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Plan of the talk

Trimmed & Constrained Maximum Likelihood (ML) proposals
for Model Based Clustering

Robustness is based on the joint application of
trimming & constraints
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ComExt database

The ComExt Extra-European trade database provides statistics on merchandise trade among
European Union member states, and between member states and global partners. ComExt,
published by Eurostat, is based on data provided by the statistical agencies of the EU member
states and trading partners. The statistics of interest for anti-fraud are mainly the traded
volumes and values for a fixed product, which are aggregated monthly by Eurostat.

We are interested in applying robust clustering procedures for identifying outliers in the ComExt
Extra-European trade database by thinking about its usefulness in fraud detection.

There are robust procedures available for clustering data in different settings, including ones
devoted to identifying clusters around linear subspaces which appear to be well suited for
datasets in this database.
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Trimmed k-means

Trimmed k-means. Cuesta, Gordaliza and Matran (1997) Trimmed k-means: an
attempt to robustify quantizers. The Annals of Statistics, 25(2), 553-576.

A robust release of k-means
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Trimmed k-means
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k-means is not a robust procedure. 7

40

Possible effects produced by contamination

30

in clustering:

20

 To change the estimation of location and
scatter corresponding to each true group

10

 To merge several real groups in one ] “'

component of the solution ‘ . . . .

PAM k=2
Partitioning Around Medoids

Alternatives based on M-estimators increase
the resistance against the influence of outliers.

But, our recommendation is to use trimming for avoiding the
influence of contamination in the cluster parameters estimation.
The level of trimming, a, is given in advance and has to be greater
than the contamination level.
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A is a set with size 1-a containing the non-trimmed observations.
Double search: the best way of trimming and the best quantizers and assignment
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A is a set with size 1-a containing the non-trimmed observations.

Double search: the best way of trimming and the best quantizers and assignment




Trimmed k-means

Robustness is based on impartial

trimming:
which is the best way to trim.

Given a sample {)(1__xi __,xn}

the sample decides
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Trimmed k-means

Robustness is based on impartial

trimming: the sample decides

which is the best way to trim.

Given a sample {X1---Xi __,xn}

To find the best k quantizers

in the sense of (/11 M- /Uk)
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Trimmed k-means

Robustness is based on impartial

trimming: the sample decides

which is the best way to trim.

Given a sample {X1---Xi __,xn}
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Trimmed k-means
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TCLUST methodology

Garcia-Escudero, Gordaliza, Matran and M-I (Annals of Stat. 2008).

 Estimator (likelihood based)
argsup  sup Y > 1.(x )z Iog(yszlﬁ’jizj(xi))

0cR,z A#A=N(1-a) j—1 j=1 5 — 7] TCLUST:
. 1 B
where ks the number of components P weaker
k constraints

X1s Xy5ee0y Xy is @ random sample
N, (x)is the Normal density

TCLUST k=3 alpha=20% c=100

3

8 = (7[17#1121!!72.1 uLlJ 121 1"'17Z-|( 1,le 1zk)
e Missing information °

e Membership ) Zij 2 -

which verifies Z z; =1 & z;=00r1 _

=1 !

e Genuineness | A(Xi )
n

which verifies Z |A(X-

! .
i=1 : :




Mixture of normal distributions

Density of a mixture of normal

distributions
G

Z I N,uj,Zj(x)

j=1
N, »(x) is the density of a Normal
distribution with parameters y and X
Mixture distribution parameter ¢ =
{6,,0,,..,0:}
where 9] = (TL'],,LLJ,Z]) ] =1..G

l l l I l

4 2 0 2 4
density of a mixture of normals (red) and normal components (black)
points from a random sample of the mixture (blue)
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Singularities in the likelihood

Maximum likelihood estimation for finite mixture model/clustering model

X1, X1, o) Xp
Likelihood mixture model

n k
1
arg supyg z log ( o |1/2 exp (_(1/2)(xi — ;) E (g — Mj)))
i=1 J

TTj
j=1 (2m)P/

Likelihood clustering

n k
arg supg Z Z log(mj)z;j — (1/2)1og(|%; D zi; — (1/2)zi;(x; — ;) 7 (3% — 1)
i=1j=1
Without constraints, the estimation problem is not well posed.
There are singularities in the likelihood
By choosing y; = x; and |Z;| — 0, we can get the likelihood goes to .
Then, how we can define Maximum Likelihood Estimator?



Singularities in the likelihood

Maximum likelihood estimation for finite mixture model/clustering model

X1, X1, ) Xp

Likelihood mixture model
n k

1
arg sup log zn- exp (—(1/2)(x; — ;)T x; — u;
9i=1 < ](27T)p/2|2j|1/2 ( ( i J) J] ( [ ]))

Likelihood clustering
n k

arg supg ZZ log(m))z;; — (1/2)log(|%; D zi; — (1/2)z;5(x; — p;) 7 (2 — 1)
i=1j=1
Without constraints, the estimation problem is not well posed.
There are singularities in the likelihood
By choosing u; = x4 and |Z;| — 0, we can get the likelihood goes to oo.
Then, how we can define Maximum Likelihood Estimator?
maximum of local maximizers??



Singularities in the likelihood

n
arg supg z log

|b4?‘~

177 €XP (—(1/2)(xi — ) (- u,-))

(2n)p/2|2 |

. Spurious clusters
. g "3 ’ . | “little  practical use or  real-world
. e L. _ * | interpretation” (Mclachlan &Peel, 2000
9 .: . . ° L ) . ‘ZJ MCPZOOO)
oo T e L “It often seems in these cases that the model
cole " o " is fitting a small localized random pattern in
‘ * % & % ° ', the data rather than any underlying group
B L WE Bye i structure” . (McP2000)

Synthetic data set 2 (McP2000)
Mixture of two normal heteroscedastic
populations without contamination



Singularities in the likelihood

Maximum likelihood function for a finite mixture model

How to define MLE?

i=1

k
1

To apply constraints

X; = Al (k-means // trimmed k-means)

Z] =2

%] = I1Z|

Hathaway proposal for univariate mixtures (Annals Stat. 1985): In order

to get a well posed estimation-problem, to constrain the relative
variability between components

0, <co; foreachi,j 1<1i,j<k



TCLUST. Constraints

In order to get a well posed estimation-problem a solution is to restrict the
relative variability between components (Hathaway, Annals Stat. 1985)

For the multivariate case, implemented in TCLUST:

e Eigenvalue constraints (Ingrassia and Rocci, 2007)

l;

L<c, 1<, ), <k 1<, < p

2
i2
c is a boundary for the relative variability. It corresponds to restr.fact in R TCLUST.

To set the boundary for the restrictions equal to C is equivalent to bound the
relative size of the tolerance ellipsoids’ axis by./c

These constraints are not affine equivariant

e Determinant constraints (McLachlan and Peel, 2000 - McP2000).

These are affine equivariant constraints
z,
z,

<c, 1<, j, <K




TCLUST methodology

Garcia-Escudero, Gordaliza, Matran and M-I (Annals of Stat. 2008).
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Trimmed & Constrained Maximum likelihood
Mixture Normal models

Trimming & Eigenvalue constraints applied to ML finite mixture models estimation
Garcia-Escudero, Gordaliza and M-I (2014). A constrained robust proposal for mixture
modeling avoiding spurious solutions. ADAC 8 (1), pp 27-43
n k
p
argsup sup > 1,(x)log Z;/zj NS 5 (%)
i

0cR A#A=n(l-a) jo1

{a)c=1 byc=4 ©) c=10"
alpha=20% c=1 - alpha=20% c=4 ~ alpha=20% @
=1 Trimming&Constraints| =4 Trimming&Constraints| <4 only Trimming

. Fitted mixtures for the data in scenario S2 with n = 200 when G = 2 and o = 0.2.
Restriction value ¢ = 1 is used in (a), c =4 in (b) and ¢ = 1019 (almost unrestricted) in (c).



Trimmed & Constrained Maximum likelihood
Mixture Normal models

Trimming & Eigenvalue constraints applied to ML finite mixture models estimation
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Genuine bank notes identification

Bank notes. Flury, B. and Riedwyl, H. (1988). 200 printed Swiss 1000-franc bank
notes divided in two groups: 100 genuine and 100 counterfeit notes. It is a well
known benchmark data set

Dotto, F., Farcomeni, A., Garcia-Escudero, L. A., & M-I, A. (2018). A reweighting
approach to robust clustering. Stat. and Comp., 28(2), 477-493.

Fritz, H., Garcia-Escudero, L. A., & M-I, A. (2012). tclust: An R package for a
trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 1-26.
Garcia-Escudero, L. A., Gordaliza, A., Matran, C., & M-I, A. (2011). Exploring the
number of groups in robust model-based clustering. Stat. & Comp., 21(4), 585-599.

Image from Flury and
2 x5 Riedwyl (1988).
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Genuine bank notes identification

Bank notes. Flury, B. and Riedwyl, H. (1988). 200 printed Swiss 1000-franc bank
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TCLUST. Trimming & Constraints

Early impartial trimming references

Rousseeuw, P. J., JASA (1984) & Mathematical Statistics and Applications, B ,
(1985)

Neykov, N. M. and P. N. Neytchev (1990). Short communications of COMPSTAT
Gordaliza, A. (1991). Journal of Approximation Theory

Cuesta-Albertos, J. A., Gordaliza, A., & Matran, C. (1997). The Annals of Statistics
Hadi, AS Luceno (1997). Computational Statistics & Data Analysis

Vandev, D. L., & Neykov, N. M. (1998). A Journal of Theoretical and Applied
Statistics

Garcia-Escudero, Gordaliza, Matrdn and M-I. (2008) Annals of Statistics

Early references related with constraints application proposals

Hathaway (1985). Annals of Statistics

Gallegos and Ritter (2005). Annals of Statistics

Ingrassia and Rocci (2007). Computational Statistics & Data Analysis
Garcia-Escudero, Gordaliza, Matrdan and M-I. (2008) Annals of Statistics



TCLUST

Statistical properties
Statistical methodology

 Well posed statistical problem. We are interested in the maximum in
the restricted parameter space.

e Existence and Consistency (Garcia-Escudero, Gordaliza, Matran and
M-I, Annals of Stat. 2008).

e Breakdown point=alpha (in the sense of Hennig (2004))



TCLUST
Algorithm

Fast algorithm for TCLUST (Fritz, Garcia-Escudero and M-I. CSDA,2013)
e Random starts

e |terations

e E step, to assign each point to the closest component, in the sense
given by a greatest value in the discriminant functions 7N, (x)
and to obtain the optimal A set is given by the 1-a proportion of
closest points to the model in the sense of 7 Nﬂjom 2 o (%)

e M step, to obtain the best value for the parameters in the
constrained space. The current release of the algorithm reduces
this search to a set of kp +2possible solutions obtained in a explicit
way. In relation with the classical ML estimator, the change
appears in the estimation of J;,, which corresponds to the
projection of matrices S; in the constrained space.



EEECE

RE&MATLAB || =

TCLUST in CRAN. TCLUST package. Maintainer: Valentin Todorov
Fritz, Garcia-Escudero and M-I (2012) Tclust: An R Package for a Trimming Approach to
Cluster Analysis. J.Stat. Soft. 47(12), 1-26.

TCLUST in Matlab. FSDA library.

Riani, Perrotta & Torti, F. 2012. FSDA: A MATLAB toolbox for robust analysis and interactive
data exploration. Chemometrics and Intelligent Laboratory Systems, 116, 17-32
Ro.Sta.Bi.Da.C - CENTRO DI STATISTICA ROBUSTA PER GRANDI BANCHE DATI (ROBUST
STATISTICS FOR BIG DATA CENTRE) of University of Parma. Marco Riani and Andrea Cerioli.
JRC Ispra. Domenico Perrotta and Francesca Torti.



Clustering/mixture
regression models



Trimming & Constraints
Clustering of regression models

Trimming & Constraints in order to get robust clustering of regression
models. Garcia-Escudero, Gordaliza, M-I & San Martin (CSDA, 2010).

n Kk
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Trimming & Constraints
Clustering of regression models

Trimming & Constraints in order to get robust clustering of regression
models. Garcia-Escudero, Gordaliza, M-I & San Martin (CSDA, 2010).

A second trimming can be included in the E step of EM algorithm in
order to eliminate outliers in explanatory variables.

(a) alpha_1 = .15 and alpha_2 =0 (b) alpha_1 = .15 and alpha_2 = .15

10
10

oints

o 5 10 o 5 10

Example with artificial data in Garcia-Escudero Gordaliza, M-I & San Martin (CSDA, 2010).



Trimming & Constraints
Clustering of regression models

Trimming & Constraints in order to get robust clustering of regression
models. Garcia-Escudero, Gordaliza, M-I & San Martin (CSDA, 2010).

A second trimming can be included in the E step of EM algorithm in
order to eliminate outliers in explanatory variables.

(a) alpha_1 = .15 and alpha_2 =0 (b) alpha_1 = .15 and alpha_2 = .15

10
10

oints

o 5 10 o 5 10

Example with artificial data in Garcia-Escudero Gordaliza, M-I & San Martin (CSDA, 2010).



Cluster weighted model

Cluster Weighted Model (CWM) is a mixture approach to modeling the
joint probability of data coming from a heterogeneous population.
Introduced in Gershenfeld (1997) under Gaussian and linear
assumptions.

CWM decomposes the joint probability in each component of the
mixture as the product of the marginal and the conditional

distributions.

> 7 NG, (v == BXNE, ()

10
|

Ingrassia et al. (2012) shows that Gaussian* -
CWM includes, as special cases,

Multivariate Finite Mixture Models &~ 7

Classical Finite Mixture Regression Models




Trimming & Constraints

Cluster weighted model

Trimmed Cluster Weighted Restricted Modeling (TCWRM). Garcia-Escudero,
Gordaliza, Greselin, Ingrassia & M-I (Stat&Comp, 2017)

argsup ~ sup ZI (x, V) Iog(Zn Nga( — B, - ,BJX)N'O (x )j

0<R A#A=n(l-a) T

We apply jointly trimming and two kind of constraints

e Eigenvalue constraints for controlling the relative variability of regression
errors 5

L<c , 1<, j, <k

e Eigenvalue constraints for controlling the relative variability of explanatory
variables

ly

L<c. ,1<j,j, <k 1<, <p

23,

12



Trimming & Constraints

Cluster weighted model

Trimmed Cluster Weighted Restricted Modeling (TCWRM). Garcia-Escudero,
Gordaliza, Greselin, Ingrassia & M-I (Stat&Comp, 2017)

argsup  sup > 1,(x,,y;)log Zﬂ N, (Vi = Bo = B INE, (%)

0<R A#A=n(l-a) T

a)OD+background noise b)OD+pointwise contamination
; / _
/
Trimming & Restrictions in CV /
fitting (TCWRM) =
a) OD+background noise

b) OD+pointwise contamination o

o _
Black lines: TCWRM fitting
Dot lines: true linear models

o -
o

/ o o +::++ = ") = =
A% 620 0 ||/ o= 10% 6220 €220

-5 0 5 10 15 20 0 5 10 15

From Garcia-Escudero, Gordaliza, Greselin, Ingrassia & M-I (2014)



TCLUST REG // TCLUST CWM

Torti, F., Perrotta, D., Riani, M., & Cerioli, A. (2019). Assessing trimming
methodologies for clustering linear regression data. Advances in Data Analysis
and Classification, 13(1), 227-257.

w104 Tradde dataset Trade dataset: zooin on bop components Trade dataset; zoom on lower components
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Fig.12 Scatterplots of case study 5. Trade dataset formed by customs declarations made by an EU importer.
The axes report the declared values (y-axis) and quantities (x-axis). The left panel plots the data in the
original scale. The central and right panels zoom in the data to highlight the presence of components that
are difficult to notice in the original scale
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Fig. 13 Case study 5. Dataset of Figure 12 analyzed with three components (G = 3) with, from left to
right, TCLUST-REG, Adaptive TCLUST-REG and TCWRM



Fuzzy TCLUST

Trimming & Constraints Fuzzy clustering

Fritz, Garcia-Escudero and M-I (2013), Robust Constrained Fuzzy
Clustering. Information Sciences, 245, 38-52
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Fuzzy TCLUST Reg

Dotto, Farcomeni, Garcia-Escudero, M-I (2017) A fuzzy approach
to robust regression clustering. ADAC

n Kk
argsupsup  sup 331, 0x, v, ul' logle, N2, (v, - B, %)

0eR 7z A#A=n(l-a) j=1 j=1
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Robust fuzzy cluster weighted modeling

Trimming & Constraints to Fuzzy cluster weighted Model

argsup  sup ZI x,,y,){Zu |0g(7z Ncl)(,(yI — B, - ,Bjx,) (x,))]

0cR,u Al#A=n(1-a) j=1

We apply jointly trimming and two kind of constraints

e Eigenvalue constraints for controlling the relative variability of regression

errors 2

J - -
~<C,, 1< Jis ), SK
oy,

e Eigenvalue constraints for controlling the relative variability of explanatory
variables ﬂ%

L<c,,1<j,j, <k 1<I,,<p

o
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Robust fuzzy cluster weighted modeling

Trimming & Constraints to Fuzzy cluster weighted Model

argsup sup 31, (x, y.)[Zu log(z N2 (Vi =By = Bix NP (Xi)))

0cR,u AV#A=n(1-a) j—1
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ComExt database

The ComExt Extra-European trade database provides statistics on merchandise trade among
European Union member states, and between member states and global partners. ComExt,
published by Eurostat, is based on data provided by the statistical agencies of the EU member
states and trading partners. The statistics of interest for anti-fraud are mainly the traded
volumes and values for a fixed product, which are aggregated monthly by Eurostat.

We are interested in applying robust clustering procedures for identifying outliers in the ComExt
Extra-European trade database by thinking about its usefulness in fraud detection.

There are robust procedures available for clustering data in different settings, including ones
devoted to identifying clusters around linear subspaces which appear to be well suited for
datasets in this database.

0 50 100 150 200
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ComExt database

Cerioli, A. & Perrotta, D. (2014) Robust clustering around regression lines with
high density regions. Adv Data Anal Classif 8, 5-26

5
o
O_
©
8— 5
» ©
O 5 4
5 o 4
D_
O = 55 3
8 5
o 8 2 5
- & 3
S
@ 33
5 8_ 3 3 )
© « 4 3 3 22
> 3 322 2
8- %
11 11 1 1 1
O_
I [ | I [
0 50 100 150 200

Quantity (tons)

Fig.1 Spices data set: scatter plot of value (y) and quantity (x), together with cluster membership assigned



ComExt database

Cerioli, A. & Perrotta, D. (2014) Robust clustering around regression lines with
high density regions. Adv Data Anal Classif 8, 5-26
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ComExt database

Cerioli, A. & Perrotta, D. (2014) Robust clustering around regression lines with
high density regions. Adv Data Anal Classif 8, 5-26
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Fig.1 Spices data set: scatter plot of value (y) and quantity (x), together with cluster membership assigned



tabase

stering around regression lines with
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Fig.1 Spices data set: scatter plot of value (y) and quantity (x), together with cluster membership assigned



A huge percentage of observatia
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Fig.1 Spices data set: scatter plot of value (y) and quantity (x), together with cluster membership assigned
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tabase

Cerioli, A. & Perrotta, D. (2014) Robust clustering around regression lines with
high density regions. Adv Data Anal Classif 8, 5-26
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Thinning

For avoiding the influence of concentrated contamination when
estimating mixture of regressions (Cerioli and Perrotta,2014)

weighting based on density (inverse to the density)

& sampling based on this weigthing

TCLUST noint on thinned dataset
TCLUST on thinned dataset ( 490 points ) (490 points )

Standardized Value
Standardized Value

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 o 0.8 1.0
Standardized Quantity Standardized Quantity

Fig. 7 Thinned Spices data set: robust fit using TCLUST-REG with G = 5 and trimming level 0.06. Left
panel with intercept terms; right panel without intercept terms
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Fig. 7 Thinned Spices data set: robust fit using TCLUST-REG with G = 5 and trimming level 0.06. Left
panel with intercept terms; right panel without intercept terms
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Toy example: An inusual percentage of
pointwise contamination (more than 90%)

Pointwise contamination is not necessarily close to the regression line
A huge challenge, even, for Robust Statistics
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Toy example: An inusual percentage of
pointwise contamination (more than 90%)

Pointwise contamination is not necessarily close to the regression line
A huge challenge, even, for Robust Statistics
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Toy example: An inusual percentage of
pointwise contamination (more than 90%)

Pointwise contamination is not necessarily close to the regression line
A huge challenge, even, for Robust Statistics

Te]
—

O
—

Pointwise contamination fw
(90.9%!!) located (-10,10, |

(0.09%) in 2 additional

locations
o L 90.9%

N

candidate to be
the estimation

Ly
—

-15 -10 -2 0 6] 10 15



Toy example: An inusual percentage of
pointwise contamination (more than 90%)

We are interested in a regression solution based on the whole range of x
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Toy example: An inusual percentage of
pointwise contamination (more than 90%)
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Density based weighting

Thinning (Cerioli & Perrotta, 2014). De-construction of it

Te]
—

O
—

Pointwise contamination f&”
(90.9%!!) located (-10,10

(0.09%) in 2 additional

locations ra
c | na e 90.9%

NS
, 9O
o
O
IS

Ly
—




Density based weighting

We are interested in a regression solution based on the w
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Density based weighting

We are interested in a regression solution based on the whjole range of x
Any weighting based on the explanatory variable gives consistent
estimation of the regression parameters.
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Density based weighting

Any weighting based on the explanatory variable gives consistent
estimation of the regression parameters.
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Density based weighting

Any weighting based on the explanatory variable gives consistent

estimation of the regression parameters.

To apply weighting based on density allows us to reduce the influence

of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight)
Pointwise contamination
(90.9%!!) located (-10,10)

(0.09%) in 2 additional locations

trimming level 20%

Weigths: \ /——

1/density estimation ﬂp__:;r“




Density based weighting

Any weighting based on the explanatory variable gives consistent

estimation of the regression parameters.

To apply weighting based on density allows us to reduce the influence

of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight)
Pointwise contamination
(90.9%!!) located (-10,10)

(0.09%) in 2 additional locations

trimming level 20%

Weigths: \ /——

1/density estimation ﬂp__:;r“




Density based weighting

Points with density
lower to quantil 0.25
have the same weight
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Density based weighting

Any weighting based on the explanatory variable gives consistent
estimation of the regression parameters.

To apply weighting based on density allows us to reduce the influence

of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight)
Pointwise contamination
(90.9%!!) located (-10,10)

(0.09%) in 2 additional locations

trimming level 20%
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Density based weighting

Any weighting based on the explanatory variable gives consistent
estimation of the regression parameters.

To apply weighting based on density allows us to reduce the influence

of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight)
Pointwise contamination
(90.9%!!) located (-10,10)

(0.09%) in 2 additional locations

trimming level 20%
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Density based weighting

Any weighting based on the explanatory variable gives consistent
estimation of the regression parameters.

To apply weighting based on density allows us to reduce the influence

of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight)
Pointwise contamination
(90.9%!!) located (-10,10)

(0.09%) in 2 additional locations

trimming level 40%
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Density based weighting

Any weighting based on the explanatory variable gives consistent
estimation of the regression parameters.

To apply weighting based on density allows us to reduce the influence
of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight)
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Pointwise contamination ) 0.09% 0.09% .
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Density based weighting (Clustering)

Any weighting based on the explanatory variable gives consistent
estimation of the clustering of regression parameters.

To apply weighting based on density allows us to reduce the influence

of concentrated contamination.

Trimming based on this weighting (not a flx proportion of observations,

a fix proportion of weight)
Pointwise contamination
(82.6%!!) located (-10,10)

(0.08%) in 10 additional locations

trimming level 30%
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Density based weighting (Clustering)

Any weighting based on the explanatory variable gives consistent
estimation of the clustering of regression parameters.

To apply weighting based on density allows us to reduce the influence
of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight) ST
. “‘&»
Pointwise contamination =] s
(82.6%!!) located (-10,10) o -
(0.08%) in 10 additional locations - 1 . . \ .
o %&*
trimming level 30% = _ :




Density based weighting

Any weighting based on the explanatory variable gives consistent
estimation of the clustering of regression parameters.

To apply weighting based on density allows us to reduce the influence
of concentrated contamination.

Trimming based on this weighting (not a fix proportion of observations,

a fix proportion of weight) ST
N ‘"&
Pointwise contamination =] R
(82.6%!!) located (-10,10) o -
(0.08%) in 10 additional locations - 1 . . \ .
o ﬁ%&“
trimming level 30% = _ :




Orthogonal regression - Density based weighting

Pointwise contamination
(40.5%!!) located (0,15)
(40.5%!!) located (-5,30)

(0.08%) in 10 additional locations
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Orthogonal regression - Density based weighting

Pointwise contamination
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Orthogonal regression - Density based weighting

Pointwise contamination
(40.5%!!) located (0,15)
(40.5%!!) located (-5,30)

(0.08%) in 10 additional locations




Orthogonal regression - Density based weighting

Pointwise contamination
(40.5%!!) located (0,15)
(40.5%!!) located (-5,30)

(0.08%) in 10 additional locations




Orthogonal regression - Density based weighting

Pointwise contamination
(40.5%!!) located (0,15)
(40.5%!!) located (-5,30)

(0.08%) in 10 additional locations

It is necessary to include the
density estimation in each step

of the algorithm




Orthogonal regression - Density based weighting

Start with k random linear models
Iterations
*Assign each observation to the closest model
Estimate density in each model separately
Weight based on density

*estimation of each orthogonal regression model

Pointwise contamination
(40.5%!!) located (0,15) -
(40.5%!!) located (-5,30) < o
(0.09%) in 10 additional locations N | w"w s




Orthogonal regression - Densi

Start with k random linear models
Ilterations

*Assign each observation to the closest mode

Estimate density in each model (jointly with al\the observations)

Weight based on density

*estimation of each orthogonal regres:

based weighting

sion mod

NN




Orthogonal regression - Density based weighting

Start with k random linear models
Iterations
*Assign each observation to the closest madel
Estimate density in each model
Weight based on density

*estimation of each orthogonal regression mode

Pointwise contamination
(40.5%!!) located (0,15)
(40.5%!!) located (-5,30)

(0.09%) in 10 additional locations




Orthogonal regression - Density based weighting

Pointwise contamination
(40.5%!!) located (0,15)
(40.5%!!) located (-5,30)

(0.08%) in 10 additional locations

trimming level 30%
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Density based weighting

Weighting based on explanatory variables density and estimated beta
Trimming based on this weighting (not a fix proportion of observations,
a fix proporttion of weight)
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Density based weighting

Weighting based on explanatory variables density and estimated beta
Trimming based on this weighting (not a fix proportion of observations,
a fix proporttion of weight)
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Density based weighting

Weighting based on density and estimated beta
Trimming based on this weighting (not a fix proportion of observations,

a fix proporttion of weight)
Product 5810101090
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Improving EM results

Estimations for regression parameters obtained in EM runs for different random
starts
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Improving EM results

Estimations for regression parameters obtained in EM runs for different random
starts
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Improving EM results

Estimations for regression parameters obtained in EM runs for different random
starts
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Weights’ effect

Trimmed k-means al'Q Inf Inf Inf iZ Zj I i)HXi —H H2
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Input parameters

k: number of clusters
o: level of trimming
c: strength of the constraints

These input parameters have to be provided,
in advance, by the user.



Input parameters — k & alpha

Garcia-Escudero, Gordaliza, Matran & M-I (2011). Exploring the number of groups
in robust model-based clustering. Stat & Comp, 21(4), 585-599.

e Classification Trimmed Likelihood Curves with ctlcurves:
This tool is given by curves which represents the objective function value for a pairs of (k,alpha).
These curves can assist users in the selection of values for k and alpha.

> ctlcurves (x,k=1:4,alpha=seq (0,0.25,by = 0.05), restr.fact=100)
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Input parameters - alpha
ReWeighted TCLUST

Dotto, Farcomeni, Garcia-Escudero & M-I (2018). A Reweighting Approach to
Robust Clustering. Statistics and Computing.
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Input parameters - alpha
ReWeighted TCLUST

Dotto, Farcomeni, Garcia-Escudero & M-I (2018). A Reweighting Approach to
Robust Clustering. Statistics and Computing

Starting from a TCLUST solution (high level of trimming), to improve it,
sequentially, with reweighting steps

alpha= 0.4 alpha= 0.34

alpha= 0.2

alpha= 0.13




Input parameters - constraints

Eigenvalue constraints applied to ML finite mixture models estimation
Garcia-Escudero, Gordaliza, Matran and M-I (2015) Avoiding Spurious Local Maximizers in
Mixture Modeling. Stat & Comp, 25 (3) pp 619-633

Synthetic data set 2 (McP2000)
Mixture of two normal heteroscedastic
populations without contamination

Spurious clusters

_|*“little  practical use or  real-world

interpretation” (MclLachlan &Peel, 2000
McP2000)

* “It often seems in these cases that the model
is fitting a small localized random pattern in
the data rather than any underlying group
structure” . (McP2000)

Constraints for avoiding spurious
clusters in the solution



log-likelihood
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Input parameters - constraints

1 10" 10 10° 10* 10° 10° 107

max of eigenvalue ratios
(log - scale)

Eigenvalue constraints applied to ML finite

mixture models estimation

Garcia-Escudero, Gordaliza, Matran and M-I (2015)
Avoiding Spurious Local Maximizers in Mixture Modeling.
Stat & Comp, 25 (3) pp 619-633

Prevalence of spurious local maximizers in ML mixture
models estimation

When applying the EM algorithm after thousands of
random starts, thousands of different solutions
appear.

How to choose the estimation?

The plot shows Log-likelihoods and maximum of
eigenvalues-ratios for thousands of local ML
maximizers corresponding to ML estimation of two
populations for the virginica species subset of the Iris
data.



Input parameters - constraints

Eigenvalue contraints applied to ML finite mixture models estimation

Garcia-Escudero, Gordaliza, Matran and M-I (2015) Avoiding Spurious Local Maximizers in
Mixture Modeling. Stat & Comp, 25 (3) pp 619-633
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Input parameters — k &constraints

BIC based choice of contraints level

Cerioli,A., Garcia-Escudero,L.A., M-1,A., & Riani,M. (2018) Finding the Number
of Normal Groups in Model-Based Clustering via Constrained Likelihoods.
Journal of Computational and Graphical Statistics, 27(2), 404-416.

Trimmed BIC approach based on monitoring

(k, c) > -2 L(k, o, c) + v(k, a, c) when a is fixed

where v(k, a, c) penalizes a higher (than needed) “model
complexities”

Analogous to other BIC approaches but n is replaced by
[n(1 - a)]

v(k, a, c) is an increasing function on c (higher c = less-
constrained Sj matrices = higher model complexity...)



TCLUST Parsimonious modelling

We are interested in applying trimming & constraints in the estimation of 14
Parsimonious models from Celeux and Govaert (1995). Punzo & McNicholas (2013)
gave robust estimators for these models.

We are collaborating with Marco Riani and Andrea Cerioli (University of Parma) in
applying trimming & contraints for estimating these models.

Table 1:  Nomenclature, covariance structure, and number of free parameters in 3, for
each member of the PMCGD family.

Family  Model Volume Shape Orientation 3y # Free parameters in 3,
Spherical EII Equal  Spherical - A 1
VII  Variable Spherical - Agd G
Diagonal EEI  Equal  Equal Axis-Align Al P
VEI  Variable Equal Axis-Align AT G+p—1
EVI  Equal  Variable Axis-Align AL, 1+G(p—1)
VVI  Variable Variable Axis-Align AgT g Ip
General EEE Equal  Equal Equal AL ALY plp+1)/2
VEE Variable Equal Equal AT AT G+p—1+p(p—1)/2
EVE Equal  Variable Equal ALGAT, 1+G(p—-1)+pp—-1)/2
EEV  Equal  Equal Variable ATA, T p+Gp ( p—1)/2
VVE Variable Variable Equal /\QI‘Q,AI‘; Gp+p(p—1)/2
VEV Variable Equal Variable AT AT G4+p—1+Gp(p—1)/2
EVV  Equal  Variable Variable AT AT, 1+G(p—1)+Gp(p—1)/2
VVV  Variable Variable Variable AT AgI" Gp(p+1)/2

From Punzo & McNicholas (2013)



Parsimonious modeling

Rotation matrix: Equal (E) Unconstrained (V) or Identity (1)
Shape matrix: Equal (E) Unconstrained (V) or Identity (I)
Determinant: Equal (E) or Unconstrained (V)
In this way, it appears 4 models

htions of the cova

Wolume Shape
Equal
Univariate WVariahle
Spherical Equal Equal
Spherical Wariahle Equal
Diagonal Equal Equal
[ApA] Diagonal Wariahle Equal
[*Ag] Diagonal Equal Mariahle G |
W1 [AeAg] Diagonal Variable Variable
EEE [ADADY] Ellipsoidal Equal Equal
YEE Wariahle Equal
EVE Equal Variahle 1y = 1)
VVE Wariahle Variahle A0 = 1)d
EEV Ellipsaidal Equal 5= (0= 1d
Ellipsoidal Wariable Equal f=il = 1)d =1
Ellipsoidal Equal Wariahle f=iG=1)
Ellipsoidal Wariable Wariahle

iers of each covariance

VVE



Parsimonious modeling

Rotation matrix: Equal (E) Unconstrained (V) or Identity (1)
Shape matrix: Equal (E) Unconstrained (V) or Identity (I)
Determinant: Equal (E) or Unconstrained (V)
In this way, it appears 4 models

rations of the ¢

Wolume Shape

Equal

WVariahle

Equal Equal

. Wariahle Equal o i

Ell Diagonal Equal Equal o =+ d
VEI E EVDi:a,gnna] Variable Equal a4 d+ G—1
EWI Ayl Diagonal Equal Mariahle o A dlr = G4 |
W1 [AeAg] Diagonal Variable Variable a + dis
EEE [ADADY] Ellipsoidal Equal Equal o+ f
VEE [y DALY Ellipsoidal WVariahle Equal i+ A G|
EVE A, D] Ellipsoidal Equal Variahle a + B +‘ W =1}

VVE ] Ellipsoidal Wariahle Wariahle o A (= 1

Elipsoidal Equal Equal Variable o f G = (0= 1d
Ellipsoidal Wariahle Equal Wariahle o A G = (= 1)(d = 1)
Elliproidal Equal Wariahle Variahle o = G fi = (= 1)
Ellipsoidal Wariable Wariahle Wariahle o G5

rameiers of each covariance

VVV

#C (equal wei\h7 mp = l/Gland o = Gd 4 G — 1 in the unresiricied case. § denoies th

m Garcia-Escudero, L. A. (2017)



Parsimonious modeling

Rotation matrix: Equal (E) Unconstrained (V) or Identity (1)
Shape matrix: Equal (E) Unconstrained (V) or Identity
Determinant: Equal (E) or Unconstrained (V)
In this way, it appears 4 models

Wolume Shape Crientation #t Parameters
Equal [
Univariate WVariahle G
Spherical Equal Equal NA a4 |
Spherical Wariahle Equal NA
E E I Diagonal Equal Equal Coordinate axes

[ApA] Diagonal Wariahle Equal Coordinate axes (r— |

EWI [*Ag] Diagonal Equal Mariahle Coordinate axes G |

W1 [AeAg] Diagonal Variable Variah

EEE [ADADY] Ellipsoidal Equal

VEE DAY Ellipsoidal WVariahle =1

EVE Ellipsoidal Equal Variahle (Cr = 1iid = 1)
Ellipsnidal Wariable Wariable A (= 1)
Ellipsaidal Equal Equal — (e = 1d

Ellipsoidal Wariahle Equal (G — Lid = 1)
=— Equal Wariahle (=11
WVariahle Variahle

feach covariance

VI

= (rd in the restricted case (equal wei

LB =did+1)/2

\h7“,q = l/Grand o = Gd 4 G = | in the unrestric

Table from Garcia-Escudero, L. A. (2017)



Parsimonious modeling

Rotation matrix: Equal (E) Unconstrained (V) or Identity (1)
Shape matrix: Equal (E) Unconstrained (V) or Identity (I)

Determinant: Equal (E) or Unconstrained (V)

is way, it appears 2 models

cations of the covarian

Muoxdel lume Shape Crientation #t Parameters
qual |
WVariahle
Equal Equal NA
Sphe Wariahle NA
E I I Diagonal Equal Coordinate axes
Diagonal Wariahle “oordinate axes o i 4 =1
Diagonal Equal oordinate axes o A dlr = G4 |
Diagonal WVariahle oordinate axes a 4 dis
] Ellipsoidal Equal ual a + A V I I
VEE [y DALY Ellipsoidal WVariahle Equal a4+ f4+G—1
EVE [ DA V] Ellipsoidal Equal Wa Equal Bl = 1id = 1)
VVE [ DALYV Ellipsoidal Wariahle Variahle Equal A= 1d
EEV [J.DRAD;?] Ellipsaidal Equal Equal Variable G =il = 1)d
VEWV [AeDeAD] Ellipsoidal Wariable Equal Variable o b G = (G = 1id = 1)
EVW [ADgA D] Ellipsoidal Equal Wariahle Variahle o G fi = (7= 1)
VWY [J.RDRARD;] Ellipsoidal Wariable Wariahle Mariable o+ Gf
We have o = Gd in the restricted case iequal weights, mp = 1/Gland o = Gd 4 G = | in the unrestricied case. § denotes the number of parameiers of each covariance

matrix, Le., f = d(d 4 1)/2

Table from Garcia-Escudero, L. A. (2017)



TCLUST Parsimonious modelling

Trimming & constraints for estimating 14 Parsimonious models from

Celeux and Govaert (1995)
VVV EVV VEV EEV VVE

EVE  VEE  EEE wi B

Trimmed & constrained Estimation applied to artificial data from the corresponding model
+ contamination a=15% c¢=25



TCLUST Parsimonious modelling

Trimming & constraints for estimating 14 Parsimonious models from
Celeux and Govaert (1995)

BIC penalized TCLUST estimation a= 15% applied to artificial data from VVE model
Search in 14 models for k=1,2,3,4,5
from VVE K=3 estimation: VVE k=3




Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Train tunnel Retinography



Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

ellipse

contamination=0.20 trimming level =0.25
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

High speed train tunnel (ellipse)
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

High speed train tunnel (ellipse)

trimming level =0.25
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Parabola

background noise=0.08 pointwise contamination=0.16
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Parabola

background noise=0.08 pointwise contamination=0.16 trimming level=0.25
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Parabola

background noise=0.08 pointwise contamination=0.16 trimming level=0.25
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Second trimming step
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For avoiding the influence of pointwise at

contamination ) ":-.:.‘--: | .
This trimming is applied inside E step ‘

using the survival observations from the ol ...

first trimming step ol éfi |

It is carried by using a a,-trimmed mean | - -33.r';-‘~'5".3°7§3°\"*-'- ’

over the proyected points in an

orthogonal direction to the main axe of il

the parabola

_20 | | | | |
-0 -40 -3 -0 -10 0 10




Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Parabola

background noise=0.08 pointwise contamination=0.16
level of trimming1=0.25 trimming level=0.15
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Retinography
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Retinography
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Retinography
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Clustering around parametrical curves
Garcia-Escudero, M-I, Sanchez-Gutierrez (CSDA, 2017)

Retinography
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