

Compilation of analytical methods for model migrants in foodstuffs: Review of analytical methodologies

This publication corresponds to project deliverable D2 of the

EU-Project QLK1-CT2002-2390 "FOODMIGROSURE"

Modelling Migration from Plastics into Foodstuffs as a Novel and Cost Efficient Tool for Estimation of Consumer Exposure from Food Contact Materials.

P. Paseiro (author)

C. Simoneau and R. Franz (editors)

Mission of the IHCP

The mission of the Institute for Health and Consumer Protection is to support EU policies for health and consumer protection. The institute carries out research to improve the understanding of the hazards, exposure and risk posed by food contaminants, drugs, chemicals, products, services and to develop, validate and apply advances methods and strategies of high scientific quality.

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int).

ISSN 1018-5593 EUR 22552 EN © European Communities, 2006 Reproduction is authorised provided that the source is acknowledged *Printed in Italy*

Compilation of analytical methods for model migrants in foodstuffs: Review of analytical methodologies

This publication corresponds to project deliverable D2 of the EU-Project QLK1-CT2002-2390

"FOODMIGROSURE"

Modelling Migration from Plastics into Foodstuffs as a Novel and Cost Efficient Tool for Estimation of Consumer Exposure from Food Contact Materials.

P. Paseiro (author)

R. Franz and C. Simoneau (editors)

Co-Authors

- Sendón García, Raquel
- Sanches Silva, Ana
- Lopez Hernandez, Julia

Universidad de Santiago de Compostela,

Dpt. Química Analítica, Nutrición E Bromatoloxia,

Facultad de Farmacia

Santiago de Compostela, ES

INITIAL CONSIDERATIONS

- 1. Model migrants chosen for this project and their interesting physical and chemical properties are in table 1.
- 2. An abstract of the revised literature on analytical methods in polymers, food simulants and foodstuffs is collected in table 2; it can be summarized in three points.
 - a) The literature on this subject is scant, and most has placed more emphasis on results concerning, migration in simulants and amount in polymers than on food analysis.
 - b) Analytical methods are still in the research and development stage, and no particular set of methods has attracted widespread agreement. No two studies on the use of compounds appear to have used the same procedure to determine a given compound in a given type of sample.
 - c) Some of the protocols that have been used are not described in the literature in sufficient detail to allow confident replication by other laboratories. This is a common situation in the early stage of the development of the analytical methodology.

To sum up, in general it is not at present possible to draw up reliable analytical protocols for the determination of all the selected compounds in food. For most migrant/food combinations, any protocol drawn up on the basis of the literature and general analytical principles and experience is necessarily a tentative proposal requiring exhaustive evaluation.

 Results of preliminary experiments carried out by us about properties of interest (ultraviolet, fluorescence, atmospheric pressure chemical ionization-mass spectroscopy, GC possibility and acetonitrile/olive oil extraction) to prepare analytical methods are included in table 3. A short description of experimental procedures is in Annex I. 4. General recommendations, focused in the preparation of the sample and the determination stage, to prepare analytical procedures for model migrants in foods are suggested in table 4.

ANALYSIS OF MODEL MIGRANTS. SAMPLE PREPARATION

Polymer materials

In general, the first stage in the determination of the migrants in polymers is their separation from the matrix. For this, the two most widely used methods are as follows.

1) Extraction with solvents. It is widely accepted that the solvent used should both dissolve the target compound well and also swell the polymer matrix. Polymer swelling data are readily available in the literature, but the solubilities of the selected surrogates in plausible extraction solvents are only incompletely documented and, pending determination, must be estimated on the basis of the nature of analyte and extractant. Several combinations solvent/analyte/polymer has been used. Dichloromethane for Irganox 1076 and DEHA in multilayer materials (PP/EVA/EVOH); acetonitrile for Chimassorb 81, BHT and Irganox 1076 in PET; ethanol 95% and 2-propanol for Caprolactam in polyamide and PVC; heptane for BHT from LDPE; methanol for Limonene in LDPE; and THF for Chimassorb 81 and Uvitex OB in HDPE and PP. Extraction procedures are usually carried out by hand shaking, although sometimes ultrasonic maceration or Soxhlet were used to improve the process (Vargo, J. D., 1985; Ulsaker, G. A., 1992; Nerin, C., 1996; O' Brien, A. P., 1997; Marque, D., 1998; Monteiro, M., 1998; Wessling, C., 1998; Avison, S. J., 2001; EU project G6RD-CT200-Regarding other food contact materials, Laurolactam, 00411). DIPN and Benzophenone were extracted from paper and board with absolute ethanol (Summerfield, W., 2001; Triantafyllou, V. I., 2002). Extractions with Supercritical Fluid or Microwave-Assisted were used for Irganox 1076 and Chimassorb 81 in PE (Salafranca, J., 1999), and DEHA and ATBC in PVC (Cano, J. M., 2002).

2) Use of solvents that swell and/or dissolve both selected compound and polymer, followed by precipitation of the polymer. Toluene for polyolefins containing Irganox 1076 followed by precipitation of the polymer with methanol (EU project G6RD-CT200-00411). DEHA was determined by total dissolution of polymers with chloroform and then precipitating with methanol (O' Brien, A. P., 1997). Polycarbonates containing Bisphenol A were dissolved in dichloromethane or chloroform and then precipitated with 2-propanol (Mountfort, K. A., 1997) or re-extracted with a sodium hydroxide solution (Howe, S. R., 1998).

Food simulants

 Aqueous official food simulants (distilled water, acetic acid 3%(w/v) and ethanol 10%(v/v))

Usually they are directly injected when the analysis is carried out by RP-HPLC. DEHA, Irganox 1076 and Bisphenol A were determined following this methodology (O'Brien, A. P, 1997, Howe, S. R., 1998), and Chimassorb 81 and ε -Caprolactam after dilution with miscible organic solvents (Spyropoulos, D.V., 1998; EU project G6RD-CT200-00411),

Other times, a concentration step or change of solvent is necessary before the chromatographic analysis. Irganox and DEHA were extracted with hexane (Simoneau, C., 1999), Chimassorb 81 with dichloromethane (Nerin, C., 1996), Uvitex OB with chloroform and DEHA with heptane (O' Brien, A. P., 1997). Benzophenone was extracted using an activated silica-bound-phase cartridge, which was eluted with a methanolic solution (Papillound, S., 2002). After drying Bisphenol A residue was redissolved with acetonitrile (Munguia-Lopez, E., 2001).

For volatiles substances specific techniques were applied. Solid Phase Micro Extraction (SPE) for the determination of styrene (Silva, F. C., 2000) and BHT (Tombesi, N., 2002) and thermal desorption extraction for determination of Limonene (Linssen, J. P. H., 1993).

2) Official fatty food simulants (olive oil, synthetic mixture of triglycerides, sunflower oil and corn oil).

Dilution with solvents followed by direct injection in a chromatographic system. Acetone was used in the determination of the migration of Irganox 1076 (Helmroth, I. E., 2002; O'Brien, A. P., 1997), Chimassorb 81 and Uvitex OB (EU project G6RD-CT200-00411), dichloromethane or THF to determine Chimassorb 81 (Nerin, C., 1996; Spyropoulos, D. V., 1998), heptane was the solvent when migration of DEHA was evaluated (O' Brien, A. P., 1997) and chloroform was used for Bisphenol A (Howe, S. R., 1998).

Extraction with solvents. Acetonitrile was used for DEHA and Irganox 1076 (Simoneau, C., 1999), and methanol to extract Chimassorb 81 (Spyropoulos, D. V., 1998), although very poor recovery was achieved.

Size exclusion chromatography was used in the evaluation of the Laurolactam migration (Stoffers, N. H., 2003).

For volatiles substances specific techniques were applied again. Styrene migration into olive oil was determined extracting the sample with hexane using a Likens-Nikerson distillation apparatus (Jickells, S. M., 1993). A Tenax absorption column followed by extraction with hexane has been employed to determine DEHA and ATBC (Van Lierop, J. B. H., 1988).

3) Substitute fat simulants

Direct injection of the simulant, after migration tests, in a chromatographic system was used to determine the migration of Irganox 1076, Chimassorb 81 and Uvitex OB (EU project G6RD-CT200-00411), ε-Caprolactam (EU project G6RD-CT200-00411) and Chimassorb 81 after dilution with THF (Spyropoulos, D. V., 1998).

Evaporation of the simulant to dryness followed by dissolution in chloroform, methanol, acetonitrile or heptane, was used to determine Irganox 1076 (Garde, J. A., 2001), Laurolactam (Stoffers, N. H., 2003), Benzophenone (Papillound, S., 2002) and BHT (Wessling, C., 1998) respectively.

Extraction with hexane/water was used to determine DEHA and Irganox 1076 in ethanol 95% (v/v) (Simoneau, C., 1999).

Foodstuffs.

Due to the complexity of food samples, the procedure more broadly used with simulants, the direct injection, it doesn't seem the most appropriate to evaluate migration in foods. In spite of the lack of abundant bibliographic support, the available information related with the study of migration into foodstuffs reveals that the scientific community focuses mainly the problem as follow.

Extraction with solvents. This procedure is one of the most generally used, as much for fatty foods as non fatty foods. In non fatty foods, DEHA was extracted from jelly, candy, fruit juices, wines and beers with cyclohexane-dichloromethane (1:1) or hexane and dichloromethane (10:1) (Oi-wah, L., 1996; Page, B. D., 1995), Limonene from kiwi fruit with methylene chloride (Jordan, M. J., 2002), DIPN from dry food with absolute ethanol using ultrasonics bath (Summerfield, W., 2001). In fatty foods, DIPN was extracted from pastry, cake and pizza with acetonitrile (Summerfield, W., 2001). BHT from smoke flavoured sausage with acetonitrile (Yankah, V., 1998) and good recoveries were achieved. Methanol was used to extract BHT according the IUPAC method (Dieffenbacher, D., 1998).

After solvent extraction a clean-up step may be necessary.

Solid Phase Extraction. It was used in sample preparation of DEHA and other plasticizers in fatty food (animal tissues, fats and high fat content cheese) after blending with dichloromethane and passing the extract through a Florisil column (Page, B. D., 1995). Bisphenol A was extracted from the solid portion in cans of vegetables and fruit extracting with acetonitrile, evaporating to dryness, dissolving with acetone-heptane and purifying with a Sep-Pak Florisil cartridge. Good recoveries and relative standard deviation were achieved. The aqueous portion was applied to an OASIS HLD extraction cartridge (Yoshida, T., 2001). In addition, Bisphenol A from coffee or infant feed was extracted with water or water-ethanol,

followed by a SPE purification/concentration step (Mountfort, K. A., 1997; Kang, J., 2002).

Size Exclusion Chromatography or Gel Permeation Chromatography were used to clean up fatty matrix containing non polar analytes. DEHA in homogenized foods was extracted with acetone/hexane, extracts were dried, evaporated to dryness and redissolved in dichloromethane/cyclohexane and Biobeads S-X3 column was used to clean-up (Startin, J. R., 1987, Oi-Wah, L., 1996). ATBC in food (cheese, fruit, vegetables, soups, cakes, puddings and meal dishes) was determined using similar procedure (Castle, L., 1988).

Volatile compounds were separated by volatilisation with or without concentration step (static or dynamic Headspace, SPME or TENAX). Styrene was determined in sliced potatoes with grated cheese and minced beef fried with tomato sauce (Jickells, S. M., 1993). 1-octene in pure beef fat (Umano, K., 1987) and menhaden fish oil (Horiuchi, M., 1998), and Limonene in cheese (Valero, E., 2001, Peres, C., 2002) or water (Linssen, J. P. H., 1993). 1-octene in ham was extracted using a 75 µm carboxen-poly (dimethylsiloxane) coating fiber (Andres, A. I., 2002) and Limonene in cheese with a 75 µm Carboxen/PMDS or PDMS/DVB (Peres, C., 2001). ATBC and DEHA migration was determined in fatty food extracting samples with diethyl ether in a Soxhlet apparatus and then using Tenax (Van Lierop, J. B. H., 1988).

ANALYSIS OF MODEL MIGRANTS. DETERMINATION

A large variety of chromatographic methods were found in the literature. The following revision was sorted by chromatographic technique and then by detection system.

HPLC

Most of analyses were performed on reversed phase, with C18 columns and using appropriate gradient and composition of mobile phase, mainly acetonitrile/water or alcohols/water, with or without modifiers. Some analyses were performed with normal phase on silica columns, and then mobile phases used were hexane (EU project G6RD-

CT200-00411), hexane / 2-propanol / dichloromethane (Mountfort, K. A., 1997), dichloromethane/hexane (Nerin, C., 1996).

Fluorescence detection:

Different wavelengths of excitation (λ ex) and emission (λ em) were involved. For Irganox 1076, a λ ex of 282 nm and a λ em of 308 nm or 342 nm were used (Helmroth, I. E., 2002, O'Brien, A. P., 1997, EU project G6RD-CT200-00411). For DIPN the λ ex was of 232 nm and λ em of 338 nm (Summerfierld, W., 2001). For BHT were selected a ex. of 280 nm and λ em of 310 nm, followed by a GC/MS confirmation (Yankah, V., 1998). For Bisphenol A several wavelengths were selected, λ ex of 275 nm and λ em of 300 nm (Simal Gandara, J., 1993, Kang, J., 2002), λ ex of 224 nm and λ em of 310 nm (Munguia-Lopez, 2001), λ ex of 235 nm and λ em of 317 nm (Howe, S. R., 1998) or λ ex of 285 nm and λ em of 300 nm (Mountford, 1997). For DPBD a λ ex of 347 nm and λ em of 375 nm were chosen (EU project G6RD-CT200-00411).

Our preliminary experiments (respecting to λ ex and λ em selected) were basically in agreement with the wavelengths chosen in the case of DPBD, and Bisphenol A. However, Irganox 1076 and BHT did not show a good sensibility in the fluorescence spectrometer.

Ultraviolet detection:

Irganox 1076 was measured at 275 nm (O'Brien, A. P., 1997, Marque, D., 1998) or 230 nm (EU project G6RD-CT200-00411, Vargo, 1985). This compound had showed a good response in the UV. Chimassorb 81 was determined at 330 nm or 290/280 nm (Nerin, C., 1996; Syropoulos, D. V., 1998, EU project G6RD-CT200-00411, Salafranca, J., 1999). For Uvitex OB wavelengths of 330 or 374 nm were used (EU project G6RD-CT200-00411). Ours results showed in this case that fluorescence response was better and more selectively than UV response. DEHA, after its analysis by GC/FID was confirmed at λ of 209/211 nm (Page, B. D., 1995). Caprolactam was determined at 220/230 nm (Barky, C. T., 1993) or 210 nm (Bonifaci, L., 1991; Ulsaker, G. A., 1992; EU project G6RD-CT200-00411), and Laurolactam at 207 nm (Stoffers, N. H., 2003). For BHT a λ of 280 nm was selected (Dieffenbacher, D., 1998). Bisphenol A was analysed at 228 nm (Howe, S. R., 1998, Yoshida, T., 2001).

Mass detection:

It was employed to determine Chimassorb 81, BHT, Irganox 1076 and other additives in acetonitrile extracts by methane chemical ionisation (Vargo, J. D., 1985). Caprolactam was qualitatively determined by FAB ionisation (positive) (Barky, C. T., 1993) and Laurolactam (with oligomers) by APcI (Stoffers, N. H., 2003).

Experiments carried out in our laboratory using the APcI in both negative and positive mode demonstrated that HPLC-MS can be a very effective technique for the determination of those compounds that presents low response by UV or fluorescence.

<u>Refractive index detection</u>: Caprolactam (Bonifaci, L., 1991) was determined using this detector.

Gas Chromatography

Most of analyses were carried out on apolar columns, type 5% phenyl-95%dimethylpoysiloxane, with a length of 15 to 30 m, and a beta phase of intermediate values, although in some cases others kinds of columns were used. Split/splitless injection is the widely used technique.

Flame Ionisation Detection:

To determine Irganox 1076 a high temperature is required. Oven program reached 310°C (Helmroth, I. E., 2002), or 350° (Garde, J. A., 1998; Simoneau, C., 1999). For DEHA the ramp reached 350°C (Simoneau, C., 1999), 360°C (O'Brien, A. P., 1997), 295°C (Page, B. D., 1995) or 260°C (Cano, J. M., 2002) and for Caprolactam the temperatures achieved were 240°C or 280°C (EU project G6RD-CT200-00411) depending on the column used. DIPN was determined using an oven temperature from 40 to 200 °C (Marianni, M. B., 1999) or from 60 to 270 °C (Triantafyllou, V. I., 2002) followed in both cases by confirmation by GC-MS. The analysis of ATBC was conducted using an oven program that

reached 260°C (Cano, J. M., 2002) while Laurolactam ramp reached 170°C and 240°C (Stoffers, N. H., 2003).

The oven program for separation of volatile compounds started obviously with lower temperatures. For Styrene the ramp was from 50 °C to 150 °C (Silva, F. C., 2000), for Limonene was from 50°C to 250°C (Linssen, J. P. H., 1993) while for 1-octene the oven program was from 40 to 200 °C (Umano, K., 1987).

Mass Detection:

Chimassorb 81 was determined by single ion monitorizing (SIM) at 213(m/z) and using an oven program from 100 to 280°C (Monteiro, M., 1998). DEHA was determined at 129 (m/z) with an oven temperature of 220°C (Startin, J. R., 1987) or a ramp from 100 to 300°C (Oi-Wah, L., 1996). ATBC was determined by on column injection and using a ramp from 70 to 210 °C at 185 (m/z) (Castle, L., 1988), another author used an oven program from 60 to 300 °C in SIM mode (Van Lierop, J. B. H., 1988). Benzophenone was determined with a ramp temperature from 50 to 250 °C in full scan mode (Papillound, S., 2002). BHT was separated using a ramp temperature from 100 to 290 °C in SIM mode at 205 (m/z) (Wessling, C., 1998) or with an oven program from 40 to 250 °C in full scan mode (Tombesi, N., 2002).

Headspace GC/MS was used to determine Styrene at 104/112 m/z and using an oven temperature of 35°C (Jickells, S.M., 1993), for 1-octene, after SPME extraction, the separation was performed with a temperature gradient from 40 to 200 °C by full scan (Andres A. I., 2002). A similar oven program was used by other authors (Horiuchi M., 1998). To determine Limonene similar oven program from 40 to 250°C in full scan mode was used (Bentivenga, G., 2001; Avison, S. J., 2001; Peres, C., 2001; Valero, E., 2001; Peres, C., 2002; Jordan, M. J., 2002).

This detector was also used when confirmation was required for Caprolactam (Ulsaker, G. A., 1992), Styrene (Silva, F. C., 2000), DIPN (Summerfierld, W., 2001, Boccaci, M., 1999, Triantafyllou, V. I., 2002), BHT (Yankah, V., 1998), Bisphenol A (Munguia-Lopez, E., 2001) and for 1-octene (Umano, K., 1987) after their determination by other techniques.

Other techniques as Supercritical Fluid Chromatography or Thin Layer Chromatography were used to determine Irganox 1076 (Doehl, J., 1987) and Uvitex OB (Lawrence, A. H., 1980) respectively.

GENERAL COMMENTS ON TABLE 4

<u>Irganox 1076, Chimassorb 81 and Uvitex OB</u> have a very low solubility in water (<0.03 mg/L), therefore it can be expected that migration to non fatty food, especially aqueous food, also will be very low. Both extraction and concentration steps are necessary, extraction with weakly or non polar solvents seems better option than polar solvents, in which they are not very soluble.

Although data on fat solubility are not available, the migration is expected much higher than into water. In this case, the better way seems the extraction with weakly or non polar solvents, followed by a GPC-SEC clean-up step to separate bulk lipids and then a concentration step. The extraction with polar solvents immiscible with fat seems more difficult, because it will involve a high number of extraction steps and/or big extraction volumes, although laborious it can be a simpler way for analytic laboratories

Regarding the determination, the HPLC-fluorescence combination is the best for Uvitex OB and HPLC-(UV or APcI(+)) and GC-(FID or MS) are possible for the three compounds.

Diphenylbutadiene, benzophenone, diphenylphthalate, bisphenol A, BHT and triclosan can be extracted from foods with polar solvents immiscible with fat, although DPBD and BHT with some difficulty. All the migrants exhibit good properties in the ultraviolet region and furthermore DPBD and Bisphenol A show very good response in fluorescence. Therefore HPLC with UV-FI detection seems an appropriate determination technique. Except for diphenylbutadiene, HPLC coupled with APcI-MS detector can be also used. GC-(FID or MS) is also a common possible technique for most of them.

<u>Caprolactam and triacetin</u> are two compounds soluble in water and not very soluble in oils. They can be extracted from foods with polar solvents immiscible with fat. They can be determined by GC-(FID or MS) or by HPLC only with an APcI (+)-MS detector because they do not show interesting properties in fluorescence or ultraviolet region. <u>DEHA</u>, <u>laurolactam and ATBC</u> have low solubility in water and they present a problematic similar to the first group. They do not show interesting properties in UV or fluorescence and they need to be determined by GC-(FID or MS) or by HPLC only with an APcI-MS detector.

<u>Styrene, 1-octene and limonene</u> can be separated from food matrix by volatilization or distillation and it seems the better way to remove them from other food components. Analysis by Static or dynamic headspace-GC (FID or MS) is an excellent and common determination for the three compounds. Other ways also are possible as extraction from non fatty foods with weakly polar solvents immiscible with water, or using polar solvents immiscible with fat to extract from fatty foods. Styrene shows a very good response by fluorescence and ultraviolet and can be determined by HPLC using those detectors.

<u>For all migrants</u> and depending of each combination analyte/food matrix, more purification steps could be necessary, usually using SPE or liquid-liquid extraction, again. But obviously this step only can be discussed with specific problems and it is out of this compilation.

ANNEX I

EXPERIMENTAL PROCEDURE

In order to get more information about interesting properties of model migrants migrants, different test were performed.

Standard solutions

Stock solutions of all migrants were prepared in ethanol at a concentration of 1000 mg L^{-1} . Intermediate dissolutions were prepared at levels of 10, 1 and 0.1 mg L^{-1} .All these solutions were stored in the darkness at 4°C.

Apparatus and Conditions

Fluorescence Spectrometer:

Spectrofluorimetric measurements were performed with a Perkin Elmer LS 50 spectrometer fitted with a xenon flash lamp, Monk Gillieson monochromators and 1 cm quartz cuvettes. Spectral data acquisition and processing were carried out by means of the program FL Winlab on a PC serially interfaced to the LS 50.

Firstly, pre-scan was achieved for all migrants. Scans were recorded between 200 and 800 nm for excitation and 200 and 900 nm for emission. The scan speed was 240 nm/min.

Subsequently maximum values for excitation wavelengths were selected, only for those compounds that showed fluorescence, and emission scans were completed. In the same way, maximum values for emission wavelengths were selected and excitation scans were completed.

For all compounds solutions of 10 mg/L were used except for diphenylbutadiene, styrene and bisphenol A, where solutions of 0.1 mg/L were used. Otherwise, for Uvitex OB a solution of 0.01 mg/L was used.

UV-Visible Spectrophotometer:

A Cary 3E UV-Visible double-beam spectrophotometer was used to perform single scans of all solutions from 200 to 400nm. Software Cary WinUV was used for the acquisition of the data. For all compounds solutions of 10 mg/L were used except for diphenylbutadiene where a solution of 1 mg/L was utilized.

MS Detector:

APcI (negative and positive mode) spectra were recorded on a VG Platform (Fisons Instruments) single-quadrupole spectrometer, which was coupled via its APcI interface to a Spectra Physics model P200 HPLC gradient pump. The Masslynx [™] data system was used to control the system.

Total ion chromatograms and selected-ion chromatograms of the analytes were obtained by direct injection in flow, using a 50 μ L loop, the mobile phase was 70:30 acetonitrile:water at a flow rate: 1mL min⁻¹. Injections were monitored using real time chromatogram updates. Full scan spectra (m/z 70-700) were acquired every second, with a scan delay of 0.10 sec. In SIR mode, the dwell time of each ion was set at 0.10 sec.

The following instrument parameters were applied: probe temperature: 450 °C and 250 °C, ionisation source temperature: 130 °C, cone voltage: \pm 30 V, electron multiplier voltage: 700 V, sheath gas nitrogen at 200 L/h and drying gas nitrogen at 250 L/h.

GC-FID:

Initial experiments were performed with a Fisons 8000 series gas chromatograph equipped with a flame ion detector (FID; 260°C), an auto sampler (AS 800) and a split-splitless injector. The column used was a 30m × 0.32 mm i.d. × 0.25 μ m film thickness Supelcowax 10 from Supelco. To improve the column life a 50 cm pre-column (deactivated

fused silica 0.32mm i.d.) was used. Helium was used as carrier gas flowing at 1 mL min⁻¹. The injector temperature used was 280 °C and the split ratio selected was 1:30.

In a first test the column temperature was held at 40°C for 2 min. during injection, and then increased at 7°C/min. to 260 °C, which was held for 10 min. In a second test the column temperature was held at 150°C for 2 min., and then increased at 5°C/min. to 260°C, which was held for 20 min.

Solutions of 1000 mg/L were injected using these conditions.

HPLC-UV-Fluorescence:

Standard solutions of 10 mg/L of each migrant were prepared in acetonitrile. Then to 10 g of olive oil 10 mL of each standard solution were added and shaken vigorously for three minutes in a centrifuge tube of 40 mL. After phase separation, 0.1 mL of acetonitrile phase was filtered and injected. Areas obtained were compared with the areas obtained for the individual standards.

Chromatographic conditions were:

Column: A Kromasil 100 C18 column (5µm i.d., 150mm x 40mm).

The mobile phase consisted of acetonitrile/water 75:35 (v/v) in an isocratic mode for two minutes, followed by a gradient to 100% acetonitrile for eight min, and finally an isocratic elution during twenty min. The flow rate was 1 mL min⁻¹. The injection volume was 50 μ L. The column oven temperature was kept at room temperature. UV detection was performed with 205, 225 and 255 nm, and fluorescence detection was performed with excitation and emission wavelengths of 250 nm and 306 nm, respectively.

Bibliographic references

Andrés A. I., Cava R., Ruiz J., 2002, Monitoring volatile compounds during dry-cured ham ripening by solid-phase microextraction coupled to a new direct-extraction device. J. Chromatogr. A, 963, 83-88.

Avison S. J., Gray D. A., Davison G. M., Taylor A. J., 2001, Infusion of volatile flavour compounds in to low-density polyethylene. J. Agric. Food Chem., 49, 270-275.

Barky C. T., Lawson G., 1993, Analysis of migrants from nylon 6 packaging films into boiling water. Food Addit.Contam. 10, 5, 541-553.

Bentivenga G., D'Auria M., De Luca E., De Bona A., Mauriello G., 2001, The use of SPME-GC-MS in the analysis of flavour of virgin olive oil. La Rivista Italiana delle Sostanze Grasse, 78, 157-162.

Bonifaci L., Frezzotti D. Cavalca G., Malaguti E., Ravanetti G. P., 1991, Analysis of caprolactam and its cyclic oligomers by high –performance liquid chromatographic. J. Chromatogr. 585, 333-336.

Boccacci, M., Chiaccherini E., Gesumundo C., 1999, Potential migration of diisopropyl naphthalenes from recycled paperboard packaging into dry foods. Food Addit.Contam, 16, 5, 207-213.

Cano J. M., Marín M. L., Sánchez A., Hernandis V., 2002, Determination of adipate plasticizers in poly (vinyl chloride) by microwave-assisted extraction. J. Chromatogr. A, 963, 401-409.

Castle L., Gilbert J., Jickells S. M., Gramshaw J. W., 1988, Analysis of the plasticiser acetyltributyl citrate in foods by stable isotope dilution gas chromatography-mass spectrometry. J. Chromatogr, 437, 281-286.

Dieffenbacher A., 1998, Determination of phenolic antioxidants in foods. Deut Lebensm-Rundsch., 11, 381-385.

Doehl J., Farbrot A., Greibrokk T., Iversen B., 1987, Supercritical fluid chromatographic separation of low to medium-polarity compounds that are difficult to elute from packed columns. J. Chromatogr, 392, 175-184.

Feigenbaum A., Scholler D., Bouquant J., Brigot G., Ferrier D., Franz R., Lillemark R., Riquet A.M., Petersen J.H., Van Lierop B., Yagoubi N., 2002, Safety and quality of food contact materials. Part I: Evaluation of analytical strategies to introduce migration testing into good manufacturing practice. Food Addit.Contam, 19, 2, 184-201.

Garde J., Catalá R., Gavara R., 1998, Analysis f antioxidants extracted from polypropylene by supercritical fluid extraction. Food Addit.Contam., 15, 6, 701-708.

Garde J., Catalá R., Gavara R., Hernadez R. J., 2001, Characterizing the migration of antioxidants from polypropylenene into fatty foods simulants. Food Addit.Contam., 18, 8, 750-762.

Helmroth I.E., Dekker M., Hankemeier T., 2002, Influence of solvent absorption on the migration of Irganox 1076 from LDPE. Food Addit.Contam., 19, 2, 176-183.

Health Canada. Tobacco control programme. 1999, Determination of triacetin in whole tobacco (http://www.hc-sc.gc.ca/hecs-sesc/tabac/pdf/T-311e4.PDF)

Horiuchi M., Umano K., Shibamoto T., 1998, Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide. J. Agric. Food Chem., 46, 5232-5237.

Howe S. R., Borodinsky L., 1998, Potential exposure to bisphenol A from food-contact use of polycarbonate resins. Food Addit.Contam, 15, 3, 370-375.

Jickells Sue M., Gancedo P., Nerin C., Castle L., Gilbert J., 1993, Migration of styrene monomer from thermoset polyester cookware into foods during high temperature applications. Food Addit.Contam, 10, 5, 567-573.

Jordan M. J., Margaría C. A., Shaw P. E., Goodner K. L., 2002, Aroma actives components in aqueous kiwi fruit essence and kiwi fruit puree by GC-MS and multidimensional GC/GC-O. J. Agric. Food Chem., 50, 5386-5390.

Kang J. H., Kondo F., 2002, Bisphenol A migration from cans containing coffee and caffeine. Food Addit.Contam., V19, 9, 886-890.

Lawrence A. H., Ducharme D., 1980, Simple rapid thin-layer chromatographic method for the detection of optical brighteners in polymers. J. Chromatogr, 194, 434-436.

Linssen J. P. H., Janssens J. L. G., Roozen J. P., Posthumus M. A., 1993, Combined gas chromatography and sniffing port analysis of volatile compounds of mineral water packed in polyethylene laminated packages. Food Chem., 46, 367-371.

Marque D., Feigenbaum A., Dainelli D., Riquet A. M., 1998, Safety evaluation of an ionized multilayer plastic film used for cooking and meet preservation. Food Addit.Contam., 15, 7, 861-841.

Monteiro M., Nerín C., Rubio C., Reyes F. G. R., 1998, A GC /MS method for determining UV stabilizers in polyethyleneterephthalate bottles. J. High Resol. Chromatogr., V21, 317-320.

Mountfort K. A., Kelly J., Jickells S. M., Castle L., 1997, Investigations into the potential degradation of polycarbonate baby bottles during sterilization with consequent release f bisphenol A. Food Addit.Contam, V14, 6-7, 737-740.

Munguia-López E. M., Soto-Valdez H., 2001, Effect of heat processing and storage time on migration on Bisphenol A (BPA) and bisphenol A-Diglycidyl ether (BADGE) to aqueous food simulant from mexican can coatings. J. Agric. Food Chem., 49, 3666-3671.

Nerín C., Salafranca J., Cacho J., 1996, Behaviour of Chimassorb 81 in the recycling process of agricultural films used as oil covers. Food Addit.Contam, 13, 2, 243-250.

O'Brien A. P., Cooper I., Tice P. A., 1997, Correlation of specific migration (Cf) of plastics additives with their initial concentration in the polymer (Cp). Food Addit.Contam., 14, 6, 705-719.

Oi-Wah L., Siu-Kay W., 1996, Determination of plasticisers in food by gas chromatography-mass spectrometry with ion-trap mass detection. J. Chromatogr. A, 737, 338-342.

Oliver J., Palou A., 2000, Chromatographic determination of carotenoids in foods. J. Chromatogr. A, 881, 543-555.

Page, B. D., Lacroix G. M., 1995, The occurrence of phthalathe ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985-1989: a survey. Food Addit.Contam., 12, 1, 129-151.

Papilloud S., Baudraz D., 2002, Analysis of food packaging UV inks for chemicals with potential to migrate into food simulants. Food Addit.Contam., 19, 2, 168-175.

Pérez C., Denoyer C., Tournayre P., Berdagué J. L., 2002, Fast characterization of cheeses by dynamic headspace-mass spectrometry. Anal. Chem., 74, 6, 1386-1392.

Pérez C., Viallon C., Berdagué J. L., 2001, Solid-phase microextration-mass spectrometry: A new approach to the rapid characterization of cheeses. Anal. Chem., 73, 6, 1030-1036.

Salafranca J., Cacho J., Nerín C., 1999, Supercritical fluid extraction (SFE) optimization by full-factorial design for the determination of Irganox 1076, Irgafos 168, and Chimassorb 81 in virgin and recycled polyolefins. J. High Resol. Chromatogr., 22, 553-558.

Silva C. F., De Carvalho R. C., Cardeal Z., 2000, Solid-phase microextraction method the quantitative analysis of styrene in water. J. Chromatogr. Sci., 38, 315-318.

Simal Gándara J., Paz Abuín S., Paseiro Losada P., Simal Lozano J., 1993, Determination of bisphenols A and F in noncured epoxy resins by RP-HPLC-Fluorescence Techniques. J. Chromatogr Sci, 31, 450-454.

Simoneau C., Hannaert P., Stabilising testing of selected plastics additives for food contact in EU aqueous, fatty and alternative simulants. Food Addit.Contam, 16, 5, 197-206.

Spyropoulos D. V., 1998, Stabilising testing of the plastics additives 2,4-dihydroxybenzophenone, 2,2'-dihidroxy-4-methoxybenzophenone, 2-hidroxy-4-noctyloxybenzophenone, 2-ethoxy-2- ethyloxanilide (tinuvin312) and 2,2'-methylenebis (4methyl-t-tert-butyl phenol) in aqueous and fatty food simulants. Food Addit.Contam., 15, 3, 362-369.

Startin J. R., Parker I., Sharman R., Gilbert J., 1987, Analysis of di-(2-ethylhexil) adipate platiciser in foods by stable isotope dilution gas chromatography-mass spectrometry. J. Chromatogr, 387, 509-514.

Stoffers N. H., Brandl F., Linssen J. P. H., Franz R., 2003, Development and validation of analytical methods for monomeric and oligomeric migrants from nylon 12 packaging materials. Food Addit.Contam., 20, 4, 410-416.

Summerfield W., Cooper I., 2001, Investigation of migration from paper and board into food-development of methods for rapid testing. Food Addit.Contam., 18, 1, 77-88.

Tombesi N. B., Freije H., 2002, Application of solid-phase microextraction combined with gas chromatography-mass spectrometry to the determination of butylated hydroxytoluene in bottled drinking water. J. Chromatogr. A, 963, 179-183.

Triantafyllou V. I., Akrida-Demertzi K., Demerzis P. G., 2002, Migration studies from recycled paper packaging materials: development of an analytical method for rapid testing. Anal. Chim. Acta, 467, 253-260.

Ulsaker G. A., Teien G., 1992, Identification of caprolactam as a potential contaminant in parenteral solutions stored in over wrapped PVC bags. J. Pharmaceut. Biomed. 10, 1, 77-80.

Umano K., Shibamoto T., 1987, Analysis of headspace volatiles from overheated beef fat. J. Agric. Food Chem., 35, 1, 14-18.

Valero E., Sanz J., Martínez-Castro I., 2001, Direct thermal desorption in the analysis of cheese volatiles by gas chromatography and gas chromatography-mass spectrometry: comparison with simultaneous distillation-extraction and dynamic headspace. J. Chromatogr. Sci, V39, 222-228.

Van Lierop J. B. H., Van Veen R. M., 1988, Determination of plasticizers in fat by gas chromatography-mass spectrometry. J. Chromatogr, 447, 230-233.

Vargo J. D., Olson K. L., 1985, Identification of antioxidant and ultraviolet light stabilizing additives in plastics by liquid chromatography/mass spectrometry. Anal. Chem., 57, 672-675.

Wessling C., Nielsen T., Leufvén A., Jägerstad M., 1998, Mobility of alfa-tocopherol and BHT in LDPE in contact with fatty food simulants. Food Addit.Contam., 15, 6, 709-715.

Yankah V. Y., Ushio H., Ohshima T., Koizumi C., 1998, Quantitative determination of butylated hydroxyanisole, butylated hydroxytoluene, and tert-butyl hydroquinone in oils, foods, and biological fluids by high-performance liquid chromatography with fluorometric detection. Lipids, 33, 11, 1139-1145.

Yoshida T., Horie M., Hoshino Y., Nakazawa H., 2001, Determination of bisphenol A in canned vegetables and fruit by high performance liquid chromatography. Food Addit.Contam., 18, 1, 69-75.

