

IMEP-22 Sulphur in Petrol

Interlaboratory Comparison Report

J. van de Kreeke, L. van Nevel, S. Bynens, I. Verbist, P. Robouch, B. de la Calle and P.D.P. Taylor

EUR 22774 EN

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

2007

The mission of IRMM is to promote a common and reliable European measurement system in support of EU policies.

European Commission Directorate-General Joint Research Centre Institute for Reference Materials and Measurements

Contact information

Ms. Lutgart Van Nevel European Commission Directorate-General Joint Research Centre Institute for Reference Materials and Measurements Retieseweg 111 B-2440 Geel • Belgium

E-mail: lutgart.van-nevel@ec.europa.eu

Tel.: +32 (0)14 571702 Fax: +32 (0)14 571865

http://www.irmm.jrc.be http://www.jrc.ec.europa.eu

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu

EUR Report 22774 EN ISBN 978-92-79-06029-8 ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2007

Reproduction is authorised provided the source is acknowledged. Cover photo credit: Creatas

Printed in Belgium

IMEP-22 Sulphur in Petrol

Interlaboratory Comparison Report

June 2007

J. van de Kreeke L. van Nevel S. Bynens I. Verbist P. Robouch B. de la Calle P.D.P. Taylor

Contents

1	Summary	. 3
2	IMEP support to EU policy	. 3
3	Introduction and scope	. 4
4	Time frame	. 5
5	Test material	. 5
	5.1 A CRM 5.2 Origin and packaging 5.3 Homogeneity and stability	5 6 6
6	The certified reference value and its uncertainty	. 6
7	Invitation and registration of participants	. 7
8	Sample dispatch and data collection	. 9
9	Reported results	12
		12 12
10	Evaluation of results	13
		13 14
11	Further information regarding the results	16
	11.2 A representative study11.3 Use of CRMs and participation in PT11.4 Quality management system	16 17 17 17 17
12	Conclusion	18
13	Acknowledgements	19
Abb	previations	20
Ref	erences	21
Anr	nexes	23

IMEP-22 Sulphur in Petrol

1 Summary

EU Directive 2003/17/EC lays down requirements for the sulphur content in automotive petrol and provides criteria for appropriate methods of analysis to monitor compliance with these requirements. The sulphur content of automotive petrol is currently between 10 and 50 mg \cdot kg⁻¹, and will be limited to 10 mg \cdot kg⁻¹ as of 2009.

IMEP-22 studies whether the laboratories involved in petrol analysis in the frame of EU legislation are able to measure a sulphur content of 20.5 $mg \cdot kg^{-1}$. This value was certified by IRMM using a primary method of measurement. Most of the 128 participants were routine laboratories located in Europe, and the intercomparison is thought to be representative for this group.

A satisfactory z score was obtained by 70% of the participants. These laboratories fulfilled the legislative requirements laid down in Directive 2003/17/EC. The unexpectedly large share of 30% questionable and unsatisfactory z scores indicates the presence of a discrepancy between the requirements of EU Directive 2003/17/EC and the performance of the average European routine laboratory.

Eighty-seven per cent of the participants had followed the invitation to report an estimate of their measurement uncertainty. A zeta score was calculated for these results, and it was tested whether this uncertainty was within range. Half of the participants obtained satisfactory *z and* zeta scores, and 39% also obtained an additional satisfactory rating for the magnitude of the reported uncertainty. These laboratories fulfilled both legislative and metrological requirements.

Several specific groups of laboratories participated in the frame of IRMM's support to EU policy. Customs laboratories were contacted via DG TAXUD and accredited laboratories were nominated by their accreditation bodies in the frame of the collaboration between IRMM and EA, the European Co-operation for Accreditation. In addition, laboratories from Acceding and Western Balkan countries participated in the frame of the IRMM support to the EU's CARDS programme.

