

Decarbonisation of Heavy Duty Vehicle Transport

Zero emission heavy goods vehicles

Paul Hodson JRC Workshop 28.10.2020

JRC Mission

As the science and knowledge service of the Commission our mission is to support EU policies with independent evidence throughout the whole policy cycle.

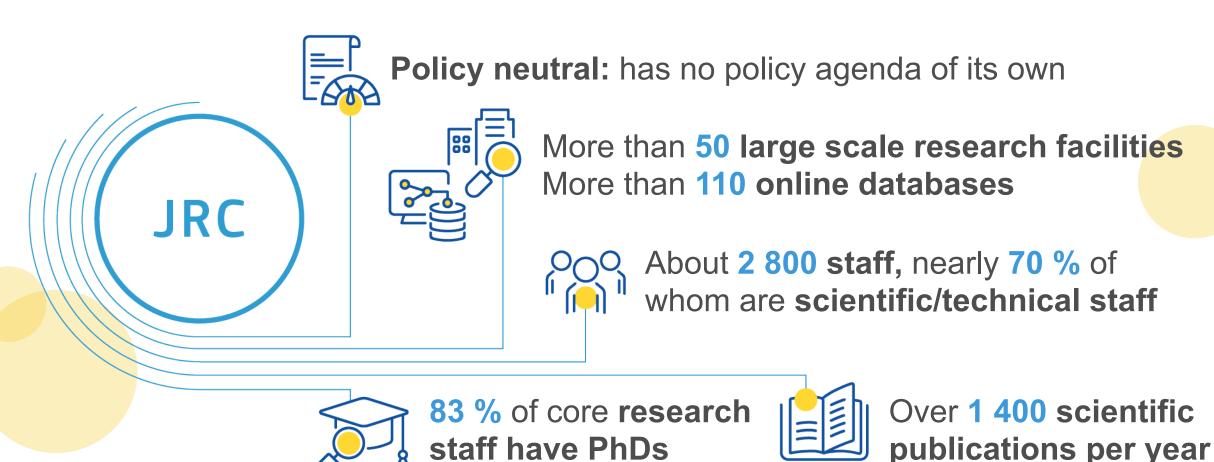
JRC sites

Headquarters in **Brussels** and research facilities located in **5 Member States**:

Belgium (Geel)

Germany (Karlsruhe)

Italy (Ispra)


The Netherlands (Petten)

Spain (Seville)

JRC role: facts and figures

JRC – activities related to the scope of the workshop

Workshop

The future role of trucks for energy and environment, workshop organized with IEA/DG CLIMA 2016

VELA 7

Emission test facility for heavy duty vehicles

VECTO

Vehicle Energy Consumption Calculation Tool (VECTO) for Heavy Duty Vehicle CO2 certification purposes

JEC

JEC study WtW- presentation this afternoon

TMA/labs

Hydrogen technologies and batteries: laboratories, technology monitoring and assessment

JEC Well-To-Wheels report v5

Well-to-Wheels analysis of future automotive fuels an powertrains in the Europea context

Report on VECTO Technology Simulation Capabilities and Future Outlook

Grand Parland

JRC activities on hydrogen

JRC's hydrogen work programme has two main goals:

- To facilitate the development and deployment of existing hydrogen applications;
 - a) Pre-normative Research for Standardisation and Technical Regulations
 - b) Technology Monitoring and Assessment
 - c) Operative Support to the FCH 2 JU
 - d) Support to regulation
- 2. To help resolve **emerging issues** regarding the future expanded role of hydrogen

JRC activities on hydrogen

Technology monitoring and assessment of hydrogen and fuel cell technologies, including critical raw materials and lifecycle impacts

Performance and safety of compressed hydrogen:

UN-ECE TR13

FCH 2 JU

European and international Standards

Access to European companies for the certification of hydrogen storage system

Battery testing facilities in Petten

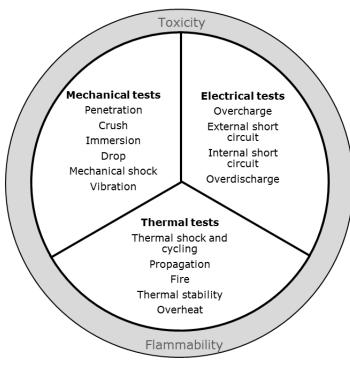
Battery cell/material performance testing

Battery pack performance testing

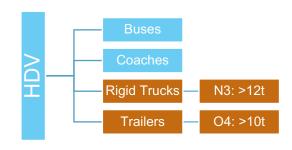
Battery cell safety testing

Dedicated facility

JRC activities on batteries


- Battery safety
- Battery performance
- Dependence on critical raw materials
 - Recycling / second use

- EU's commitment to net zero greenhouse gas emissions by 2050 means bringing emissions from inland freight transport down close to zero
- Today, 65% of EU inland freight is carried in diesel lorries
- Class of vehicles responsible for significant share of GHG emissions
- > 40% of road freight tonne-km in trips over 500km



- For urban fleets and short range delivery hydrogen fuel cell and battery buses, trucks and similar have been deployed
- For longer journeys, modal shift will play a role, but it is assumed that significant demand for lorries will remain in 2050
- Biofuels may have some role to play but cannot be the main solution
- So renewable electricity, used directly or via renewable hydrogen, will have an essential role

For longer distance transport we identified three candidate technologies: hydrogen fuel cells, batteries + catenaries and batteries alone, none of these has yet reached the deployment stage.

- Vehicles: Hydrogen Fuel Cells, Batteries
- Infrastructure: Recharging/hydrogen refuelling stations, electric road systems Catenary/Pantograph

Classes N3 and O4 EU ~Class 7 and Class 8 vehicles US

https://www.ttnews.com/articles/class-8-sales-surpass-22000-march

https://www.mobility.siemens.com/global/en/portfolio/road/ehighway.html

- For all three candidate technologies there are high costs for the vehicles and infrastructure, whether it be hydrogen filling stations, electric roads or fast charging points.
- Clearly, we can't have different solutions in each Member State (internal market)
- Can we really afford all three? If we have to choose, on what basis?
- The aim of the workshop is to get more clarity on the technical, cost and environmental factors that will need to underpin any such decision

Structure of the workshop

The structure of the workshop is given below. In total, four sessions are envisaged:

Session 1: Policy Context

Session 2: Technology options

Session 3: Comparison by LCA/Well-to-wheel studies

Session 4: Panel Discussion

Outcomes of workshop

Providing answers to these key questions:

- Which technologies are the most promising in terms of technical readiness and costs?
- What are the main challenges these options face for long-term implementation? (vehicles and infrastructure)
- Which have the greatest environmental benefit?
- Is there a clear winner?

Presentations and discussion to be summarised in a report

Thank you

Contact: Paul.Hodson@ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

