100 ns) Allan Deviation is limited due to the resolution of the Time Interval Counter (TIC).


The Time Deviation reaches a value just above $1\mu s @ 6$ days of integration time (possible integration time with 16 days raw data).

The Maximum Time Interval Error (MTIE) provides very useful information about the peak value of the time error over a certain period of integration time and is about $50\mu s$ @ 10 days for the 16 days holdover dataset.

Environmental conditions, in particular temperature variations, which have not been measured, can significantly influence the results

Below is the graph from the raw data given by the TIC:

