Introduction to Smoothing spline ANOVA models (metamodelling)

M. Ratto

DYNARE Summer School, Paris, June 2015.

Joint Research Centre www.jrc.ec.europa.eu

Serving society
Stimulating innovation
Supporting legislation

Consider the mapping

$$
Y=f(x)
$$

where x is a vector of input variables

```
x=(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{k}{})
```

and Y is the output.
x_{i} is the i -th element of x varying in $0 \leq x_{i} \leq 1$

$x \in \Omega$

Marginal p.d.f. $\quad p(\vec{x})=\prod p_{i}\left(x_{i}\right)$

Marginal p.d.f. + correlation structure

Rank correlation, Dependence-trees,
Joint p.d.f. $p\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ diagonal band, copulas MCMC (Gibbs, Metropolis, ...)

Model approximation (meta-modelling)

Realistic Computer models are very costly in terms of run time. We need a way to characterize uncertainty and perform SA based on a limited number of model runs.

We aim to identify a 'simple' relationship between Xi's and Y that fits well the original model and is less computationally demanding.

Model approximation (meta-modelling)

A Meta-model is a simpler model that mimics the larger computational model.

Evaluations of Meta-Models are much faster.

Model approximation (meta-modelling)

Local approximation methods take f and its derivatives at a base point X_{0} and construct a function that matches the properties of f in the nearby region (Taylor series).

Model approximation (meta-modelling)

1. Linear Regression
2. Quadratic Response Surface Regression

- Options 1 and 2 work pretty well in some cases. However many realistic models are highly nonlinear and/or periodic and these methods fail.

3. Gaussian Process or Spatial Models
4. Nonparametric Regression Models

- Both 3 and 4 work fairly well for a small number of inputs.
- Variable selection is helpful for a modest number of inputs.

ANOVA models define a decomposition of $Y=f(x)$ into main effects and interactions

$$
Y=f(x)=f_{0}+\sum_{i=1}^{k} f_{i}\left(x_{i}\right)+\sum_{i} \sum_{j>i} f_{i j}\left(x_{i}, x_{j}\right)+\ldots+f_{1,2, \ldots, k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

This is also called the High Dimensional Model Representation (HDMR)

$$
\begin{array}{ll}
\text { E.g., } & f(x)=f_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)+f_{12}\left(x_{1}, x_{2}\right)+ \\
\text { if } \mathrm{k}=3 \text { : } & f_{13}\left(x_{1}, x_{3}\right)+f_{23}\left(x_{2}, x_{3}\right)+f_{123}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}
$$

This decomposition is non-unique for general joint pdf's of \mathbf{x}.
The total number of summands in the ANOVA is 2^{k}

Properties of the ANOVA decomposition (orthogonal case)

$Y=f(x)=f_{0}+\sum_{i=1}^{k} f_{i}\left(x_{i}\right)+\sum_{i} \sum_{j>i} f_{i j}\left(x_{i}, x_{j}\right)+\ldots+f_{1,2, \ldots, k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
If each term is chosen with zero mean ...

$$
\begin{aligned}
& \int_{0}^{1} f_{i}\left(x_{i}\right) \quad d p\left(x_{i}\right)=0, \quad \forall x_{i} \quad i=1,2, \ldots, k \\
& \int_{0}^{1} \int_{0}^{1} f_{i j}\left(x_{i}, x_{j}\right) \quad d p\left(x_{i}\right) d p\left(x_{j}\right)=0, \quad \forall x_{i}, x_{j} \quad i<j \\
& \ldots \\
& \int_{\Omega} f_{12 \ldots k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \quad d p\left(x_{1}\right) d p\left(x_{2}\right) \ldots d p\left(x_{k}\right)=0 .
\end{aligned}
$$

Properties of the ANOVA decomposition

 (orthogonal case)$Y=f(x)=f_{0}+\sum_{i=1}^{k} f_{i}\left(x_{i}\right)+\sum_{i} \sum_{j>i} f_{i j}\left(x_{i}, x_{j}\right)+\ldots+f_{1,2, \ldots, k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
... then the ANOVA decomposition has TWO properties

$$
\int_{\Omega} f(x) d p(x)=f_{0}=E(Y)
$$

All the summands are orthogonal:
if $\left(i_{1}, \ldots, i_{s}\right) \neq\left(j_{1}, \ldots, j_{l}\right) \quad \int_{\Omega^{k}} f_{i_{1}, \ldots, i_{s}} f_{j_{1}, \ldots, j_{l}} d p(x)=0$

It follows that the ANOVA decomposition is unique and each term can be defined as ...

Properties of the ANOVA decomposition

$\int_{\Omega-x_{i}} \cdot \int f(x) d p\left(x \mid x_{i}\right)=f_{0}+f_{i}\left(x_{i}\right)=E\left(Y \mid x_{i}\right)$

$\int_{\Omega-\left\{x_{i}, x_{j}\right\}} \cdot \begin{aligned} & \int f(x) d p\left(x \mid x_{i} x_{j}\right)=f_{0}+f_{i}\left(x_{i}\right)+f_{j}\left(x_{j}\right)+f_{i j}\left(x_{i}, x_{j}\right) \\ & =E\left(Y \mid x_{i}, x_{j}\right)\end{aligned}$

ANOVA

$Y-E(Y)=\sum_{i=1}^{k} f_{i}\left(x_{i}\right)+\sum_{i} \sum_{j>1} f_{i j}\left(x_{i}, x_{j}\right)+\ldots+f_{1,2, \ldots k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
Being the terms orthogonal, we can square and integrate the eq above over Ω and decompose the variance of $f(x)$ into terms of increasing dimensionality (ANOVA)

$$
\begin{aligned}
& V(Y)=\sum_{i=1}^{k} V_{i}+\sum_{i} \sum_{j} V_{i j}+\sum_{i} \sum_{j} \sum_{k} V_{i j k} \ldots+V_{1,2, \ldots, k} \\
& V_{i}=\int f_{i}^{2}\left(x_{i}\right) d x_{i} \quad V_{i_{1}, i_{2}, \ldots i_{s}}=\int f^{2} i_{i_{1}, \ldots, i_{s}} d x_{i_{1}} d x_{i_{2}} \ldots d x_{i_{s}} \\
& 1=\sum_{i=1}^{k} S_{i}+\sum_{i} \sum_{j} S_{i j}+\sum_{i} \sum_{j} \sum_{k} S_{i j k} \ldots+S_{1,2, \ldots, k}
\end{aligned}
$$

Main effects

If we were to approximate $f(x)$ with a function $g\left(X_{i}\right) \ldots$

$$
\begin{gathered}
L=E\left[\left(f(x)-g\left(x_{i}\right)\right)^{2}\right] \\
g\left(x_{i}\right)=E\left(Y \mid x_{i}\right) \Rightarrow L=L_{\text {min }} \\
L_{\min }=E\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]
\end{gathered}
$$

$\ldots f_{i}=E\left(Y \mid X_{i}\right)$ has the minimum loss L among univariate functions

Main effects

$$
\begin{aligned}
& V_{i}=\operatorname{Var}\left[E\left(Y \mid x_{i}\right)\right] \quad L=E\left[(f(x)-g(x))^{2}\right] \\
& =\operatorname{Var}(Y)-E\left[\operatorname{Var}\left(Y \mid x_{i}\right)\right] \\
& g(x)=f_{0} \Rightarrow L=V(Y) \\
& g(x)=f(x) \Rightarrow L=0 \\
& \text { when we approximate } f(x) \text { with a } \\
& \text { function } \mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{g}^{*}=\mathrm{E}\left(\mathrm{Y} \mid \mathrm{X}_{\mathrm{i}}\right) \text { has the } \\
& \text { minimum loss } L \\
& g\left(x_{i}\right)=E\left(Y \mid x_{i}\right) \Rightarrow L=L_{\text {min }} \\
& L_{\text {min }}=E\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]
\end{aligned}
$$

Main effects

$\ldots f_{i j}=E\left(Y \mid X_{i}, X_{j}\right)$ has the minimum loss L among bivariate functions ...
... and so on ...

Var(fi)/var(Y): also called non-parameteric R-squared; Pearson's correlation ratio; ...

Main effects

(a)

(c)

(b)

(d)

$$
\begin{aligned}
& f\left(X_{1}, X_{2}\right)= \\
& X_{1}+X_{2}^{2}+X_{1} \cdot X_{2}
\end{aligned}
$$

$$
X_{i} \sim N(0,1)
$$

Centre

Tensor product decomposition (reproducing kernel Hilbert space, RKHS)

Orthogonal functional decomposition

$$
F=\{1\} \oplus\left\{\underset{j=1}{\oplus} F_{j}\right\}
$$

Smoothing methods to estimate ANOVA decompositions, truncated at the $2^{\text {nd }}-3^{\text {rd }}$ order terms:

SMOOTHING SPLINES ANOVA MODELS

Smoothing the y vs x mapping (think of an HPfilter), that provides efficient convergence properties to the true ANOVA decomposition.
[this is one possible methods, other are RBF's, kernel regressions, ...]

ANOVA model estimation

Denote the generic mapping as $Y=f(\mathbf{X})$, where $\mathbf{X} \in[0,1]^{k}$ and k is the number of parameters.

The simplest example of smoothing spline mapping estimation of z is the additive model:

$$
g(\mathbf{X})=g_{0}+\sum_{i=1}^{k} g_{i}\left(x_{i}\right)
$$

To estimate g we can use a multivariate smoothing spline minimization problem, that is, given λ_{j}, find the minimizer $g(\mathbf{X})$ of:

$$
\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-g\left(\mathbf{X}_{n}\right)\right)^{2}+\sum_{j=1}^{k} \lambda_{j} \int_{0}^{1}\left[g_{j}^{\prime \prime}\left(X_{j}\right)\right]^{2} d X_{j}
$$

where a Monte Carlo sample of dimension N is assumed.
This minimization problem requires the estimation of the k hyperparameters λ_{j} (also denoted as smoothing parameters): GCV, GML, etc. (see e.g. Wahba, 1990; Gu, 2002).

ANOVA model estimation

We re-formulate the additive model for the general case with interactions as to find the minimizer $g(X)$ of:

$$
\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-g\left(\mathbf{X}_{n}\right)\right)^{2}+\lambda_{0} \sum_{j=1}^{q} \frac{1}{\theta_{j}}\left\|P^{j} g\right\|_{F}^{2}
$$

where the q-dimensional vector of θ_{j} smoothing parameters needs to be optimized 'somehow'.

Wahba (1990), Gu (2002), Storlie et al. (2007): en-bloc (like HP);

Ratto et al., 2004-2007: based on recursive filtering and smoothing estimation: SDP modelling. (like KF-smoothing version of the HP);

Liu et al. (2002-2006): polynomial basis expansion.

SDP modeling is one class of non-parametric smoothing approach first suggested by Young (1993).

The estimation is performed with the help of the 'classical' recursive (non-numerical) Kalman filter and associated fixed interval smoothing algorithms and has been applied for sensitivity analysis in Ratto et al. (2004-2007).

Mapping/sensitivity strategies

OAT (Taylor):
-truncation;

- mapping by knowing all derivatives in a base point
- decomposition with infinite terms

GSA (ANOVA):

- non-parametric regression/smoothing - mapping on a spacefilling MC sample
- decomposition with finite terms

Let us consider a generic DSGE model:

$$
E_{t}\left\{g\left(y_{t+1}, y_{t}, y_{t-1}, u_{t} ; X\right)\right\}=0
$$

y_{t} endogenous variables,
u_{t} exogenous shocks
X structural parameters.
X can be characterised by plausible ranges, expressed
in terms of prior distributions, or by a posterior distribution, as a result of an estimation.

The model behaviour is a function of the values assumed for X within the prior or posterior space of structural parameters.

Let Y be a generic 'output' of the model: a multiplier, a measure of fit, an IRF.
Y depends on the values of X
$Y=f\left(X_{1}, \ldots, X_{k}\right)$,
f non-linear analytic form is unknown

Relationship between the reduced form of a rational expectation model and the structural coefficients.
let the reduced form be $y_{t}=T y_{t-1}+B u_{t}$,
'outputs' Y of our analysis will be the entries in the transition matrix $T\left(X_{1}, \ldots, X_{k}\right)$ or in the matrix $B\left(X_{1}, \ldots, X_{k}\right)$.

Lubik Schorfheide (2005)

We analyse the reduced form coefficients describing the relationship between
$\pi_{\mathrm{t}} \mathrm{Vs} \mathrm{e}_{\mathrm{R}, \mathrm{t}}$
We sample the structural coefficients from posterior ranges obtained after estimating the model using data for Canada.

Lubik Schorfheide (2005)

Figure 13: Lubik and Schorfheide model: histograms of the MC sample of the reduced form coefficient $Y=\left(\pi_{t}\right.$ vs $\left.e_{R, t}\right)$. Left panel: actual values Y; right panel $\log (-Y)$.

Lubik Schorfheide (2005)

$\log \left(-\left(\Pi_{t}\right.\right.$ vs $\left.\left.e_{R, t}\right)\right)$

$$
\begin{aligned}
& Y=-\exp \left(f_{0}+f_{1}+\ldots+f_{k}+e\right) \\
& =-\exp (e) \prod_{j=0}^{k} \exp \left(f_{j}\right)
\end{aligned}
$$

Factorisation

$$
Y=-\exp (e) \prod_{j=0}^{k} \exp \left(f_{j}\right)+\sum_{j=0}^{k} g_{j}+\varepsilon
$$

Correction [new in DYNARE 4.5]

LS2005: pie vs e_R [-log(y)]

$\mathrm{rr}, \mathrm{Si}=0.00$

rho ${ }_{\mathrm{p}}$ ies, $\mathrm{Si}=0.00$

LS2005: R vs e_R [-log(y)]

Lubik Schorfheide (2005)

Reduced form GSA - Log-transformed elements

Toolbox documentation

The mapping of the reduced form soultion forces the use of samples from prior ranges or prior distributions, i.e.:
pprior=1 (default);
ppost=0 (default);
[unless neighbourhood_width is applied]

Toolbox documentation

option name	default	description
rediomm	0	$0=$ don't prepare MC sample of reduced form matrices $1=$ prepare MC sample of reduced form matrices
10ad_rediorm	0	$0=$ estimate the mapping of reduced form model $1=$ load previously estimated mapping
logtrans_redicim	0	$\begin{aligned} & 0=\text { use raw entries } \\ & 1=\text { use log-transformed entries } \end{aligned}$
threehold_rediorm	[]	[]$=$ don't flter MC entries of reduced form ocempients [max max] = analyse flltered entries within the range [max max]
kestat_rediorm	0.001	critical p-value for Smirnoy statistics d when threshold_redrorn is active plot parameters with p-value<kartat_rediorm
alphas_redrorm	0.001	critical p-value for correlation ρ when threshold_redrorn is active plot couples of parameters with p-value<alphaz_redrorm
namenac	0	list of endogenous variables
	:	jolly character to indicate ALL endogenous
namlagendo	0	list of lagged endogenous variables: analyge entries [namendo $\times n a m l a g e n d o$]
	:	jolly character to indicate ALL endogenous
namexo	0	list of excgenous variables: analyse entries [namendo $\times n a m e x 0$]

ss_anova Toolbox

Download here the Recursive SS-ANOVA Toolbox for MATLAB.
http://ipsc.jrc.ec.europa.eu/fileadmin/repository/sfa/finepro/software/ss_anova_recurs.zip

```
http://ipsc.jrc.ec.europa.eu/fileadmin/repository/sfa/finepro/software/ss_anova_recurs_matlab_ver_less_than_7.5
                            .zip
    (MATLAB version < 7.5)
```


Using Monte Carlo filtering

Store the sample of the state space A, B matrices;

For 1-step ahead irf, perform the MCF sensitivity tests for $B(i, j)$ within/outside the specified ranges.

Using Monte Carlo filtering: $\quad y=\left(n_{t}\right.$ vs $\left.R_{t-1}\right) \in[-1,0]$

Using Monte Carlo filtering: $\quad y=\left(\pi_{t}\right.$ vs $\left.R_{t-1}\right) \in[-\infty, \infty]$

1-dec 2-dec 3-dec 4-dec 5-dec 6-dec 7-dec 8-dec 9-dec 10-dec

Centre

Mapping reduced form solution

option name	default	description	European
redform	0	$0=$ don't prepare MC sample of reduced form matrices $1=$ prepare MC sample of reduced form matrices	Commission
load_redform	0	$0=$ estimate the mapping of reduced form model $1=$ load previously estimated mapping	
logtrans_redform	0	$\begin{aligned} & 0=\text { use raw entries } \\ & 1=\text { use log-transformed entries } \end{aligned}$	
threshold_redform]	[] = don't filter MC entries of reduced form coefficients $[\max \max]=$ analyse filtered entries within the range $[\max \max]$	
ksstat_redform	0.001	critical p-value for Smirnov statistics d when threshold_redform is active plot parameters with p-value $<$ ksstat_redform	
alpha2_redform	0	critical p-value for correlation ρ when threshold_redform is active plot couples of parameters with p-value<alpha2_redform	
namendo		list of endogenous variables jolly character to indicate ALL endogenous	
namlagendo	()	list of lagged endogenous variables: analyse entries [namendo \times namlagendo]	
	:	jolly character to indicate ALL endogenous	
namexo	()	list of exogenous variables: analyse entries [namendo \times namexo]	41