Certified Reference Materials for the Specific Migration testing of plastics for food packaging needed by industry and enforcement laboratories (Specific Migration); Project No: G6RD-CT200-00411; Project Coordination: Angela Stormer (Fraunhofer IVV, Freising, Germany)

Development of methods of Analysis for Monomers and other starting substances with SML and/or QM Limits in Directives 90/128/EEC and 92/39/EEC (Monomers); Project No: MAT1-CT92-0006; Project Coordination: R. Franz (Franhofer-Institut, Freising, Germany) and R. Rijk (TNO, Zeist,)

No	MIGRANTS	Ref. Nº/ CAS Nº	Formula	Chemical Name	MW	mp (°C)	bp/Fp (°C)	Water solubility mg/L	Solubility	Application	Structure	Spectral Data
1	Irganox 1076 SML = 6 mg/kg	68320 2082-79-3	C35H62O3	Benzenepropanoic acid-3,5-bis(1,1- dimethylethyl)-4- hydroxyoctadecyl ester	531	50-55	-/273	< 0.03	g/100g solution: Acetone: 19 Benzene: 57 Chloroform: 57 Ciclohexane: 40 Ethanol: 1.5 Ethylacetate: 38 n-hexane: 32 Methanol: 0.6 Toluene: 50 Water: <0.01	Antioxidant and thermal stabilizer blend	$\begin{array}{c} CH_3\\CH_3-C-CH_3\\H0-\swarrow\\CH_3-C-CH_3\\CH_3-C-CH_3\\CH_3\\CH_3\end{array} \xrightarrow{O}_{CH_2}CH_2-\overset{O}{C}-OCH_2(CH_2)_{16}CH_3$	
2	DPBD	538-81-8	C16H14	Diphenylbutadiene	206	153	350/-	0.5-1.2	Very soluble in: Benzene, ethanol and ether	Fluorescent additive		UV max: 319 nm (cyhex) FL, Ex: 320, Em max: 375 (hex)
3	Chimassorb 81 SML = 6 mg/kg	61600 1843-05-6	C21H26O3	2-Hydroxy-4-n- octyloxy benzophenone	326	48-49	>400/>200	< 0.03	g/100mL solution: Acetone: 43 Benzene: 72 Chloroform: 61 Ethanol: 3.5 Ethyl acetate: 44 n-Hexane: 12 Methanol: 1.7 MEK: 65 Methylene chloride 67 Toluene: >50 Water: <0.01	UV absorber /stabiliser	CH ₃ (CH ₂) ₆ CH ₂ O-	UV max: 290, 243 nm (ethanol) MS peaks: 213(100) 214(39) 137(38) 105(24) 326(19) 325(14) 43(11) 77(10) 41(10) 215(7)
4	Uvitex OB SML = 0.6 mg/kg	38560 7128-64-5	C26H26N2O2S	2,5-Bis(5-tert- butyl-2- benzoxazolyl) thiophene	431	196-203	-/>350	< 0.03	g/100mL solution: Acetone: 0.2 Dioxane: 2 DMF: 0.8 Ethanol: 0.1 Ethyl acetate: 1 n-Hexane: 12 Methanol: 0.05 MEK: 1 Toluene: 5 THF: 5 Xylene: 5	UV stabiliser Optical brightener, fluorescent white agent	CH ₃ CH ₃ -C H ₃ C CH ₃ -C H ₃ C CH ₃ CH	FL, Ex max: 375, Em max: 435 nm

No	MIGRANTS	Ref. Nº/ CAS Nº	Formula	Chemical Name	MW	mp (°C)	bp/Fp (°C)	Water solubility mg/L	Solubility	Application	Structure	Spectral Data
									Water: < 0.01			
5	ε-Caprolactam SML = 15 mg/kg	14200 105-60-2	C6H11NO	Aza-2- cycloheptanone	113	70-72	267/125	>700000	Soluble in H ₂ O, ethanol, benzene, chloroform, cyclohexane, acetone and DMSO.	Monomer	N N O H	MS Peaks: 55(100) 113(87) 30(81) 56(66) 84(60) 85(57) 42(51) 41(33) UV max: 198 nm (H ₂ O)
6	Benzophenone SML = 0.6 mg/kg	38240 119-61-9	C13H10O	Diphenylmetanone	182	48	305/-	137	H ₂ O: 1; EtOH: 4; eth: 4; ace: 4; bz:3; chl: 4; HOAC:4; MeOH: 3; CS ₂ : 4	Light stabiliser	o u o	MS Peaks: 105(100) 77(49) 182(32) UV max: 33, 252nm (MeOH)
7	Diphenyl Phthalate	84-62-8	C20H14O4	1,2- Benzenedicarbosyl ic acid, dipheyl ester	318	73	405/224	0.08	H ₂ O: 1; EtOH: 2; eth: 2; etc:2	Plasticizer		MS Peaks: 94(100) 28(83) 225(32) UV max: 225 nm (MeOH)
8	DEHA SML = 18 mg/kg	31920 103-23-1	C22H42O4	Adipic acid, bis(2- ethylhexyl) ester	371	<-70	417/-	0.78	Immiscible with water	Plasticizer	снисни о снисни о снисни снисни о снисни снисни снисни о снисни снисни о снисни о снисни о снисни о снисни о снисни о с	MS peaks: 129, 57, 112, 147
9	Styrene	24610 100-42-5	C8H8	Ethenylbenzene	104	-31	145-146/32	310	Slightly soluble in water. Soluble in alcohol, ether, acetone, and carbon disulfide.	Monomer for HIPS and GPPS	CH=CH ₂	UV max: 289 281 272 246 nm (cyhex) MS Peaks: 104(100) 103(41) 78(32) 51(28) 77(23) 105(12) 50(12) 52(11)

No	MIGRANTS	Ref. Nº/ CAS Nº	Formula	Chemical Name	MW	mp (°C)	bp/Fp (°C)	Water solubility mg/L	Solubility	Application	Structure	Spectral Data
10	Bisphenol A SML = 3 mg/kg	13480 80-05-7	C15H16O2	2,2'-Bis(4- hydroxyphenyl)pr opane	228	153	250/-	120	H ₂ O: 1; EtOH: 4; eth: 4; bz:4; alk: 4; HOAC:3	Monomers	но-СН ₃ -СН ₃ -Он	MS Peaks: 213(100) 228(26) 119(25) UV max: 279, 227 nm (MeOH)
11	1-Octene SML = 15 mg/kg	22660 111-66-0	C8H16	1-octene	112	-101	121/-	4.1	H ₂ O: 1; EtOH: 5; eth: 3; ace: 3; bz:3; ctc: 2; chl: 4; os: 4	Monomers	$CH_3(CH_2)_4CH_2CH=CH_2$	MS Peaks: 43(100) 41(82) 55(80) 56(67) 70(54) 29(44) UV max: 177 nm (hp)
12	Limonene	63970 138-86-3	C10H16	1-methyl-4-(1- methylethenyl)cyc lohexene	136	-95	178/-	7.6	H ₂ O: 1; EtOH: 5; eth: 5; etc: 3		CH ₃ C=CH ₂ CH ₃	MS Peaks: 68(100) 67(64) 93(60) 39(58) 41(46) 79(41) 43(41) 27(40)
13	DIPN	38640-62-9	C16H20	Diisopropylnaphth lene	212			0.11		Employed in paper and board	[CH(CH ₃) ₂] ₂	
14	Laurolactam SML = 5 mg/kg	19490 947-04-6	C12H23NO	12- Aminododecanoic acid lactam Aza-2- cyclotridecanone	167	149-153		290	Water solubility: 290 mg/L	Monomer	NH NH	MS Peaks: 30(100) 55(98) 41(96) 100(64) 98(64) 73(53) 86(51) 43(46) 72(45) 44(44)
15	Triacetin	57760 102-76-1	С9Н14О6	1,2,3-Propanediol triacetate	218	-78	259//138	58000	H ₂ O: 2; EtOH: 5; eth: 5; ace: 4; bz:5; chl: 5; lig: 2; CS ₂ : 2	Antifungal agent	$ \begin{array}{c} \mathbf{O} \\ \mathbf{CH}_{2}\mathbf{O} - \mathbf{C} - \mathbf{CH}_{3} \\ \mathbf{O} \\ \mathbf{CHO} - \mathbf{C} - \mathbf{CH}_{3} \\ \mathbf{O} \\ \mathbf{CHO} - \mathbf{C} - \mathbf{CH}_{3} \\ \mathbf{O} \\ \mathbf{CH}_{2}\mathbf{O} - \mathbf{C} - \mathbf{CH}_{3} \end{array} $	MS Peaks: 43(100) 103(44) 145(34)

No	MIGRANTS	Ref. Nº/ CAS Nº	Formula	Chemical Name	MW	mp (°C)	bp/Fp (°C)	Water solubility mg/L	Solubility	Application	Structure	Spectral Data
16	ATBC	93760 77-90-7	C20H34O8	Tri-n-butylacetyl Citrate	402	>330	170/-	5	Soluble in ethanol, acetone, DMSO and Toluene Water solubility: 20 mg/L	Plasticiser	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	MS Peaks: 185(100) 129(57) 259(54) 43(54)
17	внт	46640 128-37-0	C15H24O	2,6-Bis(1,1- dimethylethyl)-4- methylphenol	220	71	265/	0.6	H ₂ O: 1; EtOH: 3; ace: 3; bz:3; alk: 1; peth: 3	Antioxidant	$\begin{array}{c} CH_3 OH CH_3 \\ CH_3 - C \\ H_3 C \\ H_3 C \\ CH_3 \end{array} \qquad \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}$	MS Peaks: 205(100) 220(27) 57(27) UV max: 283, 277, 227 nm (Iso)
18	Triclosan	93930 3380-34-5	C12H7Cl3O2	2,4,4'-Trichloro- 2'- hydroxydiphenyl ether	289	56-58	-/223	10	Soluble in acetone, methanol, benzene and isopropanol Water solubility: 17 mg/L	Bacteriostactic agent		

Substance	Sample preparation	Analysis conditions	References
Irganox 1076 Antioxidant	Migration: 1- Polymer film (38.5 cm²) was put into contact with 20 mL of solvent in a migration cell. 2- Cells were incubated under gentle shaking (55 rpm) in a water-bath of 40°C. Solvents used: - ethanol - isooctane - ethyl acetate - 2-propanol - ciclohexane - dichloromethane - olive oil - tricaprylin (octanoic acid, 1,2,3-propanetriyl ester) - tributyrin (butanoic acid, 1,2,3-propanetriyl ester) 3-a) 40µL of sample were added to 5µL of internal standard solution (1mg/mL in 2-propanol). And then analysed by GC-FID	Column: DB5-MS, 15 m x 0.25 mm i.d., 0.1µm thickness Retention gap: 0.5m x 0.53 mm i.d. deactivated with a thin film of OV-1701-OH.	Helmroth, I.E. et al, Food Additives and Contaminants, 2002, 19 (2), 176-183.
	 b) With triglycerides (tributyrin, tricaprylin and olive oil), 40μL of sample was added to 5μL of internal standard and then diluted with 160μL of acetone and analysed by HPLC. Analysis of aqueous simulants: Simulants (3% w/v acetic acid; 15% v/v ethanol) were analysed directly. Calibration solutions range from 0.5 to 20 μg/ mL 	HPLC Column: Hypersil 5 ODS Mobile phase: tetrahydrofuran/ acetonitrile (20:80) Flow rate: 1.5 mL/min Detector: ultraviolet Sample volume: $20\mu L$ $\lambda = 275$ nm Internal standard: Irganox 1010	O'Brien, A.P. et al, Food Additives and Contaminants, 1997, 14 (6-7), 705-719.

 Analysis of olive oil: 2g of olive oil from migration study were diluted with acetone in a 10 mL flask. Note: 1-Many means of extracting the additive from oil were investigated, including solvent extraction and solid phase extraction processes. None of these was found to be effective. 2- Fluorescence was used because is more selective for the additive. 3- The response for olive oil was considerably less in the fluorescence mode than for UV detection. 4- It was not possible to quantify (adding an internal standard) because olive oil has a complex trace. 	HPLC Column: Hypersil 5 ODS Mobile phase: 0 to 8 min- Prop-2-ol/Acetonitrile (25:75) 9 to 14 min- THF/Acetonitrile (50:50)- to clean up 15-20 min- Propan-2-ol/Acetonitrile (25:75)- column regenerationFlow rate: 1.5 mL/min Detector: fluorescence Sample volume: 20μ L $\lambda_{excitation} = 282 \text{ nm}$ $\lambda_{emission} = 308 \text{ nm}$ Sample dilution: 20% in acetone	
 Specific migration in sunflower oil: 1- Weigh 2g of sunflower oil in a 10mL volumetric flask; 2- Add 100μL of internal standard (Irganox 1330- 1mg/mL); 3- Make up to the mark with acetone and mix thoroughly. Inject in the HPLC. 	HPLC-FL Column: Phenomenex Sphereclone ODS2, 250 x 4.6 mm Mobile phase: 100% propan-2-ol/acetonitrile (5:95), till 20 min; gradient program within 5 min to 100% acetonitrile/tetrahydrofuran (50:50); 5min with 100% acetonitrile/tetrahydrofuran (50:50); gradient program within 5 min to 100% propan-2-ol/acetonitrile (5:95); 5min with 100% propan-2-ol/acetonitrile (5:95). Flow rate: 1.5mL/min Injected volume: 20 μ L $\lambda_{excitation} = 282$ nm $\lambda_{excitation} = 342$ nm Repeatability was 0.56 mg/dm ² for a specific migration of 3.69 mg/dm ² . Detection limit = 6.7 mg/Kg	EU project- Specific Migration G6RD- CT200-00411

Irganox 1076 and others			
additives	Additives:	HPLC	Marque, D. et al, Food
	-Irganox 1076	Equipment: Liquid Chromatograph 5000, Varian	Additives and
	-Irgafos 168	Pre-Column: C-18, 1cm	Contaminants, 1998,
	8	Column: Spherisorb ODS1, 350 mm x 4.6 mm, 5µm	15(7), 831-841
	Use 2 extraction procedures:	Mobile phase: acetonitrile/water (75:25)	- () /
	F	Flow rate: 1 mL/min	
	1-Ultrasonic extraction:	Injected volume: 10 µL	
	(recommended for more volatile	$\lambda = 275 \text{ nm}$	
	compounds)	Quantification by external standard	
	······································	Quantification by external standard	
	-GC: 300mg of polymer with	¹ H-NMR	
	100mL CH ₂ CL ₂ for 1 h	Extracts were evaporated to dryness and residues dissolved in	
	-HPLC: 3.7 g of polymer with	deuterated chloroform (CDCL ₃) containing tetramethylsilane	
	50 mL CH_2CL_2 for up to 9 h.	(TMS) as internal standard	
		Equipment: spectrometer AC250	
	<u>2- Soxhlet extraction</u> : 7.5g polymer with	Equipment: spectrometer AC250	
	$100\text{mL CH}_2\text{CL}_2$ for 9 h.		
	Migration:	GC	Garde, J. A. et al,
	1- Film samples (50 cm^2) were immersed	Equipment. Fisons 8340	Food Additives and
	in 50 mL of simulant in a cylindrical	Column: SPB5, 30 m x 0.25 mm x 0.25 μ m thickness.	Contaminants, 2001,
	glass cells;	Injector temperature: 320°C	18 (8), 750-762
	2- After different contact periods the	Oven program: 1 min at 300°C, ramp at 5°C/min to 350°C, 10	
	simulant was removed from the cells	min at 350°C	
	and evaporated to dryness under	Detector: FID	
	nitrogen;	Detector temperature: 350°C	
	3- Residues were dissolved in 1mL of	Quantification by external standard	
	chloroform;		
		Note: Irgafos 168 chromatograms showed two peaks, one	
	Solvents used as fatty food simulants:	corresponding to the product and the other to a degradation	
	- 95% ethanol	product. Fully degraded Irgafos 168 was obtained after 24h of	
	- n-heptane	dissolution in tetrahydrofuran (THF). In stabilized THF the	
		reaction was very slow, suggesting an oxidation process.	
	Determination in polyolefins:	HPLC-UV	
	1- Cut the polymer into pieces (~0,2)	Column: Hypersil ODS-2 C18 25 cm x 4.6 mm, 5µm	EU project- Specific
	cm^2). Weigh 0.25g into 40 mL vials.	Mobile phase: ethanol/water (90:10)	Migration G6RD -
			СТ200-00411

 2- Add 0.1mL of a 500 mg/L Tinuvin 234 (internal standard) solution and 10mL of toluene to each vial. 3- Heat the vials until the solvent is boiling vigorously and the polymer dissolves. 4- Cool to about 60°C and add 10mL MeOH, shake and let polymer reprecipitate 5- Filter the liquid using a 0,2µm HPLC syringe filter to a vial (or) and inject in the HPLC. If solution is difficult to filter centrifuge for 2 min at 4000rpm and then filter. 	Injected volume: 10 µL $\lambda = 230 \text{ nm}$ $\mathbf{t}_r \operatorname{Irganox} 1076 = 9.3 \text{ min};$ $\mathbf{t}_r \operatorname{Irgafos} 168 = 10.5 \text{ min};$ $\mathbf{t}_r \operatorname{oxidized} \operatorname{Irgafos} \operatorname{phosphate} 168 = 6.0 \text{ min};$ $\mathbf{t}_r \operatorname{Tinuvin} 234 = 5.3 \text{ min};$ Polypropylene: LOD _{Irganox} 1076 = 102 mg/Kg LOD _{Irganox} 1068 = 32 mg/Kg	
 Determination of the initial concentration of Irganox 1076, Irgafos 168, Chimassorb 81 and Uvitex OB in polyolefins 1- Weigh 0.1g of the material (cut in small pieces) into a 40mL vial; 2- Add 3mL toluene and a magnetic stirrer; 3- Heat (100°C) and stir the closed vial until the polymer is solved; 4- Cool down (room temperature) and add 15mL methanol; 5- After 15 min the precipitate is removed by filtration; 	RSD _{Irganox 1076} = 6% RSD _{Irganox 1076} = 6% RSD _{Irgafos} 168 = 13% HPLC-UV Column: EC 25/3 Nucleosil 100-5 C18 Column temperature: 30°C Mobile phase: - <u>Irganox 1076 and Irgafos 168</u> ethanol 95%/water (97:3), 0 min; gradient program within 10min to 100% ethanol 95%; 5min with 100% ethanol 95%; - <u>Chimassorb 81 and Uvitex OB</u> ethanol 95%/water (93:7), 0 min; gradient program within 6.5min to 100% ethanol 95%; till 10min with 100% ethanol 95%; Flow rate: 0.6 mL/min Injected volume: 20 μ L $\lambda_{\frac{Irganox 1076 and Irgafos 168}{2}} = 230 \text{ nm}$ $\lambda_{\frac{Chimassorb}{2}} = 290 \text{ nm}}$ $\lambda_{\frac{Uvitex OB}{2}} = 374 \text{ nm (after Chimassorb peak is detected the wavelength is switched- 3.8-6.0min)}$	EU project- Specific Migration G6RD- CT200-00411

 6- Evaporate the solution to dryness on the rotatory evaporator and resolve the residue with 5mL methanol; 7- Fill a vial with this solution and analyse by HPLC. Migration Additives 1: Irganox 1076 Irgafos 168 Additives 2: Chimassorb 81 Uvitex OB Simulant: 95% ethanol Internal standards: Tinuvin 234 (for Irganox 1076 and Irgafos 168)- 30µg/mL Tinuvin 327 (for Chimassorb 81 and Uvitex OB)-30µg/mL 1- Place a circular sample (d=10cm) of the polymer into the migration cell and close it with the clamp (contact area= 0.48dm²; Add 50mL ethanol 95% through the screw closure in the migration cell. 3- Store the cell at the defined time and temperature conditions; 4- At each defined time fill 250µL of this solution into a 2mL vial and cool it down to room temperature; 5- Prepare another 2 ml vial: fill with 50µL internal standard solution and mix 	HPLC-UV Column: EC 25/3 Nucleosil 100-5 C18 Column temperature: 30°C Mobile phase: -Irganox 1076 and Irgafos 168 ethanol 95%/water (97:3), 0 min; gradient program within 10min to 100% ethanol 95%; 2min with 100% ethanol 95%; - <u>Chimassorb 81 and Uvitex OB</u> ethanol 95%/water (90:10), 0 min; gradient program within 10min to 100% ethanol 95%; till 12min with 100% ethanol 95%; Flow rate: 0.6 mL/min Injected volume: 20 μ L $\lambda_{Irganox 1076 and Irgafos 168} = 230 \text{ nm}$ $\lambda_{Chimassorb and Uvitex OB} = 340 \text{ nm}$ $t_{r Irganox 1076} = 7.0 \text{ min};$ $t_{r trgafos 168} = 9.0 \text{ min}$ $t_{r Chimassorb 81} = 3.8 \text{ min}$ $t_{r Uvitex} OB = 5.6 \text{ min}$	EU project- Specific Migration G6RD- CT200-00411
50µL internal standard solution and		

		[]
<u>Additives:</u> - DEHA - DEHP (bis (2-ethylhexyl)phthalate) - Irganox 1076 <u>Simulants:</u>	GC Equipment: Hewlett Packard HP 6890 Injection volume: 1µL Carrier gas: Helium Flow rate: 33 cm/s	Simoneau, C.; Hannaert, P. Food Additives and Contaminants, 1999, 16 (5), 197-206
- 15% ethanol - 95% ethanol	Column: HP5, 25 m x 0.25 mm x 0.25 μ m thickness.	
- 3% acetic acid	Injector temperature: 250°C Injection mode: split (1:1) for DEHA and DEHP	
	splitless for Irganox 1076	
Test conditions:	Oven program: ramp at 30°C/min from 100°Cto 350°C, 5min of	
Aqueous simulants:	holding time for DEHA and DEHP and 10 min for Irganox 1076.	
- 10 d at 40°C	Detector: FID	
- 1 h at reflux temperature (using condensers for reflux)	Detector temperature: 300°C	
O <u>il simulant</u> :	Oil simulant:	
- 10 d at 40°C	Column: DB5 HT, 25 m x 0.32 mm x 0.15 µm thickness.	
- 1h at 175°C	Injector temperature: 300°C	
$\frac{\text{Iso-octane simulant:}}{2 \text{ d at } 20^{\circ}\text{C}}$	Injection mode: split (1:1) for DEHA and DEHP	
- 2 d at 20°C - 3 h at 60°C	splitless for DEHP Oven program: ramp at 30°C/min from 100°C to 365°C, 25min	
- 5 li at 00 C	at 365°C.	
1-95% ethanol was extracted with	Detector: FID	
hexane (1:1) and 10% of distilled water;	Detector temperature: 365°C	
15% ethanol and 3% acetic acid were		
extracted with hexane (1:1); olive oil		
was extracted equal volume of acetonitrile		
2- Mixtures were shaken manually for 1		
min and sonicated for 15 min.		
3- Phases were left to separate (1h)		
4- Organic phase was taken to a GC vial		
for analysis.		
Samples exposed to isooctane were		
analysed directly.		

Determination in polyolefins: <u>Additives:</u> - Irgafos 168 - Irganox 1076 - Chimassorb 81 <u>Polyolefins:</u> - LDPE - HDPE	HPLC-UV Equipment: Kontron Instruments Column: Spherisorb ODS-2.5μm, 25 cm x 4.6 mm i.d. Column temperature: 25°C Mobile phase: Ethyl acetate/methanol/water 50/38/12 (v/v/v) Flow rate: 1.5 mL/min Injected volume: 20 μL	Salafranca, J., Cacho, J. Nerín, C ., J. High Resol. Chromatogr., 1999, 22 (10), 553-558
Supercritical Fluid extraction (SFE)	System pressure: 232 bar $\lambda = 280 \text{ nm}$ Analysis time: 15 min	
1- About 2.5 g of ground/cut polymer were weighted in a 250mL flask;		
2- 100mL of toluene and 10μL of internal standard were added (Irganox 1010- 2mg/g in toluene);		
3- A Vigreux column was fitted, the flask covered with an aluminium foil, and heated under reflux with magnetic stirring (to avoid adhesion of polymer to the flask) until complete dissolution;		
4- Solution is cooled to about 50°C and 125 mL of methanol added carefully via the upper part of the Vigreux column;		
5- Solution was hand shaken (vigorously) by 1 min, cooled in a ice bath and filtered under vacuum;		
6- After washed with 3 x 15 mL of methanol it was concentrated in a rotatory evaporator to about 1 ml;		

	 7- 5ml of dichloromethane were added and solution filtered by a PTFE syringe filter (0.2μm pore size); 8- Solution was analyse by HPLC after being evaporated in a nitrogen stream. 		
	Additives (6): - Erucamide - Irganox 1076 - Tinuvin 327	 SFC(supercritical fluid chromatography)-FID Equipment: HP 5790A Column: DB-1, methylsilicone, 20 m x 100µm i.d. x 0.4 µm thickness Injector system: Rheodyne 7520 injector Detector: FID FID block: 350°C Carrier gas: a-carbon dioxide (present an increased capacity factor and the peak shape improved); b- nitrous oxide Injection volume: 0.2 µL Injection mode: split 1:32 Pressure: 207 bar Oven temperature: 80°C Note: 1-Erucamide can not be detected by UV absorption; 2-Erucamide was not eluted from two bonded phase columns: Novapak (150mm x 1.2 mm i.d., 4µm C₁₈ silica) and Brownlee (30mm x 2.1 mm i.d., 5 µm cyano silica) with carbon dioxide or nitrous oxide as the mobile phases. While aromatic compounds like Irganox 1076 and Tinuvin 327 were readily eluted. Since amide, carboxy and amino groups are the 3 substituents that most contribute to retention on silica adsorption systems. The retention is caused by active, unreacted silanol groups in the bonded phase material. 	Doehl, J. et al J. of Cromatography, 1987, 392, 175-184
Diphenylbutadiene (DPBD)	<i>Migration:</i> Simulant: - 95% ethanol	HPLC-FLD Column: Hypersil Phe-3 12,5 cm x 3 mm id 3µm particle Mobile phase: 100% Acetonitrile /water (50:50),0-0,1 min;	EU project- Specific Migration G6RD- CT200-00411

		Injection volume: $20\mu L$ $\lambda_{excitation} = 347 \text{ nm}; \lambda_{emission} = 375 \text{ nm}$ Quantification by internal standard method $t_r = 3.655 \text{ min}$ Recovery= 94% Repeatability= 1,7% (n=6) Detection limit= 0,6 mg/L ethanol HPLC-FLD Column: Sphereclone-Silica25cm x 4,6 mm id 5µm particle Column temperature: $25^{\circ}\pm 5^{\circ}C$ Mobile phase: 100% Hexane Flow rate: 0,5 mL/min Injection volume: $20\mu L$ $\lambda_{excitation} = 346 \text{ nm}; \lambda_{emission} = 374 \text{ nm}$ $t_r DPBD = 10.6 \text{ min}; t_r DPHT} = 12.2 \text{ min}$	EU project- Specific Migration G6RD- CT200-00411
Chimassorb 81 UV stabiliser	polymer pieces. Migration: Simulants: - 15% aq ethanol - 95% aq ethanol - 3% aq acetic acid - olive oil - isooctane Exposure conditions: - - 10 d/40°C - 1 h/100°C - 30 min/150°C - 1 h/175°C - 2 h/20°C - 3 h/60°C	HPLC-UV Equipment: HP 1050, Ti series Pre-column. Hichrom Column: Nucleosil 120, C18, 250mm x 4.6 mm, 5 μ m Injection volume: 20 μ L Mobile phase: (1) Methanol /water (97:3), (2) Acetonitrile / water (95:5) or (3) Methanol / Water (90:10) Flow rate. (1) 1.2 mL/min; (2) 1.5 mL/min; (3) 1.2 mL/min λ = 330 nm tr (1)= 5.5 min tr(2)=5.4 min tr(3)=7.6 min	Spyropoulos, D.V. et al, Food Additives and Contaminants, 1998, 15 (3), 362-369

 1- Standard solutions were prepared in ethanol and spiked into simulants at the specific migration limit (6mg/kg for Chimassorb 81). Typical spiking level is 50 µL/25mL of simulant; 2- Samples were subject to exposure conditions and were diluted 1.1 with THF before HPLC analysis. For olive samples: 1- 5g of olive oil were weighed in 10 mL vials. 10 µL of standard solution was added; 2 a)- samples were added to 5mL of methanol (for polar or semi-polar additives), shaken and methanol phase injected, but recovery was very poor; b)- samples diluted in 10mL of THF (for non-polar additives), and injected. 	Note: The tests in 15% ethanol and 3% acetic acid at 10 d/40°C were not conducted due to the insolubility of the substance. For olive oil samples: Mobile phase: Acetonitrile/water (85:15), 0 to 6 min Acetonitrile/water (95:5), 7 to 10 min Acetonitrile 100%, 12 to 28 min Acetonitrile/water (85:15), 29 to 31 min Flow rate: 1.2 mL/min, 0 to 12 min; 2 mL/min, 2 mL/min, 12 to 28 min; 1.2 mL/min, 29 to 31 min. λ = 330 nm tr= 11.7 min	
 Extraction: 1-1g of PET was added to 10 mL of internal standard (Tinuvin 327 30µg/mL) and 20mL of CH₂Cl₂; 2 After maceration (6h) and 1h in ultrasonic bath it was filtered and concentrated in a rotary evaporator; 3- After filtration, a 5mL aliquot was added to the second internal standard (benzophenone) and adjusted to 10mL with dichloromethane; 4- Analysis by GC/MS 	GC/MS Equipment: H-P 5890 series II with a 5971-A mass selective	Monteiro, M. et al, J. High Resol. Chromatogr., 1998, 21, 317-320

1-Pol of did intern Irgan glass	raction from polymer: olymer (0.25g) were added to 3mL ichloromethane and 400µL of nal standard solution (2mg/mL nox 1010 in dichloromethane) in a s tube:	Equipment: Kontron Instruments liquid chromatograph Column: PL- Gel 50A, 300 mm x 7.5 mm i.d. Pre-column: 50 mm x 7 mm i.d. Mobile phase: Dichloromethane /hexane (45:55) Flow rate: 1.2 mL/min Pressure: 36 bar	Nerin, C. et al, Food Additives and Contaminants, 1996, 13 (2), 243-250
for 30 avoid 3- Th bath was s repea dichl 4- Ex evapo Mig	Os and held in the dark for 6h (to degradation by light);	Column temperature: 35°C Injected volume: 20 μL λ= 280 nm Quantification by internal standard	
on th 1- 0.2 18 m was 6 2a) -A times	 water acetic acid 3% ethyl alcohol 15% rectified olive oil soure conditions: 40°C ±0.6°C, 10 d he dark 23g of polymer were immersed in hL of simulant (ratio area/ volume 6:1); Aqueous simulants were extracted 3 s with dichloromethane. After ation they were concentrated under 		
	ogen stream up to 1 mL and		

	b) -Olive oil was diluted with dichloromethane and injected directly.		
Chimassorb and Uvitex OB	 Specific migration in sunflower oil: 1- Weigh 2g of sunflower oil in a 10mL volumetric flask; 2- Add 100μL of internal standard (Tinuvin 326- 1mg/mL) 3- Make up to the mark with acetone and mix thoroughly. Inject in the HPLC. 	HPLC-UV Column ODS, 250 x 4.6 mm Mobile phase: 100% acetonitrile/water (95:5) then programmed to 100% tetrahydrofuran and held for 5 min. Flow rate: 1.5mL/min Injected volume: 20 μ L $\lambda = 330$ nm Repeatability was 0.56 mg/dm ² for a specific migration of 3.69 mg/dm ² . Detection limit = 6.7 mg/Kg	EU project- Specific Migration G6RD- CT200-00411
	 Determination in HDPE and PP 1- 0.5g of polymer (cut into 0.5cm²) were weighted in 40mL vials; 2- 0.5 mL of the internal standard (Tinuvin 326 – 500mg/L) and 10 mL of tetrahydrofuran were added ; 3- After having vials caped they were stored for 24h at 60°C; 4- Liquid was put in a vial and a small quantity filtered using a 0.2µm HPLC syringe filter for HPLC analysis. Repeat the extraction with the same polymer pieces. 	HPLC-UV Column: Hypersil ODS-2 C18 25 cm x 4.6 mm id Sµm Column temperature: 25°C Mobile phase: acetonitrile containing 1% v/v acetic acid and water (95:5), held for 8 min, then programmed to 100% tetrahydrofuran, held for 5 min. Flow rate: 1.5 mL/min Injected volume: 20 µL $\lambda = 330$ nm tr Chimassorb 81= 4.8 min tr Tinuvin 326= 6.5 min tr Uvitex OB= 8.0 min HDPE RSD _{Chimassorb 81} = 1.4% RSD _{Uvitex} OB= 0.6% PP RSD _{Chimassorb 81} = 3.2% LOD _{Chimassorb 81} = 47 mg/kg LOD _{Uvitex} OB = 42 mg/kg	EU project- Specific Migration G6RD- CT200-00411

	Determination in polymers: Additives (9): - Chimassorb 81 - BHT - Irganox 1076 - Others	LC-UV-MS Equipment: HPLC: Waters 6000a pumps, model 680 LC gradient controller; MS: Finnigan-MAT model 4615 quadrupole mass spectrometer; Column: 1/8 in. o.d. x 2.1 mm i.d. x 25 cm, 5μm ODS Mobile phase: acetonitrile	Vargo, J.D., Olson, K. Anal. Chem. 1985, 57, 672-675
	 1- 1g of plastic shavings was extracted overnight with 5 mL of acetonitrile (at room temperature and with constant stirring); 2- Extracts were filtered prior to analysis. 	Flow rate: 0.2 mL/min Injected volume: 20 μ L $\lambda = 280$ nm Ion source pressure: 0.3 torr Ionisation: methane chemical ionisation Ionisation: 70eV electrons Scan range: 50-800 Scan speed: 3s The absorbance detector outlet was connected with the LC/MS interface by a 20 cm length of 0.01 in. i.d. stainless steel tubing	
Uvitex OB UV stabilizer- improve the whiteness and impart excellent brightness to plastics (Lawrence, A. H., Ducharme, D., Journal of Chromatography, 194 (1980) 434- 436)	Migration: Simulants. - water - 3% acetic acid - 10% ethanol Exposure conditions: - 48h at room temperature - 30 min at 120°C - 10 d at 45°C The plastic contained 0.01-0.06% of Uvitex OV. Extraction: Water, 2% Acetic acid or 5%NaCl does not extract Uvitex OB from polystyrene during 1 d at 20°C. Uvitex OB was extracted with chloroform.		Ganesa, M., et al, Khigiena i Zdraveopazvane, 1980, 23 (5), 445-450.

		 TLC 1- One drop (1-2μL) of a solution of plastic films in chloroform (for Uvitex OB) was applied to the thin layer. 2- Plates were dried in a 110°C oven and developed in a cylindrical tank for a distance of 10 cm past the origin. Uvitex OB developer: chloroform 3- after elution and drying, the optical brighteners were located under UV light (λ = 365 nm) 	Lawrence, A. H., Ducharme, D., Journal of Chromatography, 194 (1980) 434-436
ε-Caprolactam Monomer of polyamide 6 (nylon)		HPLC-UV-RI (refractive index) t _{r Caprolactam} = 11.75 min Equipment: GPC-ALC 150C Waters Column: Spherisorb RP-18 Phase-Sep, 25 cm x 4.6 mm i.d. Mobile phase: methanol-water (40:60) Temperature: 25°C Flow rate: 0.5 mL/min Injected volume: 20μL Sample concentration: 0.01% (w/v) λ = 210 nm	Bonifaci, L. et al, J. of Chromatography , 1991, 585, 333-336
	 <i>Migration:</i> 1- 200 cm² polymer (Nylon 6) were placed in a flask with 100 mL of boiling water; 2-Nylon was boiled under reflux for 1h and the aqueous phase removed for analysis; 3-After cooled, diluted 20 times. For HPLC analysis the aqueous extract was rotary evaporated to 6 mL and then made up to a final volume of 10 mL with acetonitrile/water (90:10) solution. 	LC-MS (used just as qualitative method) Equipment: MS: JEOL AX_505WA; HPLC: HP-1090L Accel voltage: $3kV$ Ionisation: FAB Polarity: positive Scan range: $50-1500$ Scan speed: $5s$ Column: Capcellpak ODS, $4.6 \text{ mm i.d. x 150mm}$ Mobile phase: methanol / water (20:80) at 0 min to methanol/water (70:30) at 25 min (linear gradient) Flow rate: 1 mL /min Temperature: $40^{\circ}C$ $\lambda = 230 \text{ nm}$ Injected volume: $100\mu L$	Barky, C.T. et al, Food Additives and Contaminants, 1993, 10(5), 541-553.

Determination in isooctane: 1- A 10cm diameter circle was cut and fitted into the migration cell; 2- 40mL of preheated isooctane was put into the migration cell and cells stored at the relevant temperature; 3- After 0, 1, 2, 4, 6, 8 and 10 days, migration cell was shaken and a 250 μL sample put into a GC vial; 4- 50μL of internal standard solution were added (capryllactam- 100mg/L); 5- Solutions are ready to GC analysis.	HPLCEquipment: Pye Unicam SP 800 UV/VISNormal phase:LOD= 50 µg/mLColumn: Partisil 5µ silica, 250 mm x 4.6 mm i.d.Mobile phase: acetonitrile/water (82:18)Volume injected: 100µL $\lambda = 220$ nmQuantification by external standardReverse phase:Column: Alphasil 5 µ ODS, 250 x 4.6 mm i.d.Mobile phase: acetonitrile/water (45:55)Volume injected: 100 µL $\lambda = 230$ nmQuantification by external standardGC-FIDColumn: DB624, 30 m x 0.32 mm, 1.8 µm thicknessInjector temperature: 220°CCarrier gas: hydrogenDetector: FIDDetector: FIDDetector temperature: 240 °COven program: 3 min at 130°C, 10°C/min to 240°C, 5 min at 240°C.Injected volume: 1 µLtreaprolactam= 12.7 minLOD = 1.0 mg/L isooctane	EU project- Specific migration G6RD- CT200-00411
 Determination in water: 1- 4.0 ml of water from migration experiment are put into a 5 ml flask; 2- 100μL internal standard solution (capryllactam- 1mg/ml) are added. 3- After made up to the mark with methanol, solution is mixed thoroughly. 4- Solution is ready for HPLC analysis. 	HPLC-UV Column: Phenomenex Sphereclone ODS2 5 μ m, 250 x 3.2 mm Flow rate: 1mL/min Mobile phase: 60% distilled water / 40% acetonitrile at 0min, gradient to 20% distilled water/80% methanol in 10 min, returning to 60% distilled water/40% methanol in 3 min, which was held 2 min. Volume injected: 20 μ L λ = 210nm	EU project- Specific migration G6RD- CT200-00411

Determination in a polyamide film: 1- About 1g of the polymer (pieces of 0.5cm ²) was weighted into 40mL vials; 2- After adding 1mL of internal standard (capryllactam-4000 mg/mL) and 25 mL of 95% ethanol in water, vials were stored at 60°C for 24h; 3- Solvent was drained off and analysed by GC. Repeat the extraction with the same polymer pieces.	GC-FID Equipment: Fisons 8000 Column: SGE BPX-5, 25 m x 0.32 mm, 3.0 μ m thickness Injection mode: on column Carrier gas: helium Column head pressure: 70 kPa Detector: FID Detector temperature: 290 °C Oven program: 1 min at 80°C, 30°C/min to 280°C, 5 min at 280°C, 20°C/min to 260°C, 2 min at 260°C Injected volume: 1 μ L t _r caprolactam ⁼ 9.1 min t _r capryllactam ⁼ 9.1 min RSD = 4.2% LOD = 12.5 mg/kg	EU project- Specific migration G6RD- CT200-00411
 Determination in parenteral solutions stored in PVC bags: Semi preparative LC- compounds isolation 1- 400 ml of intravenous infusions with added sodium hydrogen carbonate (1.0g) were extracted with chloroform (4 x 80 mL); 2- After drying (over MgSO₄) and evaporation, the residue was dissolved in 1 ml of 2- propanol before LC. <u>Reduction of caprolactam for GC-MS:</u> 1- 50 mg of lithium aluminium hydride were added to an extract of intravenous solution dissolved in diethyl ether (10mL); 2- After an overnight 10 mL water were slowly added before extraction with ether (2 x 5 mL) 	Semi preparative LC- compounds isolation Equipment: Waters System 600 Column: 250 x 8 mm i.d. packed with 15-25 μ m Lichroprep silica Mobile phase: n-hexane-2-propanol (3:1, v/v) Flow rate: 2.5 mL/min Injection volume: 150 μ L t _r = 17-20 min GC-MS- compounds identification Equipment: LKB 2091 Column: SPB-1, 30 m x 0.32 mm i.d., 0.25 μ m Detector mode: electron ionisation, 70eV when scanning the mass spectra and at 14 eV for low energy spectra Carrier gas: Helium Flow rate: 1.4 mL/min Flow rate for make-up gas: 20 mL/min Injection volume: 2 μ L Injection mode: split Valves: open 30s after injection Injector, separator, and ion source temperature: 180°C Oven temperature: 4°C/min from 40 to 150°C	Ulsaker, G.A. et al Journal of Pharmaceutical and Biomedical Analysis, 1992, 10 (1), 77-80

	 3- Extract was dried (over MgSO4) prior to GC-MS <u>Extraction of plastic:</u> 1- 10 g of plastic material (cut into small pieces) were added to 250mL of 2-propanol; 2- After extraction (10d, room temperature), the solvent was decanted and evaporated; 3- Residue was dissolved in n-hexane-2-propanol (1:1, v/v) to a total volume of 5 mL prior to LC analysis. <u>Extraction from intravenous infusion:</u> 1- Sodium hydrogen carbonate (0.1 g) and 1 ml of internal standard (octahydro-1H-azonin-2-one dissolved in methanol-water -1:1, v/v) were added to 50 mL of intravenous infusion; 2- After mixing, sample was extracted with chloroform (3 x 25 mL); 3- After drying (over MgSO4) and evaporation, the residue was dissolved in 2-propanol (5mL) before LC analysis. 	Normal phase LC- compounds quantification Equipment: Waters System 600 Column: Supelcosil /LC-SI, 250 x 4.6 mm i.d. column packed with 5µm Mobile phase: n-hexane/2-propanol (9:1, v/v) Flow rate: 1.5 mL/min Injection volume: $25\mu L$ $\lambda = 210$ nm $t_r = 17.33$ min Recovery: 93% LOD = 0.02 mg/L	
Benzophenone UV ink	Migrants: - acrylates (9) - photo-initiators (6): benzophenone Simulants: -Water -Acetic acid aq 3% -Ethanol aq 15% -Rectified olive oil Specific migration: 1- Two discs (1dm ²) from the printed substrates were placed in the extraction cell;	GC-MS Column: Optima Delta 6, 30 m x 0.25 mm i.d. Oven temperature: ramp from 50°C to 250°C at 10°C/min Detector mode: full scan RSD = 8.7% in isooctane RSD = 10.5% in ethanol <i>Recovery was close to 100% and >70% in all the cases.</i> Recovery can be improved using an HPLC method. Isooctane seems to be a better simulant once presents better recovery results.	Papillound, S. and Baudraz, D., Food Additives and Contaminants, 2002, 19 (2), 168-175.

