

Introduction to Smoothing spline ANOVA models (metamodelling)

M. Ratto

DYNARE Summer School, Paris, June 2015.

Joint Research Centre www.jrc.ec.europa.eu

Serving society
Stimulating innovation
Supporting legislation

Introduction to ANOVA Models

Consider the mapping

$$Y = f(x)$$

where x is a vector of input variables $X = (X_1, X_2, ..., X_k)$

$$X = (X_1, X_2, ..., X_k)$$

and Y is the output.

 X_i is the i-th element of x varying in $0 \le X_i \le 1$

$$0 \le x_i \le 1$$

$$X \in \Omega \longrightarrow f(\mathbf{x})$$

Specification of the input factors

$$X \in \Omega$$

Marginal p.d.f.
$$p(\vec{x}) = \prod p_i(x_i)$$

Marginal p.d.f. + correlation structure

Joint p.d.f. $p(X_1, X_2, ..., X_k)$

MCMC (Gibbs, Metropolis, ...)

Rank correlation,
Dependence-trees,
diagonal band, copulas

Propagation of uncertainty

Realistic Computer models are very costly in terms of run time. We need a way to characterize uncertainty and perform SA based on a limited number of model runs.

We aim to identify a 'simple' relationship between Xi's and Y that fits well the original model and is less computationally demanding.

5

A Meta-model is a simpler model that mimics the larger computational model.

Evaluations of Meta-Models are much faster.

Local approximation methods take f and its derivatives at a base point X_0 and construct a function that matches the properties of f in the nearby region (Taylor series).

- 1. Linear Regression
- 2. Quadratic Response Surface Regression
- Options 1 and 2 work pretty well in some cases. However many realistic models are highly nonlinear and/or periodic and these methods fail.
- 3. Gaussian Process or Spatial Models
- 4. Nonparametric Regression Models
- Both 3 and 4 work fairly well for a small number of inputs.
- Variable selection is helpful for a modest number of inputs.

ANOVA Models

ANOVA models define a decomposition of $Y = f(x)^m$ into main effects and interactions

$$Y = f(x) = f_0 + \sum_{i=1}^{k} f_i(x_i) + \sum_{i} \sum_{j>i} f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,k}(x_1, x_2, \dots, x_k)$$

This is also called the High Dimensional Model Representation (HDMR)

E.g., if k=3:
$$f(x) = f_0 + f_1(x_1) + f_2(x_2) + f_3(x_3) + f_{12}(x_1, x_2) + f_{13}(x_1, x_3) + f_{23}(x_2, x_3) + f_{123}(x_1, x_2, x_3)$$

This decomposition is non-unique for general joint pdf's of x.

The total number of summands in the ANOVA is 2^k

Properties of the ANOVA decomposition (orthogonal case)

$$Y = f(x) = f_0 + \sum_{i=1}^{k} f_i(x_i) + \sum_{i} \sum_{j>i} f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,k}(x_1, x_2, \dots, x_k)$$

If each term is chosen with zero mean ...

$$\int_{0}^{1} f_{i}(x_{i}) dp(x_{i}) = 0, \quad \forall x_{i} \quad i = 1, 2, ..., k$$

$$\int_{0}^{1} \int_{0}^{1} f_{ij}(x_{i}, x_{j}) dp(x_{i}) dp(x_{j}) = 0, \quad \forall x_{i}, x_{j} \quad i < j$$
....
$$\int f_{12...k}(x_{1}, x_{2}, ..., x_{k}) dp(x_{1}) dp(x_{2}) ... dp(x_{k}) = 0.$$

Properties of the ANOVA decomposition (orthogonal case)

$$Y = f(x) = f_0 + \sum_{i=1}^{k} f_i(x_i) + \sum_{i} \sum_{j>i} f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,k}(x_1, x_2, \dots, x_k)$$

... then the ANOVA decomposition has TWO properties

$$\int_{\Omega} f(x) dp(x) = f_0 = E(Y)$$

All the summands are orthogonal:

if
$$(i_1,...,i_s) \neq (j_1,...,j_l)$$

$$\int_{O^k} f_{i_1,...,i_s} f_{j_1,...,j_l} dp(x) = 0$$

It follows that the ANOVA decomposition is **unique** and each term can be defined as ...

Properties of the ANOVA decomposition

$$Y = f(x) = E(Y) + \sum_{i=1}^{k} f_i(x_i) + \sum_{i} \sum_{j>i} f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,k}(x_1, x_2, \dots, x_k)$$

$$\int_{\Omega-x_i} f(x) dp(x \mid x_i) = f_0 + f_i(x_i) = E(X \mid x_i)$$

$$\int_{\Omega - \{x_i, x_j\}} f(x) dp(x \mid x_i x_j) = f_0 + f_i(x_i) + f_j(x_j) + f_{ij}(x_i, x_j)$$

$$= E(Y \mid x_i, x_j)$$

ANOVA

$$Y - E(Y) = \sum_{i=1}^{k} f_i(X_i) + \sum_{i} \sum_{j>i} f_{ij}(X_i, X_j) + \dots + f_{1,2,\dots,k}(X_1, X_2, \dots, X_k)$$

Being the terms orthogonal, we can square and integrate the eq above over Ω and decompose the variance of f(x) into terms of increasing dimensionality (ANOVA)

$$V(Y) = \sum_{i=1}^{k} V_i + \sum_{i} \sum_{j} V_{ij} + \sum_{i} \sum_{j} \sum_{k} V_{ijk} + \cdots + V_{1,2,...,k}$$

$$V_i = \int f_i^2(x_i) dx_i$$
 $V_{i_1,i_2,...i_s} = \int f_{i_1,...,i_s}^2 dx_{i_1} dx_{i_2}...dx_{i_s}$

$$\mathbf{1} = \sum_{i=1}^{k} S_i + \sum_{i} \sum_{j} S_{ij} + \sum_{i} \sum_{j} \sum_{k} S_{ijk} \dots + S_{1,2,\dots,k}$$

If we were to approximate f(x) with a function $g(X_i)$...

$$L = E[(f(x) - g(x_i))^2]$$

$$g(x_i) = E(Y \mid x_i) \Rightarrow L = L_{\min}$$
$$L_{\min} = E[Var(Y \mid X_i)]$$

... $f_i=E(Y|X_i)$ has the minimum loss L among univariate functions

$$V_i = Var[E(Y \mid X_i)] \qquad L = E[(f(x) - g(x))^2]$$

$$= Var(Y) - E[Var(Y \mid X_i)]$$

when we approximate f(x) with a function $g(x_i)$, $g^*=E(Y|X_i)$ has the minimum loss L

$$g(x) = f_0 \Rightarrow L = V(Y)$$

$$g(x) = f(x) \Rightarrow L = 0$$

$$g(x_i) = E(Y \mid x_i) \Rightarrow L = L_{\min}$$

$$L_{\min} = E[Var(Y \mid X_i)]$$

... $f_{ij}=E(Y|X_i,X_j)$ has the minimum loss L among bivariate functions ...

... and so on ...

Var(fi)/var(Y): also called non-parameteric R-squared; Pearson's correlation ratio; ...

$$f(X_1, X_2) = X_1 + X_2^2 + X_1 \cdot X_2$$

$$X_i \sim N(0,1)$$

Tensor product decomposition (reproducing kernel Hilbert space, RKHS)

$$F = \bigotimes_{j=1}^k H_j = \{1\} \oplus \left\{ \bigoplus_{j=1}^k \overline{H}_j \right\} \oplus \left\{ \bigoplus_{j$$

Orthogonal functional decomposition

$$F = \{1\} \oplus \left\{ egin{matrix} q \ \oplus \ F_j \ \end{bmatrix}$$

Smoothing methods to estimate ANOVA decompositions, truncated at the 2nd -3rd order terms:

SMOOTHING SPLINES ANOVA MODELS

Smoothing the y vs x mapping (think of an HP-filter), that provides efficient convergence properties to the true ANOVA decomposition.