			,
	2- The cell was filled with 200mL of		
	solvent and left 3 days in the dark at		
	room temperature;		
	3. a) aqueous solution		
	1- The solution was spiked with internal		
	standard ($200\mu L$ methanol solution of		
	dimethylphthalate at1000µg/L) and		
	stabilizer (200µL methanol solution of		
	HQMME at 1000µg/L);		
	2-200ml of the solution was poured		
	through the activated silica-bound-phase		
	cartridge;		
	3- Cartridges were eluted with		
	methanolic solution and solution filtered		
	and analysed.		
	b) organic solution (ethanol 95% and		
	isooctane)		
	1- The solution was spiked with internal		
	standard (200μ L methanol solution of		
	dimethylphthalate at 1000µg/L) and		
	stabilizer (200µL methanol solution of		
	HQMME at $1000 \mu g/L$);		
	2 -Solutions were evaporated to dryness		
	under mild vacuum conditions at 55°C		
	and 100 mbar on a rotatory evaporator;		
	3- Solutions were diluted with 2 mL		
	acetonitrile and analysed after filtration.		
Diphenyl phthalate			
plasticiser			
DEHA			
DEIIA		GC-MS	Van Lierop, J. B. H. et
	To determine DEHA in fat:	Equipment: Finnigan 4000 GS-MS	al, J. of
	1- 10 mL of fat were added in a vessel	Column: DB-5 fused-silica column, 30m x 0.32 mm i.d.	Chromatography,
	to the internal standard (prepared in	Detector: MS	
	synthetic mixture of triglycerides) and		1998, 447, 230-233
	an antifoam solution;	Detector mode: electron impact	
	2- The vessel was connected to a Tenax	Carrier gas: Helium	
	absorption column and heated at 210°C	Injection volume: 1µL	
	in an oil-bath. At the same time,	Injection mode: split	
	nitrogen was passed through the fat at a	Oven program: 3 min at 60°C, to 300°C at 40°C/min, at 300°C	
		for 15 min.	

 rate of about 170 mL /min for 30 min; 3- Tenax (15mg) was extracted with 1-3 mL hexane. To determine DEHA in fatty food: 1- The fat content of the food were determined; 2- A sample of food was taken so as to obtain 10 mL of fat; 3- Sample was mixed with twice its weight of dry sodium sulphate; 4- The mixture was extracted with diethyl ether in a Soxhlet apparatus for 6-7 h; 5- The ether was removed by evaporation. Continue with the above description. 	Quantification: by internal standard	
 To determine DEHA in food: 1- 30-50g of homogenized food were blended with acetone-hexane (150 mL, 1:1); 2- 0.5-3 mg of an internal standard [²H₄]DEHA (in hexane) were equilibrated with analyte during a night; 3- Supernatant was decanted and the residue was re-extracted with 2 portions of solvent (75 mL each); 4- The combined extracts were dried over sodium sulphate, evaporated to dryness, and the residue re-dissolved in 20 mL of dichloromethane- ciclohexane (1:1); 5- Centrifugation at low speed to achieve a clear solution. 	SEC (Size exclusion chromatography)- to clean-up <i>Column:</i> glass, 1 m x 25 mm i.d. containing an 80 cm bed of <i>Biobeads S-X3</i> Flow rate: 3.0 mL/min Mobile phase: dichloromethane-cyclohexane (1:1) Injection volume: 1.5 mL $\lambda = 254$ nm Fraction containing DEHA was evaporated to dryness and transferred to a small vial using acetone. Sample was dried under nitrogen and stored at 5°C prior to GC-MS analysis. GC-MS Equipment: Carlo Erba4160 coupled with a VG 7070H mass spectrometer <i>Column:</i> CPSIL 5 CB fused silica column, 25m x 0.23 mm i.d. (Chrompack, U.K.) Detector mode: electron ionisation, 70eV with 200 µA trap current <i>Carrier gas:</i> Helium	Startin, J.R. et al, J. of Chromatography, 1987, 387, 509-514

- <u>b</u> 1- 15 2- di 3- ev fla (1 so	DEHA analysis in polymers: <u>by Soxhlet extraction:</u> - 1-5g of polymer was extracted with 5 mL of dichloromethane for 16 h; - Extraction was repeated with fresh ichloromethane for further 16 h; - Extracts were concentrated by vaporation and transferred to a 10mL ash. Internal standard was added 10mg/mL in dichloromethane) and poly total dissolution.	Injection volume: 1.5μ L Injection mode: split, $1:30$ Oven temperature: 230° C Quantification: by internal standard [2 H ₄]DEHA m/z (DEHA) = 129 ; m/z (internal standard) = 133 GC-FID Column: BPX5, $12 \text{ m x } 0.32 \text{ mm}$, 0.25μ m Carrier gas: helium 15 psi Injector mode: split Injector volume. 1μ L Flow rate. 100 mL/min Detector: FID Detector temperature: 370° C Oven temperature: $1 \text{ min at } 240^{\circ}$ C, 12° C/min to 300° C, $1 \text{ min at } 300^{\circ}$ C	O'Brien, A. P., Food Additives and Contaminants, 1997, 14 (6-7), 705-719.
of 2- ch di 3- pr 4- su Di 1- in 20 pr	- 4g of sodium sulphate and 2mL of ttermediate standard (2mL of an 000ppm solution of dinonyl adipate in ropan-2-ol to 50 mL) was added to 50	GC-FID Column: BPX5, 12 m x 0.32 mm, 0.25 μm Carrier gas: helium 50kPa Injector mode: on column Detector: FID Detector temperature: 370°C	
2-	nL of exposed simulant. - Extraction was done with 10 mL of eptane.	Oven temperature: 370 C Oven temperature: 1 min at 100°C, 30°C/min to 210°C, 10°C/min to 240°C, 30°C/min to 360°C, 10 min at 360°C	

DEHA analysis in olive oil samples: 0.5g of oil were added to 2 mL of internal standard (dinonyl adipate 10µg/mL in heptane) and heptane until get a total volume of 25mL.		
Extraction: To the mixed plasticisers standard (containing 11.2 mg/L DEHA)was added the internal standard (DIBP- diisobutyl phthalate 10 mg/L). Food samples: - gummy candy - egg custard roll - bacon biscuits Recovery studies: Food: - jelly - candy - bacon - biscuit - cheese For non fatty foods (jelly and candy): 1- 30g of homogenized sample (which has been already in contact with the film) was added to 1 mL of internal standard and distilled water (to a total of 100 mL); 2-Mixture was shaken with 20 mL of cyclohexane- dichloromethane (1:1) for 2h with an automatic shaker (150 rpm); 3-Extract was dried over anhydrous sodium sulfate and analysed.	GC-MS Equipment: Varian 3400 Column: DB-5 capillary column, 30 m x 0.23 mm i.d. Oven program: 5 min at 100°C, 15°C/min to 300°C, 10 min at 300°C Carrier gas: helium Pressure: 9 psi Detector: ion-trap mass detector Detector mode: SIM, m/z (adipates) = 129; m/z (ATBC) = 185 Gel-Permeation Chromatography (clean-up) Column: Bio-Beads SX3, 50 cm x 2.5 cm, 60-120 µm diameter	Oi-Wah, L. et al, J. of Chromatography , 1996, 737, 338-342.
<u>For fatty food (bacon and cheese)</u> 1- 30g of homogenized sample was added to 1 mL of internal standard and		

 GC: 1mg/mL DEHA in hexane. This solution was dilutes to 10, 1 and 0.25 μg/mL in ethyl acetate or 6% ethyl acetate in hexane. LC: 1 mg/mL in acetonitrile. This solution was diluted to 100 and 40 μg/mL in acetonitrile. Extraction: <u>A</u>- Acetonitrile-hexane partition for non-fatty foods: Food: fresh, frozen, canned and dehydrated frits and vegetables fruit juices wines beers maple syrups cereal grains 	GC-FID Equipment: Varian 3400 Column: DB-5, 15 m x 0.30 mm, 0.25 μm thickness Injection mode: on column Carrier gas: helium Flow rate: 2.5 mL/min Detector: FID Detector temperature: 340 °C Oven program: 1 min at 60°C, 30°C/min to 120°C, 10°C7min to 250°C, 3 min at 250°C, 50°C/min to 295°C, 12 min at 295°C Injected volume: 1 μL Linear response: 0.25 to 10 μg/mL LC (used to confirm) Equipment: LKB 2140 Detector: diode array and absorbance Column: Supelcosil LC-18, 150 mm x 4.6 mm Mobile phase: acetonitrile/ water (50:50) to acetonitrile (100%) in 10 min , 3 min at 100% acetonitrile (to separate the phthalate esters. λmax pEHa= 209-211 nm	Page, B. D., et al Food Additives and Contaminants, 1995, 12 (1), 129-151.
---	--	---

1- Food was blended with acetonitrile
and, if required, water;
2- Mixture was filtered, diluted with
water and extracted with hexane and
dichloromethane $(10 + 1)$;
3- Sodium sulphate was added (to
minimize emulsion formation);
4- Hexane extract was washed with
water, dried with anhydrous sodium
sulphate, evaporated to dryness and
made to volume with hexane;
5- Samples were analysed by capillary
GC.
When other peaks eluting with or near
plasticizers of interest the extract were:
-passed through Florisil column
or
- or distillated (sweep co-distillation)
B- Dichloromethane lipid extraction for
fatty food:
Food:
- animal tissues
- fats
- high fat content cheese
1- Food was blended with sodium
sulphate and dichloromethane;
2- Dichloromethane was filtered and
removed by rotary evaporation;
3- Fat was weighted. When less than 1g
was present, the lipid was transferred
quantitatively in a small quantity of
hexane and made to 5 mL;
4- Plasticizers where isolated by:
-sweep co-distillation
-florisil trapping
or

Styrene	Migration into food: Recipes. - sliced potatoes with grated cheese (35 min for 170°C)	Headspace GC/MS Equipment: HP 5971 series Column: CPSIL 5CB, 17 m x 0.25 mm i.d., 0.25µm thickness Temperature: 35°C Carrier gas. Helium	Jickells, S. M ., Food Additives and Contaminants, 1993, 10 (5), 567-573
	 1-Samples were liquefied (in an oven, 70°C); 2- Supernatant oil was mixed, decanted, filtered, centrifuged and stored under refrigeration until analysis. 		
	D- Food: - butter - margarine		
	 Food, acetone and hexane were blended and centrifuged; Hexane was removed and extraction repeated; Hexane extract was dried and lipid material recovered after hexane evaporation; Extracted fat was weighted. When less than 1g , the lipid was quantitatively transferred in a small quantity of hexane and made up to 5 mL; Plasticizers where isolated by sweep co-distillation and analysed by GC. 		
	GC. <u>C- Acetone-hexane lipid extraction</u> Food: - milk - cream		
	-selective elution 5- Samples were analysed by capillary		

Г	11 00 1 11		ر
	- minced beef fried with tomato	Flow rate: 0.5 mL/min	
	sauce (90 min for 140°C)	Injector temperature: 250°C	
		Detector mode: SIR (m/z =104/112)	
	1- A measured amount of water was	Detector temperature: 180°C	
	added to obtain a slurry;	Injection mode: splitless, 3s	
	2- To 6g sub-samples was added	Vials pressurization: 10s / Vent to the sample loop: 5s	
	internal standard (10µL/200µL	Headspace sample carousel temperature: 90°C	
	cyclohexane of a d8-styrene solution -	Equilibrium period: 30 min	
	20µg/mL in ethyl acetate);		
	3- Samples were stored at –20°C before	GC/MS for olive oil	
	analysis;	Equipment: HP 5991 series	
	•	Column: CPSIL 5 CB, 25 m x 0.25 mm I:D: x 0.12 µm thickness	
		Oven program: 2min at 35°C, 5°C/min to 65°C, 40°C/min to	
	Migration into olive oil:	200°C and 1min at 200°C	
	Exposure conditions:	Injection volume. 1µL	
		Injector temperature: 250°C	
	-sealed system- dishes with olive oil	· ·	
	were heated (2h/175°C). Afterwards,		
	they were removed and cooled in water.		
	The oil was transferred to headspace		
	vials and stored at -20°C until		
	distillation;		
	-open system- olive oil was heated at		
	175° C/2h in trays. Then was transferred		
	to glass vials and stored at -20° C;		
	- immersion-polymer (6-10g) was		
	immersed in sufficient olive oil and		
	heated at 175°C/2h. After cooled at		
	room temperature for 5 min was again		
	cooled for 10-15 min in a freezer at -		
	20°C. Then, polymer was removed and		
	olive oil analysed;		
	onve on analyseu,		
	1- Olive oil was removed from storage		
	at -20° C;		
	,		
	2- The oil (8-10g) was mixed and added		
	to a few anti-bumping granules, distilled		
	water (100mL) and internal standard (20		
	μL d8-styrene, 5 μg/mL in hexane);		

	 3-Sample was distilled in a continuous steam distillation apparatus of Likens-Nikerson type (90min) with hexane (2mL); 4- Hexane was analysed directly. SPME extraction: Fiber: 85 µm polyacrylate coating Conditionation: 3h in the port injector at 280°C Adsorption: 10mL styrene solution (30.0 µg/L) was introduced in 22 mL Pyrex vials, fiber was exposed to the sample headspace during 10 min at 55°C. Desorption: into the injection port at 220°C for 2 min. Liner: splitless, 0.75mm i.d.: Headspace extraction: 250 µL styrene solution (with 20% NaCl) was placed in 6 mL Pyrex vials. Vials were heated at 80°C for 20 min. 250µL of the sample headspace were injected into the GC. 	GC GC-MS (identification) Equipment: HP 5890 series II GCS equipped with an HP 5972 MS Ionisation mode: electron impact, 70eV, full-scan, mass range: 50-150u The other conditions are the same as for GC-FID. GC-FID (quantification) Equipment: HP 5890 series II GC Column: HP-5 capillary column, cross-linked 5% phenyl methysiloxane film, 25 m x 0.20 mm i.d., 0.33 μm thickness Carrier gas: helium Flow rate: 0.65 mL/min Oven program: 1 min at 50°C, 10°C/min to 100°C, 5°C/min to 150°C, 25 min at 150°C. Injection mode: splitless Injector temperature: 220°C Detector: FID Detector temperature: 280°C LOD= 0.30µg/L- SPME; 0.05mg/L- Headspace	Silva, F.C. et al, Journal of Chromatographic Science, 200, 38, 315- 318
Bisphenol A Monomer used in the manufacture of epoxy resins for the lacquer lining of metal food cans; monomer of polycarbonates ; monomer of plastic used in the base paste of dental sealants. (Sun, Y et al, Journal of Chromatography B, 2000, 749,49-56)	 Preparation of authentic DIB-BPA sample 1- 0.31g of Bisphenol A were added to the DIB-Cl (fluorescent reagent 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride) suspension (1g/250ml in acetonitrile); 2- 1.2ml of TEA (triethylamine) were added and the resultant clear yellow 	HPLC-PO-CL (peroxyoxalate chemiluminescence) Equipment: two LC-10Advp pumps, JASCO 825-CL chemiluminescence detector Column: Daisopak-SP-120-5-ODS-BP, 250mm x 4.6 mm i.d., 5 μm Mobile phase: acetonitrile/imidazole/HNO ₃ buffer (pH 7.0) (83:17, v/v) Flow rate: 1.0 mL/min Intra-assay Recovery = 93.86%; LSD = 7.8% with 1.14 μg/L	Sun, Y et al, Journal of Chromatography B, 2000, 749,49-56

Specific migration limit: 3 mg/kg (Gandara, J. S. Et al, Journal of Chromatographic Science, 1993, 31, 450-454)	solution was stirred at room temperature for 1 h to give white-yellowish precipitates; 3- After filtration , the precipitates were washed thoroughly with cold acetonitrile and dried in vacuum.	Recovery = 92.11%; LSD = 3% with 2.28 µg/L Inter-assay LSD = 12.3% with 1.14 µg/L LSD = 7.5% with 2.28 µg/L
	Sample pretreatment and derivatization reaction 1- 100 mL of boiling water were transferred to a baby bottle and tightly capped and kept in an oven at 95% for	
	 30 min; 2- After cool, 200 μl were transferred to a mini amber-glass vial and evaporated to dryness in a centrifugal evaporator; 3- Residue was reconstituted in 100 μL of acetonitrile; 4- An equal volume of 10mM DIB-Cl in 	
	 acetonitrile and 5μl of 3M TEA in acetonitrile were added and mixed in a vortex for 20 min. Removing the excess DIB-Cl by SPE 	
	 1- ODS cartridges were activated with 5 mL of acetonitrile and conditioned with 5 mL of deionised water; 2- After applying the reaction mixture, the cartridge was washed with 5 mL of acetonitrile/water (70:30, v/v) and dried under vacuum; 3- DIB-Bisphenol A was eluted with 300 μL of acetonitrile; 4- 5 μL of eluate were injected. 	
	4- 5 μL of eluate were injected.	

	HPLC-F Equipment: Spectra-Physics SP8700XR Column: Pecosphere CRT $C_{18}RC$, 150 mm x 5.0 mm i.d. Mobile phase: 10 min isocratic elution with acetonitrile/water (35:65, v/v); 5 min linear gradient to 50% acetonitrile; 5 min linear gradient to 60% acetonitrile; 5min isocratic elution at 60% acetonitrile; 5 min linear gradient to 100% acetonitrile; 10 min isocratic elution at 100%; Flow rate: 1.5 mL/min Injected volume: 50 μ L $\lambda_{excitation}$ = 275 nm; $\lambda_{emission}$ = 300 nm LOD = 28.8 ppb	Gandara, J. S. Et al, Journal of Chromatographic Science, 1993, 31, 450-454
 Residual monomer content 1g of polymer (cut into small pieces) was dissolved with 10 mL dichloromethane (30 min); The polymer was precipitated with propan-2-ol (10 mL) by shaking After addition of 10 mL of hexane, 5 of the supernatant was taken to dryness; Residue was dissolved with HPLC mobile phase , filtered and analysed by HPLC. Migration conditions: d at 40°C Analysis of infant feed 5 drops of ammonia and 0.5 mL of ethanol were added to 1 mL of infant feed; After mixed, 2mL of hexane were added and the mixture shaken; The lower layer was transferred to an SPE cartridge that had been preconditioned with water (2mL); 	HPLC-F (Residual monomer content) Equipment: Gilson Column: cyano phase column, 250 mm x 4.6 mm, 5μm Mobile phase: hexane/propan-2-ol/dichloromethane (72:8:20 v/v/v) Flow rate: 1.0 mL/min Injected volume: 200 μL $\lambda_{excitation}$ = 285 nm; $\lambda_{emission}$ = 300 nm HPLC-F (Analysis of infant feed) Equipment: Gilson Column: C ₈ bonded reverse phase column, 250 mm x 4.6 mm, 5μm Mobile phase: methanol/water (7:3 v/v) Flow rate: 1.0 mL/min Injected volume: 200 μL $\lambda_{excitation}$ = 285 nm; $\lambda_{emission}$ = 300 nm LOD = 0.03 mg/kg Recovery = 78 ± 4% with 0.3 mg/kg	Mountfort, K. A. et al, Food Additives and Contaminants, 1997, 14 (6-7), 737-740.

5- Methanol elu dryness at 60°C 6- Residue was methanol/water analysed by HP Sample Prepar portion in cam 1- 5 g of sampl 2 min with 50 r g of sodium sul 2- The homoge	(7:3, v/v), filtered and LC. ration for the solid of vegetables and fruit e were homogenized for nL of acetonitrile and 15 fate; nate was filtered and the	HPLC-UV Equipment: HPLC Gulliver system Column: Wakosil II 3C18 RS, 3µm particle size, 150 mm x 4.6 mm i.d. Column temperature: 40°C Flow rate: 0.8 mL/min Mobile phase: acetonitrile/water (40:60, v/v)	Yoshida, T. et al, Food Additives and Contaminants , 2001, 18 (1), 69-75
mL); 3- The filtrate w min) with 50 m with acetonitril 4- The acetonitril 4- The acetonitril to a flash; 5- Hexane layer of acetonitrile a combined with 6- After adding the acetonitrile evaporated to d pressure at 40°C 7- The residue w mL of acetone- applied to a Sep 8- After washin acetone/heptane 9- The eluate w under reduced p	vas shaken vigorously (5 L of hexane saturated e; rile layer was transferred was shaken with 50 mL nd the acetonitrile layer the other; 10 mL of 2-propanol to layer, the extractant was ryness under reduced 2; was dissolved with 10 heptane (2.5:97.5) and 0-Pak Florisil cartridge; g with 10 mL of e (5:95), Bisphenol A 10 mL of	Mobile phase: acetonitrile/water (40:60, v/v) Volume injected: $20\mu L$ $\lambda = \text{from } 228 \text{ nm}$ RSD = 3.9 %; Recovery (canned corn) = 85.7% with 0.5µg RSD = 3.9 %; Recovery (canned pineapple) = 84.5% with 0.5µg RSD = 3.5 %; Recovery (canned pineapple) = 86.5% with 1.0µg	

Sample preparation for the aqueous portion in cans of vegetables and fruit 1- 10 mL of the aqueous portion of the canned food was added to 10 mL of distilled water; 2- Aqueous portion was applied to an OASIS HLB extraction cartridge; 3- After washing with 10 mL of distilled water, Bisphenol A was eluted with 10 mL of methanol; 4- The eluate was evaporated to dryness under reduced pressure at 40°C; 5- Residue was applied to a Sep-Pak Florisil cartridge and analysed by HPLC.		
 Analysis of Bisphenol a from coffee 1- 300 ml of water were added to 4g of coffee (decaffeinated and non-decaffeinated) in a 500 mL beaker; 2- The beaker was heated at 90°C for 20 min; 3- After cooled to room temperature, the sample (150 mL) was poured into can and heated at 121 °C for 30 min; 4- ISOLUTE multimode cartridge was conditionated with 5 mL methanol and 10 mL water; 5- 10 mL of sample were applied to the cartridge; 6- The cartridge was washed with 20 mL water and dried by air suction for 10 min; 7- Bisphenol A was eluted by 10 mL acetonitrile/water (40:60, v/v); 8- Solution was analysed by HPLC. 	HPLC-F Column : SymmetryShield RP ₁₈ , 150 mm x 4.6 mm, 3.5µm Column temperature: 40°C Mobile phase: acetonitrile/water (40:60 v/v) Flow rate: 1.0 mL/min Injected volume: 50 µL $\lambda_{\text{excitation}} = 275 \text{ nm}; \lambda_{\text{emission}} = 300 \text{ nm}$ Recovery (non-decaffeinated) =85.3%±5.7 % with 50 ng/mL Recovery (non-decaffeinated) =88.7%±3.9 % with 100 ng/mL LOQ(in water and caffeine) = 2 ng/mL LOQ(coffee) = 10 ng/mL The more the caffeine content increased up to 1.0 mg/mL, the more the Bisphenol A migration grew.	Kang, J. et al, Food Additives and Contaminants, 2002, 19 89), 886-890

po 1- dis 2- sol Fo Co Mi Sin HF 1- chi 2- ext (te 3-	esidual level of Bisphenol A in bycarbonate: Half cut discs of polycarbonate were ssolved in chloroform; After extracting the chloroform bution with 0.01M sodium hydroxide, e extract was analysed by HPLC. <u>od simulants:</u> - water - 10% ethanol - 3% acetic acid - Miglyol 812 - Fractionated coconut oil <u>onditions:</u> - 100°C for 6 h (for water, 10% ethanol; Miglyol 812) - 49°C for 6, 101, 240h (for water, 3% acetic acid, 10% ethanol) - 49°C for 6, 96, 240 h (for Miglyol 812) Higration mulants were analysed directly by PLC except Miglyol 812: An aliquot of extract was mixed with loroform; The chloroform solution was stracted with 0.01M TBAH etrabutylammonium hydroxide); TBAH was filtered and analysed by PLC.	HPLC-UV Equipment: Perkin Elmer Column: Zorbax C18, 250 mm x 4.6 mm Mobile phase: A- 0.1% acetic acid in Milli-Q water B- Acetonitrile/0.1% acetic acid in Milli-Q water See gradient in the paper Flow rate: 2.0 mL/min Injected volume: 400 μL λ = 280 nm Migration tests for water and 10% ethanol extracts at 100°C were analysed with the above conditions, except the injection volume was 900 μL. Migration tests for water, 10% ethanol and 3% acetic acid at 49°C were analysed under the follow conditions: HPLC-F Equipment: Perkin Elmer Column: Phenomenex 5ODS, 250 mm x 4.6 mm Column temperature: 60°c or 65°C Mobile phase: methanol/Milli-Q water (6:4) Flow rate: 1.0 mL/min Injected volume: 150 μL $\lambda_{excitation}$ = 235 nm; $\lambda_{emission}$ = 317 nm Migration tests for Miglyol 812 at 49°Cand 100°C were analysed under the follow conditions: HPLC-F Equipment: Perkin Elmer Column: Phenomenex 5ODS, 250 mm x 4.6 mm Column temperature: 40°C Mobile phase: acetonitrile/Milli-Q water (4:6) Flow rate: 1.0 mL/min Injected volume: 150 μL $\lambda_{excitation}$ = 235 nm; $\lambda_{emission}$ = no filter LOQ = 50 ng/in ²	Howe, S. R. et al, Food Additives and Contaminants, 1998, 15 (3), 370-375.
---	---	--	---

	 Simulants: Distilled water Heat processing: 121°C/90 min (tuna) 100°C/9 min (jalapeño peppers) no heating process Conditions: 25°C for 0, 40, 70 days Migration: Cans were opened and water evaporated by rotary evaporator at >35°C; Dry residue was redissolved in 5 ml of acetonitrile, filtered and analysed by HPLC. 	HPLC-F (quantification) Equipment: Varian, Star 9012 Pre-column: C_{18} Column: Micropak C_{18} MCH-5-N-CAP, 150 mm x 5.0 mm Column temperature: 40°C Mobile phase: 10 min acetonitrile/water (35:65), 5 min linear gradient to 50:50, 5 min at 50:50, 10 min gradient elution to 60:40, 5 min 60:40, 5 min gradient elution to 100:0, 5 min at 100:0. Flow rate: 1.0 mL/min Injected volume: 10 μ L $\lambda_{excitation} = 224$ nm; $\lambda_{emission} = 310$ nm t _r = 16.8 min LOQ = 0.20 μ g/L Recovery = 100.1 % ± 4.7% with 300 μ g/L GC-MS (identification) Equipment: Varian 3400CX Ionisation mode: scan mode, 70 eV, mass range: 35-500u Column: DB-5 fused silica capillary column, 30 m x 0.25 mm i.d., 0.25 μ m thickness Injector temperature: 150°C Transference line temperature: 200°C Oven program: 30°C/min from 90°C to 300°C, 10 min at 300°C. t _r = 8.5 min m/z = 213, 228, 119, 91	Munguia-Lopez, E. et al, J. Agric. Food Chem, 2001, 49, 3666-3671
1-octene	SPME extraction: <u>Fiber:</u> 75 μm carboxen- poly(dimethylsiloxane) coating <u>Conditionation:</u> 45 min in the port	GC-MS Equipment: HP5890GC series II Detector: electronic impact at 70 eV; multiplier voltage 1756 V; rate 1scan/ s	Andres, A.I. et al, Journal of Chromatography A, 2002, 963, 83-88
	injector at 280°C <u>Adsorption</u> : the needle was placed in the DED (direct-extraction device) and the DED was inserted into the core of ham by pressing. Fiber was exposed to the sample during 45 min at the temperature	Column: HP-5 bonded-phase fused-silica capillary column, 50m x 0.32 mm i.d., 1.05 μm thickness Column head pressure: 41.3 kPa Flow rate: 1.45 mL/min at 40°C Injector temperature: 280°C Injection mode: splitless	

0.1 1 1		
of the chamber.	Transference line temperature: 280°C	
Desorption: into the injection port at	Oven program: 10min at 40°C, 5°C/min to 200°C, 5 min at	
280°C during the whole	200°C.	
chromatographic run.	Detector mode: full scan, mass range: 30-500u	
1	GC-FID	Umano. K. et al, J.
heated beef	Equipment: HP5880A GC	Agric. Food Chem.,
Note: - isolation of volatiles chemicals	Column: DBWAX fused silica capillary column, 60m x 0.25 mm	1987, 35, 14-18.
from a fatty sample is one of the most	i.d.	
difficult of analytic procedures	Carrier gas: helium	
- the method steam distillation-solvent	Flow rate: 30 cm/s	
extraction (advanced by Likens and	Injector temperature: 250°C	
Nickerson-1964) was applied to analyse	Detector: FID	
volatiles from fat by several researchers	Detector temperature: 250°C	
but volatiles still must undergo	Injection mode: split, 1:30	
temperatures of 100°C or higher,	Oven program: 10min at 40°C, 2°C/min to 200°C	
which may cause further alteration of		
chemicals after separation of fat.	GC-MS	
	Equipment: HP5792A GC	
Headspace extraction:	Column: DBWAX fused silica capillary column, 60m x 0.25 mm	
1- Pure beef fat (140g) was placed in a	i.d.	
500 mL, two-neck, round-bottom flask;	Carrier gas: helium	
2- The flask was connected to an	Flow rate: 30 cm/s	
apparatus with a gas-washing bottle and	Detector: electronic impact at 70 eV	
a liquid-liquid continuous extractor in	Injector temperature: 250°C	
tandem;	Detector temperature: 250°C	
3- Beef fat was heated at 300°C.	Oven program: 10min at 40°C, 2°C/min to 200°C	
Volatiles were purged into a 250 mL of	• • • •	
deionised water by a stream of purified		
nitrogen (7.2 mL/min);		
4- Volatiles dissolved by water (10°C)		
were simultaneously and continuously		
extracted with dichloromethane (70 mL)		
for 6 h;		
5- Dichloromethane extract was dried		
over anhydrous sodium sulfate for 12 h		
and removed by a rotary flash		
evaporator;		
6- Concentrated sample (0.3 mL) was		
analysed by GC.		
analysed by OC.		

Table 2. Abstract of the revised literature on	analytical methods of the me	odel migrants
--	------------------------------	---------------

Г

	 Headspace extraction: 1- 10 g menhaden fish oil were mixed with cysteine (0.1, 0.25, 0.5 or 1.0 g) or cysteine (0.1, 0.25, 0.5 or 1.0 g) and trimethylamine oxide (TMAO) in a 50 mL two neck, round-bottom flask. 2- The flask was connected to an apparatus described by Umano and Shibamoto. 3- Samples were heated at 300°C. Volatiles were purged into a 250 mL of deionised water by a stream of purified air (7.2 mL/min) for 6h; 4- Volatiles dissolved by water were simultaneously and continuously extracted with dichloromethane (50 mL) for 6 h; 5- Extract was dried over anhydrous sodium sulfate and condensed using a rotary flash evaporator and further condensed under a purified nitrogen stream; 6- Concentrated sample (0.3 mL) was analysed by GC. 	GC-MS Equipment: HP5890 GC Column: DBWAX fused silica capillary column, 60m x 0.25 mm i.d., 1 μm thickness Carrier gas: helium Flow rate: 30 cm/s Detector: electronic impact at 70 eV Detector mode: full scan Injector temperature: 250°C Detector temperature: 250°C Oven program: from 50 to 200°C at 3°C/min, 40 min at 200°C	Horiuchi, Masahiro et al, J. Agric. Food Chem., 1998, 46, 5232-5237.
Limonene	SPME extraction: <u>Adsorption:</u> , fiber was exposed to the sample headspace during 15 min at 40°C	GC-MS Equipment: HP6890 GC Column: Phenomenex Zebron ZB-5 MS capillary column, 30m x 0.25 mm i.d., 0.25 µm thickness Carrier gas: helium Detector mode: full scan Flow rate: 0.8 mL/min Injector temperature: 250°C Injection mode: splitless Transference line temperature: 230°C Oven program: 2min at 36°C, 8°C/min to 250°C, 10 min at 250°C.	Bentivenga, G. et al, La Rivista Italiana Delle Sostanze Grasse, 2001, 78, 157- 162

Thermal desorption extraction 1- 2 L of water were purged at 40°C for 1 h with purified nitrogen at 100mL/min; 2- A cold trap (-10°C) was used for retention of water vapour and volatile compounds were trapped on Tenax TA.	GC-FID Equipment: Carlo Erba GC 6000VEGA series Column: DB1, 30 m x 0.32 mm i.d., 1.0 μm thickness A thermal desorption/cold trap device was used for transferring the volatile compounds from Tenax to the column Carrier gas: helium Injection mode. split 1:2:2, FID, sniffing port 1 and sniffing port 2 Oven program: 4 min at 60°C, 2°C/min to 140°C, 10°C/min to 250°C, 5min at 250°C. Detector: FID Detector temperature: 275°C	Linssen, J. P. H. et al, Food Chemistry, 1993, 46, 367-371
 Direct thermal desorption (DTD): has better reproducibility than simultaneous distillation-extraction can only be applied to solid and semisolid matrices. 	Thermal desorption (TD) Equipment: Perkin Elmer ATD 400 Primary desorption: cartridge was heated to the desired temperature 8 DTD-65°C; DHS- 220°C; SDE- 220°C) with 45 mL/min He Volatiles were trapped on a Tenax GC cold trap (-30°C)	Valero, E., Journal of Chromatographic Science , 2001, 39, 222-228
 1- Grated samples were mixed with sodium sulphate (1:6, w/w); 2- 0.3g were introduced in a Teflon lined stainless steel tubes. Dynamic headspace (DHS) 1- 15 g of cheese were placed in a glass vessel at 45°C and dynamically purged with 45 mL/min nitrogen for 120 min; 2- Volatiles were trapped on a 100 mg Tenax cartridge. Simultaneous distillation-extraction (SDE) 1- 8g of sample dissolved with pentane 	Secondary desorption: Tenax GC was heated at 30°C/s up to 300°C Volatiles were transfer to the GC column through a heated (225°C) fused-silica transfer line. GC-MS Equipment: Fisons 8000GC Column: homemade FFAP/OV-1 (57:43, w/w), 25m x 0.25 mm i.d., 0.25 μ m thickness Carrier gas: helium Injector pressure: 54 kPa Detector mode: electron-ionisation, 70eV Oven program: 10min at 55°C, 3°C/min to 180°C, 10 min at 180°C. Detection mode: full scan $t_r=7.95$ min	

 2- 1 μL of the distillate was introduced into a desorption cartridge (packed with silanized glass wool by a microsyringe). Supercritical Fluid infusion: 1 g of LDPE was placed in a 3 mL extraction cell with 10 μL of the volatiles. 2- Cell was filled with SFE-grade CO₂, pressurized, and sealed. Infusion conditions: Equipment: Autoprep 44 supercritical fluid extraction system Duration: 2-90 min Temperature: 40-100°C Pressure: 100-400 atm Rate of depressurisation: 15-45 atm/min Quantity of volatile/g polymer: 1-100µL Quantity of limonene/g polymer: 0-20µL 3- The infused polymer was washed 3 times with hexane to remove surface-coated volatiles; 4- Polymer was stored at room temperature until extraction and analysis. Volatile extraction 1- 200 mg of infused polymer was added to 500 µL methanol (with 100µg/mL of ethyl hexanoate internal standard); 2- Samples were sealed and extract overnight at room temperature. 	GC-MS Equipment: Fisons GC 8000-MD800 Column: DB-5, 30m x 0.25 mm i.d., 1.0 μm thickness Carrier gas: helium, Carrier gas pressure: 25 kPa Injector mode: splitless Injected volume: 1μL Injector temperature: 240°C Oven program: 2min at 40°C, 8°C/min to 160°C. Detection mode: full scan	Avison, S. J. et al, J. Agric. Food Chem., 2001, 49, 270-275
2- Samples were sealed and extract		

		1
 SPME extraction: 2g cheese were place in a 10 ml flash. <u>Fiber:</u> - 100 µm dimethylsiloxane (DVB) - 85 µm polyacrylate (PA) - 65 µm PDMS/divinylbenzene (PDMS/DVB) - 75 µm Carboxen/DVB <u>Adsorption:</u> Fiber was exposed to the sample headspace during 10 min at 20°C. Desorption: into the injection port at 260°C PDMS; PDMS/DVB and PA and 280°C for Carboxen/PDMS for 5 min. 	GC-MS Column: SPB-5, 60m x 0.32 mm i.d., 1.0 μ m thickness Carrier gas: helium N55 Carrier gas pressure: 0.6 bar Injector mode: splitless Injector temperature: 280°C Detector mode: electron impact, 70eV Oven program: 5min at 40°C, 3°C/min to 200°C, 5 min at 200°C Detection mode: full scan, m/z 15-230 t _r = 36.61 min	Peres, C. et al, Anal. Chem., 2001, 73 (5), 1030-1036.
Dynamic extraction: 5g of cheese were placed in a 20 mL vial sealed with a Teflon septum cap. Headspace stabilization : 20min at 30°C. Extraction /trapping : septum was pierced with a double syringe: one injected helium (120mL/min for 2 min at 30°C) and the other sent the headspace through an absorbent trap. Desorption : trap was heated ohmically to 220°c for 3 min under a stream of helium (0.8 bar). Substances were transferred to the source of mass spectrometer via a deactivated silica transfer line heated to 180°C in a chromatograph oven.	GC-MS Column: SPB-5, 60m x 0.32 mm i.d., 1.0 μm thickness Carrier gas: helium N55 Carrier gas pressure: 0.6 bar Injector mode: split, 9:1 Injector temperature: 280°C Detector mode: electron impact, 70eV; full scan m/z 15-230 Oven program: 5min at 40°C, 3°C/min to 200°C, 5 min at 200°C t _r = 36.78 min	Peres, C. Et al, Anal. Chem, 2002, 74 86), 1386-1392

	Liquid extraction - <u>Fresh kiwi fruit puree:</u> 1- Cyclohexanone (10ppm) was added to 120g of fresh puree; 2- Volatiles were extracted with 80 ml methylene chloride by stirring for 1 h with a magnetic stirrer at 2°C; 3- Mixture was centrifuged for 10 min (3000g at 5°C); 4- Organic layer was dried with sodium sulfate and concentrated to 1 ml using a distillation- rectification system, follow by concentration to 0.1 mL using a flow of nitrogen. - <u>Commercial kiwi essence:</u> 1- 3 mL of essence was added to 10 ppm cyclohexanone; 2- Mixture was extracted twice using 2 ml of methylene chloride for each extraction and mixed between two glass syringes connected by a stainless steel lock adaptor and combined; 3- Final emulsion was centrifuged for 10 min (3000g at 5°C); 4- Organic layer was dried and concentrated to 0.1 mL using a flow of nitrogen.	GC-MS Equipment: Agilent 6890/5973N Column: cross linked phenyl-methyl siloxane column, 30m x 0.25 mm i.d., 0.25 μm thickness Flow rate: 1 mL/min Injector mode: split, 10:1 Injector temperature: 250°C Ionisation source: 280°C Solvent delay: 2 min Injected volume: 2μL Detector mode: 5.27 scans/s; full scan m/z 35-300 Oven program: 6min at 40°C, 2.5°C/min to 150°C, 90°C/min to 250°C	Jordan, M. J. Et al, J. Agric. Food Chem., 2002, 50, 5386-5390
DIPN Diisopropylnaphthlene (alkylated naphthalenes are solvents widely employed in the paper industry in the manufacture of carbonless copy paper and thermal paper; also used for the production of dielectric fluid and thermal oil substituting polychlorinated	Extraction from paper and board prior of GC-MS analysis: 1-2 dm ² of sample (paperboard) were extracted using dichloromethane and ethanol by Soxhlet extraction.	GC-MS- compounds identification Column: HP5-MS, 30 m x 0.25 mm i.d., 0.25 μm Detector mode: full scan; m/z 50-500 Carrier gas pressure: 12.7 psi Flow rate: 1.2 mL/min Injection volume: 1 μL Injector temperature: 280°C Injection mode: splitless Headspace injection: incubation for 1h at 120°C; pressurization time 0.3 min, injection time 0.1 min.	Summerfield, W. and Cooper, I., Food Additives and Contaminants, 2001, 18(1), 77-88.

biphenyls-Boccacci M. et al, Food Additives and Contaminants, 1999, 16 (5), 207-213)	Quantified components:-DIPN-DBP (di-n-butyl phthalate)-DIBP (diisobutyl phthalate)Extraction from paper and boardprior of HPLC analysis:1 g of paper was immersed in 20mL ofabsolute ethanol in a 20 mL vial andagitated in an ultrasonic bath (1h).Extraction from food and simulant	Detector temperature: 280°C Oven temperature: 2 min at 40°C, ramp to 300°C at 10°C/min. HPLC-FL- DIPN quantification Column: Spherisorb ODS-2, 5µm particle size, 250 mm x 4.6mm i.d. Mobile phase: 70% acetonitrile, 30% water (v/v) Volume injected: 10 or 20 µL $\lambda_{\text{excitation}} = 232 \text{ nm}$ $\lambda_{\text{emission}} = 338 \text{ nm}$ DIPN isomers elute from 25-31 min RSD= 8%	
	 prior to HPLC analysis: 1- 0.3dm² of paperboard was exposed to: 10g of icing sugar / flour / cake 5g of pizza base 14g of pastry 25g of rice 2g of Tenax (simulant) 2- Test were conducted at: 20°C /6 months 10d/40°C 0.5h /150°C 0.5h /150°C 24h/40°C 3- A) Food containing a significant fat level (pastry and cake): were extracted with acetonitrile, filtered and injected; B) Tenax and dry food: were extracted in an ultrasonic bath with absolute ethanol. 		

Extraction from food-stuffs 1 dm ² of artificially contaminated paperboard was put into contact with 50g of foodstuff samples: - husked rice - wheat semolina - pasta - egg pasta - maize flour and tested at intervals of 0, 3, 9, 15, 24, 40 and 60 d. DIPN was extracted according Sturaro et al (1994).	GC-FID Column: OV1, 50 m x 0.25 mm, 0.5 μm thickness Injection mode: splitless- 60s of closing time Carrier gas: hydrogen Detector: FID Oven program: 1 min at 40°C, ∞°C/min to 140°C, 2 min at 140°C, 2°C/min to 200°C. Flow rate: 1mL/min GC-MS- compounds confirmation Column: SPB 608 Supelco, 30 m x 0.25 mm i.d., 0.25 μm Injection mode: splitless- 60s of closing time Detector mode: electron ionisation, 70eV, 400μA of trap current Flow rate: 1.0 mL/min Carrier gas: helium Oven temperature: 2 min at 50°C, ramp to 140°C at 50°C/min, 2	Boccacci, M. et al, Food Additives and Contaminants, 1999, 16 (5), 207-213.
Migrants: - o-xylene - acetophenone - benzoic acid - dodecane - naphthalene - vanillin - diphenyloxide - 2,3,4-trichloroanisole (2,3,4- TCA) - benzophenone - DIPN - Dibutyl phthalate (DBP) Migrants determination in paper samples: 1- Contaminated paper strips (1cm ² -	min at 140°C, 2°C/min to 240°C $t_r = 23.58 \text{ min}$ m/z = 212.156; m/z = 197.133 GC-FID Equipment: Fisons 9000 Column: DB-1, 30 m x 0.32 mm, 0.25 µm thickness Injection mode: split, 15mL/min Injector temperature: 240°C Injected volume: 1µL Carrier gas: helium Detector: FID Detector temperature: 290°C Oven program: 3 min at 60°C,10 °C/min to 270°C, 3 min at 270°C. Flow rate: 1.45 mL/min GC-MS- compounds confirmation Equipment: Hewlett-Packard HP 6890 series Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 µm Injector temperature: 240°C	Triantafyllou, V.I. et al, Analytica Chimica Acta , 2002, 467, 253- 260

	 with a migrant concentration of 250mg/L) were placed in 5mL vials; 2- 4ml of ethanol were added and 0.5 mL of internal standard (BHT-112mg/L); 3- Extraction was performed with gentle agitation of the vials for 1h at room temperature; 4- Ethanol extracts were analysed by GC-FID and GC-MS. Migrants determination in Tenax: Paper strips were put into contact with Tenax (simulant for fatty food) for different contact periods (<4h) at 70°C and 100°C. 	Injection mode: split, 15 mL/min Injected volume: 1 μ L Detector mode: electron ionisation, 70eV Interface temperature: 280°C Ion source temperature: 230°C Flow rate: 0.7 mL/min Carrier gas: helium Oven temperature: 3 min at 60°C, ramp to 270°C at 10°C/min, 3 min at 270°C. t _r = 23.58 min m/z = 212.156; m/z = 197.133	
Laurolactam Nylon 12 monomer	Polymer: - Nylon 12 Simulants: - - 10% aq ethanol - 50% aq ethanol - 95% aq ethanol - olive oil Conditions: - - 10 d at 40°C Internal standard: Capryllactam (210µg/mL) 1- 1g oil was dissolved in eluent and filled up to a total weight of 10g and injected in the SEC; 2- Fraction eluted between 23-34 min was collected (~75 mL) and evaporated in a rotary evaporator at 60°C to about 1mL;	GC-FID Equipment: Hewlett Packard 5890 Column: DB624, 30 m x 0.32 mm, 1.8 μm thickness Injection mode: split 1:20 Injector temperature: 220°C Carrier gas: hydrogen Column head pressure: 65 kPa Detector: FID Detector temperature: 240 °C Oven program: 2 min at 180°C, 10°C/min to 240°C, 5 min at 240°C Injected volume: 1 μL t _r laurolactam ⁼ 9.5 min t _r capryllactam ⁼ 6.6 min LOD = 0.04µg/mL LOQ= 0.15µg/mL Preparative HPLC 1- 50g or 50 dm ² of polyamide 12 were extracted with 500mL of 95% ethanol/water mixture for 3 d at 60°C 2- Extract was evaporated to dryness and residue purified Equipment: Shimazu fraction collector (FRC-10A)	Stoffers, N. H., Brandl, F., et al Food Additives and Contaminants , 2003, 20, (4), 410-416

3- Then was quantitatively transferred	Injected volume: 50µL	
into a 10mL flask and dried using a	Fractions belonging to the peaks were collected	
stream of nitrogen;		
4- Residue was redissolved in 10mL	HPLC-UV	
methanol and injected in the HPLC/MS.	Equipment: Shimazu Class 10A	
_	Column: Hypersil ODS5 5µm particle size, 125 mm x 4 mm i.d.	
Isooctane samples and standards	Column temperature: 40°C	
(0.5mL) were evaporated using a stream	Flow rate: 1mL/min	
of nitrogen and redissolved in 0.5mL of	Mobile phase: gradient from 70% water/ 30% methanol to 10%	
methanol prior to injection.	water/90% methanol in 8 min, where was held for 10 min.	
includior prior to injection.	Volume injected: 50µL	
	$\lambda = 207 \text{ nm}$	
	$t_{r \ laurolactam} = 9.4 \ min; \ LOD = 1.5 \ \mu g/mL; \ LOQ = 5.7 \ \mu g/mL$	
	$t_{r \text{ dimer}} = 10.8 \text{ min; } \text{LOD} = 1.2 \text{ µg/mL; } \text{LOQ} = 4.4 \text{ µg/mL}$	
	$t_{r \text{ trimer}} = 12.2 \text{ min; LOD} = 0.5 \mu\text{g/mL; LOQ} = 2.0 \mu\text{g/mL}$	
	$t_{r tetramer} = 12.9 min$	
	SEC	
	Equipment: Gynkotek N480	
	Column: Pharmacia XK26/40, 26mm i.d., bed height 370mm,	
	filled with Bio-beads SX-3	
	Mobile phase: ethyl acetate/cyclohexane (56:44)	
	Flow rate: 3mL/min	
	Injected volume: 4mL	
	0	
	HPLC-MS	
	0	
	10% water/90% methanol in 6 min, where was held for 6 min	
	returning to 70% water/ 30% methanol for 10 min.	
	Volume injected: 15µL	
	Mobile phase: ethyl acetate/cyclohexane (56:44) Flow rate: 3mL/min Injected volume: 4mL HPLC-MS Equipment: Thermo Finnigan LCQ Deca Ionisation: APCI (atmospheric pressure chemical ionisation) Vaporizer temperature: 450°C Corona current: 5.0 mA Heated capillary: 225°C Scan range: 100-1200 Column: Hypersil ODS5 5µm particle size, 125 mm x 4 mm i.d. Flow rate = 0.8 mL/min Mobile phase: 70% water/ 30%methanol for 3 min, gradient to 10% water/90% methanol in 6 min, where was held for 6 min returning to 70% water/ 30%methanol for 10 min.	

		$\begin{array}{l} m/z_{trimer} = 592.6 \\ t_{r \ laurolactam} = 8.1 \ min; \ LOD = 0.05 \ \mu g/mL; \ LOQ = 0.2 \ \mu g/mL \\ t_{r \ dimer} = 8.9 \ min; \ LOD = 0.04 \ \mu g/mL; \ LOQ = 0.17 \ \mu g/mL \\ t_{r \ trimer} = 9.9 \ min; \ LOD = 0.03 \ \mu g/mL; \ LOQ = 0.14 \ \mu g/mL \\ t_{r \ teramer} = 10.8 \ min \\ In \ olive \ oil: \\ LOD = 0.57 \ \mu g/g \\ LOQ = 2.1 \ \mu g/g \end{array}$	
Triacetin 1,2,3-propanetriol, triacetate	 Extraction: 1- 150 mL of aq 0.5 N sulphuric acid and a few glass beads were added to a distillation flask; 2- 25 mL of water were added to a flask at the condenser outlet end of the steam distillation unit. The end of the outlet tube was immersed in the water; 3- Steam distillation unit collected 200 mL of distillate. 4- The distillate was added to a separatory funnel and 50 ml of methylene chloride were added. 5- The separatory funnel was shaken and then the methylene chloride was drained off. 6- The extraction was repeated 3 times and extracts combined; 7- The sample was evaporated in a rotary evaporator to 5 mL; 8- The residual was transfer for a centrifuge tube with 2 x 2 mL rinses of methylene chloride; 9- The sample was evaporated under a constant stream of nitrogen to 1 mL; transferred for an autosampler vial and injected. 		Health Canada. Tobacco control programme. 1999 (http://www.hc- sc.gc.ca/hecs- sesc/tabac/pdf/T- 311e4.PDF)

ATBC			
(Acetyl tributyl citrate)	Migration: 1- Circular pieces of PVDC/PVC (with	GC	Goulas, A. E., et al, Journal of Food
Plasticizer (improve properties	5% of ATBC) were brought into two-		Protection , 1998, 61
such as flexibility, elasticity	side contact with 105 mL of olive oil;		(6), 720-724
and processibility) Generally	2- Samples were irradiated at 0 to 2°C		
used in Saran (trade name for	with high-energy electron beam		
vinylidene chloride films	radiation (10MeV) at 20 and 50 kGy;		
copolymerised with up to 20%	3- Samples were stored at 18 to 20°C		
vinyl chloride).	and oil analysed between 1 and 288h.		
	Extraction and clean-up:	SEC	Castle, L. et al,
	1- Internal standard (deuterated-ATBC-	Column: Pharmacia, 1m x 25mm i.d., filled with bed 80cm Bio-	Journal of
	1mg/mL in acetone-hexane 1:1) was	beads SX-3	Chromatography,
	added to homogenized food (30-50g);	Mobile phase: dichloromethane/cyclohexane (1:1,v/v)	1988, 437, 281-286.
	2- 150mL of acetone-hexane $(1:1, v/v)$	Flow rate: 3mL/min	1700, 457, 201 200.
	were added and mixture for 5 min in a	Injected volume: 1.5mL	
	homogeniser;	Collected fraction: 186-204 mL	
	3- Supernatant was decanted from the	Collected fraction was evaporated to dryness and transferred to a	
	residue and extraction repeated (with	small vial using acetone. Samples were taken to dryness under	
	150mL of solvent);	nitrogen and stored at -20°C prior to GC/MS analysis.	
	4- After combining the extracts,		
	solution was dried over sodium sulphate	GC-MS	
	and evaporated to dryness on a rotary	Equipment: Carlo Erba 4160 GC	
	evaporator;	Column: BP5, 12 m x 0.33 mm i.d.	
	5- A portion of the extracted lipid was	Injection mode: on-column	
	dissolved in dichloromethane-	Detector mode: electron ionisation, 70eV with 250µA trap	
	cyclohexane $(1:1, v/v)$ to a final solution	current	
	of 0.3g lipid/mL ;	Ion source temperature: 250°C	
	6- After centrifugation, solution was	Flow rate: 4 mL/min	
	cleaned-up by size-exclusion	Carrier gas: helium	
	chromatography (SEC).	Oven temperature : ramp from 70°C to 210°C at 39°C/min, 7 min	
		at 210°C. m/z = 185 (fragment ion for ATBC)	
	Food items used:	m/Z = 100 (hagment for for ATBC)	
	cheese, fruit, vegetables, soups, cakes,		
	puddings and meat dishes		
	padamgs and meat dishes		
ļ	ļ	1	l

-

 Determination in fat: 1- Internal standard (1-60 ppm di-2- ethylhexyladipate solution in HB 307- mixture of triglycerides) and an antifoam solution were added to 10 mL of fat; 2- The vessel was connected to a Tenax absorption column and subsequently heated at 210°C in an oil-bath. While heating the vessel nitrogen was passed through the fat at 170mL/min for 30min; 3- Tenax (15 mg) was extracted with 1- 3 mL hexane; 4- Hexane extract was analysed by GC- MS. 	GC-MS Equipment: Finnigan 4000 GS-MS Column: DB5, 30 m x 0.32 mm i.d. Injection mode: split Injected volume: 1μL Carrier gas: helium Oven temperature: 3 min at 60°C, ramp to 300°C at 40°C/min, 15 min at 300°C. m/z = 129 and 185 (fragment ion for ATBC)	Van Lierop, J. B. H. et al, Journal of Chromatography , 1988, 447, 230-233.
 Determination in fatty food 1- Fat content of the food was determinate; 2- A sample food (containing at least 10 mL of fat) was mixed with twice its weight of dry sodium sulphate; 3- Mixture was extracted with diethyl ether in a Soxhlet apparatus for 6-7h. 4- Ether was removed by evaporation. 		
Migrants:-6 adipated (DMA, DEA, DBA, DIBA, DEHA, DIDA)-3 phthalates (DEHP, DINP, DIDP)-1 Citrates (ATBC)Plastisols were preparing with the plasticizer (with 50 parts per hundred of ATBC).	Microwave sample preparation system Equipment: MSP-1000 Extraction temperature: 120°C Extraction time: 10 min SFE system Equipment: SFX 220 Extraction temperature: 95°C Extraction pressure: 7000 psi Extraction time: 2 min of static time and then 30 min of dynamic	Cano, J.M. et al, Journal of Chromatography A, 2002, 963, 401-409.

	 Microwave-assisted extraction (MAE) 0.5 g of sample (cut into pieces) were put in a vessel containing 25mL of methanol and extracted by a microwave sample preparation system. Supercritical Fluid extraction (SFE): 0.2 g of sample were placed inside an extraction cartridge. 	GC-FID Equipment: Shimadzu GC-9A Column: SPB-5, 15 m x 0.53 mm, 0.50 μm thickness Injector temperature: 300°C Injected volume: 1μL Detector: FID Oven program: 1 min at 110°C, 10 °C/min to 260°C, 20 min at 260°C.	
BHT			
Antioxidant According the Codex Alimentatius antioxidants limits are: 75 ppm for BHT and 125 ppm for BHA 150 ppm for gallates 200 ppm for any combination of these antioxidants (Dieffenbacher, D. Deutsche Lebensmittel-Rundschau, 1998, 94 (11), 381-385) <u>ADI (daily intake) by the Joint Expert Committee on Food Additives (JECFA) of the World Health Organization (WHO): <u>0-0.3 mg/kg body weigh</u> (Tombesi, N. et al, Journal of Chromatography A, 2002, 963, 179- 183)</u>	 Fatty food simulantssunflower oilethanol 95% Migration: Ig of plastic were totally immersed in 300 ml of food simulant and stored under nitrogen for 7 days at 2 different temperatures: 4°C and 20°C; Ethanol samples and film pieces were analysed after 1, 2, 3, 4 and 7 weeks of storage. Sunflower oil was analysed after 4 and 7 weeks of storage; a) Ethanol samples were evaporated to dryness using a Rotavapor at 8 rpm and 30°C and dissolved in heptane to a volume of 3 mL; b) 1g of film pieces was extracted with 2 x 20 mL heptane for 2 x 24 h. Extracts were evaporated to dryness in a Rotavapor at 6 rpm and 25°C and dissolved with to 2ml with heptane; c) Sunflower oil was extracted according IUPAC 2.432 method 	GC-MS Equipment: Hewlett-Packard GC 6890 Column: 50% phenyl-50 methyl polysiloxane, 30 m x 0.32 mm i.d. Injection mode: split, 1:20 Injector temperature: 290°C Detector mode: ion mode Ion source temperature: 280°C Flow rate: 1 mL/min Carrier gas: helium Oven temperature: 5 min at 100°C, ramp to 290°C at 50°C/min, 15 min at 290°C. m/z = 205 (fragment ion for BHT) LOD = 3μ g/mL Recovery after ethanol evaporation = $45\% \pm 9\%$	Wessling, C., et al, Food Additives and Contaminants, 1998, 15 (6), 709-715.