[this is one possible methods, other are RBF's, kernel regressions, ...]

Denote the generic mapping as Y = f(X), where $X \in [0, 1]^k$ and k is the number of parameters.

The simplest example of smoothing spline mapping estimation of z is the additive model:

$$g(\mathbf{X}) = g_0 + \sum_{i=1}^k g_i(x_i)$$

To estimate g we can use a multivariate smoothing spline minimization problem, that is, given λ_j , find the minimizer $g(\mathbf{X})$ of:

$$\frac{1}{N} \sum_{n=1}^{N} (y_n - g(\mathbf{X}_n))^2 + \sum_{j=1}^{k} \lambda_j \int_0^1 [g_j''(X_j)]^2 dX_j$$

where a Monte Carlo sample of dimension N is assumed.

This minimization problem requires the estimation of the k hyperparameters λ_j (also denoted as smoothing parameters): GCV, GML, etc. (see e.g. Wahba, 1990; Gu, 2002).

We re-formulate the additive model for the general case with interactions as to find the minimizer $g(\mathbf{X})$ of:

$$\left| \frac{1}{N} \sum_{n=1}^{N} (y_n - g(\mathbf{X}_n))^2 + \lambda_0 \sum_{j=1}^{q} \frac{1}{\theta_j} \| P^j g \|_F^2 \right|$$

where the q-dimensional vector of θ_j smoothing parameters needs to be optimized 'somehow'.

Wahba (1990), Gu (2002), Storlie et al. (2007): en-bloc (like HP);

Ratto et al., 2004-2007: based on recursive filtering and smoothing estimation: SDP modelling. (like KF-smoothing version of the HP);

Liu et al. (2002-2006): polynomial basis expansion.

SDP modelling

SDP modeling is one class of non-parametric smoothing approach first suggested by Young (1993).

The estimation is performed with the help of the `classical' recursive (non-numerical) Kalman filter and associated fixed interval smoothing algorithms and has been applied for sensitivity analysis in Ratto et al. (2004-2007).

Mapping/sensitivity strategies

OAT (Taylor):

- •truncation;
- mapping by knowing all derivatives in a base point
- decomposition with infinite terms

GSA (ANOVA):

- non-parametric regression/smoothing
- mapping on a spacefilling MC sample
- decomposition with finite terms

DSGE models

Let us consider a generic DSGE model:

$$E_t\{g(y_{t+1}, y_t, y_{t-1}, u_t; X)\} = 0$$

y_t endogenous variables, u_t exogenous shocks X structural parameters.

X can be characterised by plausible ranges, expressed in terms of prior distributions, or by a posterior distribution, as a result of an estimation.

DSGE models

The model behaviour is a function of the values assumed for X within the prior or posterior space of structural parameters.

Let Y be a generic 'output' of the model: a multiplier, a measure of fit, an IRF.

Y depends on the values of X

$$Y=f(X_1, ..., X_k),$$

f non-linear analytic form is unknown

Mapping the reduced form of RE models

Relationship between the reduced form of a rational expectation model and the structural coefficients.

let the reduced form be $y_t=Ty_{t-1}+Bu_t$,

'outputs' Y of our analysis will be the entries in the transition matrix $T(X_1,...,X_k)$ or in the matrix $B(X_1,...,X_k)$.

We analyse the reduced form coefficients describing the relationship between

$$\pi_t$$
 vs $e_{R,t}$

We sample the structural coefficients from posterior ranges obtained after estimating the model using data for Canada.