 IUPAC method: Extraction: 1- Melt the fat sample at 10°C above its melting point; 2- Weight 2g of sample and add 10mL of methanol. Shake vigorously (5 min) and centrifuge for 5 min at 2000 rpm; 3- Inject the upper methanol layer. For fats with melting points higher than 35°C gently heat the portion in methanol to 40°C with shaking. 	IUPAC method HPLC-UV Column: Silica RP-18, 5µm particle size, 250 mm x 4 mm i.d. Flow rate: 6mL/min for 5 min until polar lipids are eluted Mobile phase: gradient from 30% acetonitrile + 1% acetic acid/ 70% water + 1% acetic acid to 100% acetonitrile + 1% acetic acid and hold for 4 min. Volume injected: 20μ L $\lambda = 280$ nm	Dieffenbacher, D. Deutsche Lebensmittel- Rundschau, 1998, 94(11), 381-385
	Alternative method: Just change the mobile phase Mobile phase: gradient from 30%(methanol/ potassium dihydrogen phosphate buffer 0.02M 1:1) / 70%methanol to 100% methanol and hold for 4 min.	
Acetonitrile extraction from lipids: 1- 5mL of acetonitrile was added to 2g of lipids (with a known amount of BHT added); 2- Vials were tightly capped with a brief purge with N ₂ stream and vigorously shaken for 2 min; 3- The extracted was filtered and injected.	HPLC-F Equipment: Simadzu LC 10 Column: Lichrosorb RP-18, 250 mm x 4.0 mm i.d., 5 µm Mobile phase: A- water/acetonitrile/acetic acid (66.5:25.5:5) B- acetonitrile/acetic acid (95:5) See elution program in the paper Flow rate: 1.0 mL/min Injected volume: 10 µL $\lambda_{\text{excitation}} = 280 \text{ nm}; \lambda_{\text{emission}} = 310 \text{ nm}$ $\lambda_{\text{max excitation BHT}} = 290 \text{ nm}; \lambda_{\text{max emission BHT}} = 320 \text{ nm}$ LOD = 810 ng	Yankah, V. et al, Lipids, 1998, 33(11), 1139-1145
Acetonitrile extraction of smoke- flavoured sausage: 1- 5g of minced sample (with a known amount of BHT added) were homogenized in 5 mL acetonitrile and filtered through No 5C filter paper; 2- Extraction and filtration were repeated twice; 3- Filtrates were combined and made up to 25 ml;	LOD = 810 ngRecovery (fish oil)= 99.2% with 5 μg/gRecovery (sausage) = 85.9% with 5μg/gRecovery (sausage) = 89.9% with 200μg/gRecovery (with Bligh and Dyer procedure) = 99.5%GC-MS (peak assignment)Equipment: Shimadzu QP 1000Column: Quadrex 65 HT, 15 m x 0.25mmSource: electron impact ionisation	

	 4- A solution aliquot was filtered and then injected. Preparation of GC-MS samples: HPLC eluants were evaporated by flushing to dryness with a N₂ stream. After dissolved in n-hexane they were subjected to GC analysis. SPME extraction: <u>Fiber:</u> 100 µm polydimethylsiloxane film <u>Adsorption:</u> 15mL solution was exposed to the sample during 30 min at 20-25°C (with a magnetic stirring velocity of 2200 rpm). Desorption: into the injection port at 250°C for 4 min. 	GC-MS Equipment: HP 6890 GCS equipped with an HP 5972 MS Ionisation mode: scan mode, 70 eV, mass Column: HP-5 capillary column, 25 m x 0.25 mm i.d., 0.25 μm thickness Carrier gas: helium Flow rate: 1.0 mL/min Oven program: 5 min at 40°C, 20°C/min to 250°C, 5 min at 250°C. Detector mode: full scan, range: 35-500u LOD= 4.2 μg/L LOQ = 13.9 μg/L Recovery = 84%; LSD = 7% with 25.5 μg/L Recovery = 99%; LSD = 16% with 38.3 μg/L Recovery = 119%; LSD = 14% with 51.1 μg/L	Tombesi, N. et al, Journal of Chromatography A, 2002, 963, 179-183
 Triclosan (TIP) 2,4,4'-trichloro-2'- hydroxydiphenyl ether bis-phenol and a nonionic germicide with low toxicity and a broad spectrum of antimicrobial activity; have been incorporated into a variety of personal hygiene products: hand soaps, deodorants, shower gels, mouthwashes and toothpastes; 	Experiment 1: Lean beef surfaces were inoculated with: - B. thermophacta - Salmonella typhimurium - E. coli O157:H7 - B. Subtilis and covered with TIP, vacuum package and stored for 24 h at 4°C. Experiment 2: Prerigor beef surfaces were inoculated with:	 Experiment 1: Only <i>B. thermophacta</i> were slightly reduced. Experiment 2: There was a slight reduction in the population of the organisms after initial application with TIP. Experiment 3: There were no significant effect (P<0.05). TIP did not reduced population of <i>E. coli</i> O157:H7. -Additional experiments suggest that the presence of fatty acids or adipose may diminish the antimicrobial activity of TIP on meat surfaces. 	Cutter, C. N., Journal of Food Protection, 1999, 62(5), 474-479.

 Incorporated in plastics (during the extrusion process) inhibits: <i>Brochothrix</i> <i>thermosphacta</i> ATCC 11509; <i>Salmonella Typhimurium</i> ATCC 14028; <i>Staphylococcus</i> <i>aureus</i> ATCC 12598, <i>Bacillus</i> <i>subtilis</i> ATC 6051, <i>Shigella</i> <i>flexneri</i> ATCC 12022, <i>Escherichia coli</i> ATCC 25922 and several strains of <i>E. coli</i> O157:H7 -triclosan is added during the extrusion of plastic and fibers to manufacture products like: cutting boards, garbage bags, carpet, surgical gauze, toothbrushes, toys and bathroom fixtures. 	 E. coli O157H7 Salmonella typhimurium B. Thermosphacta and incubated at 4°c for 24h, wrapped in TIP or control plastic, vacuum packaged and stored at 4°C for up to 14 days. Experiment 3: TIP wrapped, vacuum packaged beef samples were temperature abused at 12°C and stored for 14 days. 	-This study demonstrates that while antimicrobial activity is detected against bacterial cultures in antimicrobial plate assays, plastic containing 1.5 ppm of triclosan does not effectively reduce bacterial populations on refrigerated, vacuum- packaged meat surfaces.	
--	---	---	--

Table 3. Results of preliminary experiments on some interesting properties to develop analytical procedures

			Spectroscopic Properties				Remaining fraction in acetonitrile phase after 1 extraction with
No.	MODEL MIGRANT	Fluorescence	Ultraviolet	MS-APCI ⁺	MS-APCI ⁻	GC-FID analysis	equal volume of olive oil
1	Irganox 1076		λmax (ε): 204 (33400), 218 (10600), 273 (4000)	475, 419, 167			
2	DPBD	λex: 330 λem: 375	λmax (ε).:206 (47300), 232 (45000), 315 (92200), 328 (105900), 344(69600)			Yes	0.32
3	Chimassorb 81		λmax (ε):206 (23700), 243 (13000), 288 (16600), 324 (11100)	327, 439			0.18
4	Uvitex OB	λex: 374 λem: 432	λmax (ε):207 (41600), 263 (12100), 355 (42100), 373 (47300)	431		Yes	0.24
5	Caprolactam		λmax (ε):204 (5900), 224 (2200)	114		Yes	
6	Benzophenone		λmax (ε).:208 (27100), 251 (19900)	183, 105		Yes	0.58
7	Diphenyl Phthalate		λmax (ε):206 (45800), 227 (17100)	225, 149, 319, 177	144, 121, 148, 169		0.87
8	8 DEHA			129, 147, 241, 259, 113, 371		Yes	
9	Styrene	λex: 250 λem: 305	λmax (ε):208 (14000), 247 (15000)			Yes	0.53
10	Bisphenol A	λex: 280 λem: 307	λmax (ε): 207 (35000), 227 (33900), 278 (9000)		227		

Table 3. Results of preliminary experiments on some interesting properties to develop analytical procedures

N			Spectroscopic Properties				Remaining fraction in acetonitrile phase after 1 extraction with
No.	MODEL MIGRANT	Fluorescence	Ultraviolet	MS-APCI ⁺	MS-APCI ⁻	GC-FID analysis	equal volume of olive oil
11	1-Octene		λmax (ε): 205 (9500), 222 (4200), 274 (1100)			Yes	
12	Limonene		λmax (ε): 204 (9700)			Yes	
13	DIPN						
14	Laurolactam		λmax (ε): 203 (7700), 222 (2900)	198		Yes	
15	Triacetin			159, 99, 275, 117		Yes	
16	ATBC			259, 185, 213, 157, 273, 329, 361, 425, 403, 217	341, 211, 111, 139, 267		
17	внт		λmax (ε): 204 (25200), 217 (10000), 276 (3300)		219	Yes	0.33
18	Triclosan		λmax (ε): 206 (43900), 229 (16500), 281 (7000)		289, 253		0.47

Model migrant n°	Compounds	Type of food	Sample Preparation	Analysis procedure
		Non fatty	Extraction with weakly or non polar solvents and concentration step. Solvent change if HPLC is used (***) Extraction/dilution with polar solvents (*)	$\frac{\text{GC-FID or MS (**)}}{Column type DB5, with medium to high phase ratio (\beta), on column or splitless injection mode$
1	Irganox 1076 Fatty		Extraction with weakly non polar solvents followed by SEC- GPC clean up and concentration step. Solvent change if HPLC is used (***) Extraction with polar solvents not miscible with fat (*)	<u>HPLC-UV or APCI (+) (**)</u> Column type C8 is better than a C18. Mobile phase: acetonitrile, Detection at. $\lambda = 205$ or 218 nm by UV and 475 (m/z) by MS
2	DPDB	Non fatty	Extraction with polar to non polar solvents (**)	<u>HPLC-UV-or FL (***)</u> Column type C18. Mobile phase: acetonitrile, Detection at. $\lambda = 328$ nm by UV and . $\lambda ex = 330$ nm, $\lambda em = 375$ nm by
		Fatty	Extraction with polar solvents not miscible with fat (**)	fluorescence
		Non fatty	Extraction with weakly or non polar solvents and concentration step. Solvent change if HPLC is used (***) Extraction/dilution with polar solvents (*)	$\frac{\text{HPLC-UV or APCI (+)}}{\text{Column type C18. Mobile phase: acetonitrile/water, Detection at. } \lambda = 288 \text{ nm by UV and 327 (m/z) by MS}$
3	3 Chimassorb 81	Fatty	Extraction with weakly non polar solvents followed by SEC- GPC clean up and concentration step. Solvent change if HPLC is used (***) Extraction with polar solvents not miscible with fat (*)	$\frac{\text{GC-FID or MS}}{Column type polar, with medium to high phase ratio (\beta), on column or splitless injection mode$

Model migrant n°	Compounds	Type of food	Sample Preparation	Analysis procedure
		Non fatty	Extraction with weakly or non polar solvents and concentration step. Solvent change if HPLC is used (***) Extraction/dilution with polar solvents (*)	<u>HPLC-UV or Fl or APCI (+)</u> (***) Column type C18. Mobile phase: acetonitrile, Detection at. $\lambda =$
4	Uvitex OB Fatty		Extraction with weakly non polar solvents followed by SEC- GPC clean up and concentration step. Solvent change if HPLC is used (***) Extraction with polar solvents not miscible with fat (*)	373 nm by UV, $\lambda ex = 374$ nm, $\lambda em = 432$ nm by fluorescence and 431 (m/z) by MS
		Non fatty	Extraction/dilution with polar solvents (***)	$\frac{\text{GC-FID or MS}}{Column type polar, with medium to high phase ratio (\beta), split or$
5	Caprolactam Fatty		Extraction with polar solvents not miscible with fat (***)	splitless injection mode <u>HPLC-UV or APCI (+)</u> (**) Column type C18. Mobile phase: acetonitrile/water, Detection at. $\lambda = 224$ nm by UV and 114 (m/z) by MS
6	Benzophenone	Non fatty	Extraction with polar to non polar solvents (**)	<u>GC-FID or MS</u> (***) Column type apolar, with medium to high phase ratio (β), on column or splitless injection mode
		Fatty	Extraction with polar solvents not miscible with fat (**)	<u>HPLC-UV or APCI (+)</u> (***) Column type C18. Mobile phase: acetonitrile/water, Detection at. $\lambda = 251$ nm by UV and 183 (m/z) by MS

Model Type of Compounds **Sample Preparation** migrant Analysis procedure food n° Extraction with polar to non polar solvents (**) GC-FID or MS Non fatty To check Diphenyl 7 phthalate HPLC-UV or APCI (+) or (-) (***) Column type C18. Mobile phase: acetonitrile, Detection at. $\lambda =$ Extraction with polar solvents not miscible with fat (**) Fatty 227 nm by UV and 225 (m/z) by APCI(+) or 144 (m/z) APCI(-) Extraction with weakly or non polar solvents and concentration step. Solvent change if HPLC is used (***) Non fatty GC-FID or MS (***) Column type apolar, with medium to high phase ratio (β), on Extraction/dilution with polar solvents (*) column or splitless injection mode 8 DEHA HPLC-APCI (+) (***) Column type C18. Mobile phase: acetonitrile/water, Detection Extraction with weakly non polar solvents followed by SECat 129 (m/z) by MS GPC clean up and concentration step. Solvent change if HPLC Fatty is used (***) Extraction with polar solvents not miscible with fat (*) Separation by Volatilization (***) Non fatty GC-FID or MS (***) Column type apolar, with medium to low phase ratio (β), static Extraction or dilution with polar solvents (*) or dynamic headspace 9 Styrene HPLC-UV or Fl (**) Separation by Volatilization (***) Column type C18. Mobile phase: acetonitrile, Detection at. $\lambda =$ Fatty 247 nm by UV, $\lambda ex = 250$ nm, $\lambda em = 305$ nm by fluorescence Extraction with polar solvents not miscible with fat (**)

Model migrant n°	Compounds	Type of food	Sample Preparation	Analysis procedure
10	Bisphenol A	Non fatty	Extraction or dilution with polar solvents (***)	<u>HPLC-UV or Fl or APCI (-)</u> (***) Column type C18. Mobile phase: acetonitrile/water, Detection
10	Displicitoi A	Fatty	Extraction with polar solvents not miscible with fat (***)	at. $\lambda = 227$ nm by UV, $\lambda ex = 280$ nm or 225 nm, $\lambda em = 307$ nm by fluorescence and 227 (m/z) by MS
11	1-octene	Non fatty	Separation by volatilization (***)	$\frac{\text{GC-FID or MS}}{Column type apolar, with medium to low phase ratio (\beta), static$
11	1-octene	Fatty	Separation by volatilization (***)	or dynamic headspace
12	12 Limonene	Non fatty	Separation by olatilization (***) Extraction or dilution with polar solvents (acetonitrile, methanol or isopropanol) (**)	<u>GC-FID or MS</u> (***) Column type polar, with medium to low phase ratio (β), stati
12		FattySeparation by olatilisation (***)Extraction with polar solvents not miscible with fat (acetonitrile methanol or isopropanol) (**)	dynamic headspace	
		Non fatty	Extraction or dilution with polar solvents (**)	<u>GC-FID or MS</u> (***) Column type apolar, with medium to high phase ratio (β), on
13	13 DIPN	Fatty	Extraction with polar solvents not miscible with fat (**)	column or splitless injection mode <u>HPLC-UV or Fl or APCI (+)</u> or (-) (***) Column type C18. Mobile phase: acetonitrile/water, Detection. To check

Model migrant n°	Compounds	Type of food	Sample Preparation	Analysis procedure
		Non fatty	Extraction with weakly or non polar solvents and concentration step. Solvent change if HPLC is used (***) Extraction/dilution with polar solvents (*)	<u>GC-FID or MS</u> (***) Column type apolar, with medium to low phase ratio (β), split injection mode
14	Laurolactam Fatty	Fatty	Extraction with weakly non polar solvents followed by SEC- GPC clean up and concentration step. Solvent change if HPLC	HPLC-APCI (+) (**) Column type C18. Mobile phase: acetonitrile/water, Detection at. 198 (m/z)
		Non fatty	Extraction with polar to non polar solvents (**)	$\frac{\text{GC-FID or MS}}{Column type apolar, with medium phase ratio (\beta), split injection mode$
15	15 Triacetin	Fatty	Extraction with polar solvents not miscible with fat (***)	HPLC-APCI (+) Column type C18. Mobile phase: acetonitrile/water, Detection at. 159 (m/z)
		Non fatty	Extraction with weakly or non polar solvents and concentration step. Solvent change if HPLC is used (***) Extraction/dilution with polar solvents (*)	<u>GC-FID or MS (**)</u> Column type apolar, with medium to low phase ratio (β), split injection mode
16	16 ATBC	Fatty	Extraction with weaklyor non polar solvents followed by SEC- GPC clean up and concentration step. Solvent change if HPLC is used (***) Extraction with polar solvents not miscible with fat (*)	<u>HPLC-APCI (+) or (-) (**)</u> Column type C18. Mobile phase: acetonitrile/water, Detection at. 259 (m/z) by APCI(+) or 341 (m/z) APCI(-)

Model migrant n°	Compounds	Type of food	Sample Preparation	Analysis procedure		
		Non fatty	Extraction or dilution with polar or non polar solvents (**)	<u>GC-FID or MS</u> Column type apolar, with medium phase ratio (β), split or splitless injection mode		
17	ВНТ	ВНТ	ВНТ	Fatty	Extraction with polar solvents not miscible with fat (**)	<u>HPLC-UV or APCI (-)</u> (***) Column type C18. Mobile phase: acetonitrile/water, Detection at. $\lambda = 217$ nm by UV and 219 (m/z) APCI(-)
18	18 Triclosan	Non fatty	Extraction or dilution with polar or non polar solvents (**)	<u>HPLC-UV or APCI (-) (**)</u> Column type C18. Mobile phase: acetonitrile/water, Detection		
10		Fatty	Extraction with polar solvents not miscible with fat (**)	at. $\lambda = 229$ nm by UV and 289 (m/z) APCI(-)		

(***) Appropriate option

(**) Possible option

(*) Difficult option

European Commission

EUR 22552 EN – DG Joint Research Centre, Institute for Health and Consumer Protection Compilation of Analytical Methods for Model Migrants in Foodstuffs: Review of Analytical Methodologies Authors: P. Paseiro - C. Simoneau - R. Franz

Luxembourg: Office for Official Publications of the European Communities 2006 - 85 pp. - 21 x 29.7 cmEUR - Scientific and Technical Research series; ISSN 1018-5593

ABSTRACT

D2-2

Compilation of analytical methods for model migrants in foodstuffs:

Collection of method descriptions

This publication corresponds to project deliverable D2 of the EU-Project QLK1-CT2002-2390, Foodmigrosure.

The report consists of a compilation of analytical methods developed for the quantitative determination of all model migrants in selected foodstuffs. Depending on each combination analyte/food matrix, more purification steps were tailored to satisfy the method required criteria: detection limits, calibration curves linearity, repeatability, recovery and stability checks of the model migrants in the foodstuffs.

The analytical work started with a 'triangular' approach to select those three foods on each corner of the triangle representing the extremes of different food components, fat, protein and carbohydrate which could influence the sampling and work-up procedure prior to the analytical determination. 3 different foods were selected that could be purchased (with a similar specification) in different countries and were thought to represent major food categories, both with respect to consumption and towards the physical-chemical properties influencing the migration process from Food Contact Materials (FCM). In this report the collection of analytical methods for all 18 model migrants and at least for the three 'triangle corner foods' were compiled in a harmonised written format. These methods were successfully applied to all of the 25 foods selected for the project, some of them after minor modifications to meet the specific requirements of a particular foodstuff. This method compilation represents a unique collection of valuable and useful analytical methods which are applicable to any kind of foodstuffs and beyond this to other chemical compounds when considering physical-chemical analogies. The use of these methods is recommended either directly or as templates for the analysis of potential migrants from FCM in foods.

Mission of the JRC

The mission of the Joint Research Centre is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