Figure 13: Lubik and Schorfheide model: histograms of the MC sample of the reduced form coefficient $Y = (\pi_t \text{ vs } e_{R,t})$. Left panel: actual values Y; right panel $\log(-Y)$.

$$\log(-(\pi_t \text{ vs } e_{R,t}))$$

$$Y = -\exp(f_0 + f_1 + \dots + f_k + e)$$

$$= -\exp(e) \prod_{j=0}^k \exp(f_j)$$

Factorisation

$$Y = -\exp(e) \prod_{j=0}^{k} \exp(f_j) + \sum_{j=0}^{k} g_j + \varepsilon$$

Correction [new in DYNARE 4.5]

LS2005: pie vs e_R [-log(y)]

LS2005: R vs e_R [-log(y)]

Toolbox documentation

The mapping of the reduced form soultion forces the use of samples from prior ranges or prior distributions, i.e.:

```
pprior=1 (default);
ppost=0 (default);
```

[unless neighbourhood_width is applied]

Toolbox documentation

option name	default	description
redform	0	0 = don't prepare MC sample of
		reduced form matrices
		1 = prepare MC sample of
		reduced form matrices
load_redform	0	0 = estimate the mapping of
		reduced form model
		1 = load previously estimated mapping
logtrans_redform	0	0 = use raw entries
		1 = use log-transformed entries
threshold_redform	0	= don't filter MC entries
		of reduced form coefficients
		[max max] = analyse filtered
		entries within the range [max max]
ksstat_redform	0.001	critical p-value for Smirnov statistics d
		when threshold_redform is active
		plot parameters with p-value <ksstat_redform< th=""></ksstat_redform<>
alpha2_redform	0.001	critical p-value for correlation ρ
		when threshold_redform is active
		plot couples of parameters with
		p-value <alpha2_redform< th=""></alpha2_redform<>
namendo	0	list of endogenous variables
	1	jolly character to indicate ALL endogenous
nanlagendo	0	list of lagged endogenous variables:
		analyse entries [namendo×namlagendo]
	Ξ	jolly character to indicate ALL endogenous
nanexo	0	list of exogenous variables:
		analyse entries [namendo×namexo]
	1	jolly character to indicate ALL exogenous

ss_anova Toolbox

Download here the Recursive SS-ANOVA Toolbox for MATLAB.

http://ipsc.jrc.ec.europa.eu/fileadmin/repository/sfa/finepro/software/ss_anova_recurs.zip

http://ipsc.jrc.ec.europa.eu/fileadmin/repository/sfa/finepro/software/ss_anova_recurs_matlab_ver_less_than_7.5 .zip (MATLAB version < 7.5)

Using Monte Carlo filtering

Store the sample of the state space A,B matrices;

For 1-step ahead irf, perform the MCF sensitivity tests for B(i,j) within/outside the specified ranges.

Using Monte Carlo filtering: $y = (\pi_t \text{ vs } R_{t-1}) \in [-1, 0]$

Using Monte Carlo filtering: $y = (\pi_t \text{ vs } R_{t-1}) \in [-\infty, \infty]$

Mapping reduced form solution

option name	default	description
redform	0	0 = don't prepare MC sample of
		reduced form matrices
		1 = prepare MC sample of
		reduced form matrices
load_redform	0	0 = estimate the mapping of
		reduced form model
		1 = load previously estimated mapping
logtrans_redform	0	0 = use raw entries
		1 = use log-transformed entries
threshold_redform		= don't filter MC entries
		of reduced form coefficients
		[max max] = analyse filtered
		entries within the range [max max]
$ksstat_redform$	0.001	critical p-value for Smirnov statistics d
		when threshold_redform is active
		plot parameters with p-value <ksstat_redform< th=""></ksstat_redform<>
alpha2_redform	0	critical p-value for correlation ρ
		when threshold_redform is active
		plot couples of parameters with
		p-value <alpha2_redform< th=""></alpha2_redform<>
namendo	()	list of endogenous variables
	:	jolly character to indicate ALL endogenous
namlagendo	()	list of lagged endogenous variables:
		analyse entries [namendo×namlagendo]
	:	jolly character to indicate ALL endogenous
namexo	()	list of exogenous variables:
		analyse entries [namendo×namexo]
	:	jolly character to indicate ALL exogenous

Commission