2 IMEP support to EU policy

The International Measurement Evaluation Programme IMEP is organised by the Joint Research Centre - Institute for Reference Materials and Measurements. IMEP provides support to the European measurement infrastructure in the following ways:

• IMEP **distributes metrology** from the highest level down to the field laboratories. These laboratories can benchmark their measurement result against the IMEP certified reference value. This value is established according to metrologically best practice. • IMEP helps laboratories to assess their estimate of **measurement uncertainty**. The participants are invited to report the uncertainty on their measurement result. IMEP integrates the estimate into the scoring, and provides assistance for the interpretation.

IMEP supports EU policies by organising intercomparisons in the frame of specific EU Directives, or on request of a specific Directorate-General. IMEP-22 provided specific support to the following parties:

- the Taxation and Customs Union Directorate General of the European Commission (DG TAXUD). A collaboration had already been established in the frame of IMEP-18 and was renewed for IMEP-22. Laboratories who participated in the GCL-Action 2 of DG TAXUD were approached and invited to participate. This report does not discern the DG TAXUD affiliates from the other participants. Their results are however summarised in a separate report to DG TAXUD.
- the European Co-operation for Accreditation (EA) in the frame of a formal collaboration on a number of metrological issues, including the organisation of intercomparisons. National accreditation bodies were invited to nominate a number of laboratories for free participation in IMEP-22. Mr. Robert Leubolt (Federal Ministry of Economics and Labour, Austria) liaised between EA and IMEP for this intercomparison. This report does not discern the EA nominees from the other participants. Their results are however summarised in a separate report to EA.
- the Community Assistance for Reconstruction, Development and Stabilisation, or CARDS programme. CARDS countries are Albania, Bosnia and Herzegovina, Croatia, Serbia and Montenegro, including Kosovo under United Nations Security Council Resolution 1244 of 10 June 1999, and the Former Yugoslav Republic of Macedonia. Laboratories from these countries participated in IMEP-22 free of charge.

3 Introduction and scope

Air pollution has been one of Europe's main environmental concerns since the late 1970s, and stringent regulations thus apply to the quality of automotive fuels in the EU. One focus is on the sulphur content of fuels. The natural sulphur compounds contained in fossil fuel are released as sulphur oxides upon combustion, and these have a large impact on the environment and human health by causing acid rain and contributing to the formation of smog. Further, sulphur in automotive fuels acts as a catalyst poison, thus decreasing the effectiveness of existing and emerging automotive technology.

Current, stringent requirements as regards the sulphur content of petrol and diesel fuels are set by EU Directive 2003/17/EC [1]. Car exhaust emission limits have been laid down in EU Directives 70/220/EEC [2], 2001/100/EC [3] and 88/77/EEC [4].

Directive 2003/17/EC requires that EU Member States shall monitor compliance with the requirements of Articles 3 and 4 of the Directive 98/70/EC [5], in respect of petrol and diesel fuels, on the basis of the analytical methods referred to in European standards EN 228:1999 [6] for petrol and EN 590:1999 [7] for diesel respectively. Member States may adopt other analytical methods if they can be shown to give at least the same level of precision as the analytical methods they replace.

Current sulphur content of petrol on the European market is between 10 and 50 mg·kg⁻¹, and will be limited to 10 mg·kg⁻¹ as of 2009. IMEP-22 studies whether the laboratories involved in car fuel analysis in the frame of EU legislation are able to measure a sulphur content of 20.5 mg·kg⁻¹ petrol. It provides an indication whether the requirements of Directive 2003/17/EC for analysis of sulphur in petrol are fulfilled by the market. IMEP-22 is complementary to IMEP-18 [8] in which laboratories' performance to measure sulphur in diesel was studied. Both studies share the aim to support Directive 2003/17/EC.

4 Time frame

The certification campaign aiming at establishing the reference value and its associated uncertainty started in autumn 2005. Laboratories were invited to participate in the intercomparison via various channels in October / November 2005. Participants registered in November / December 2005. Samples were dispatched to the participants in January 2006. The initial reporting deadline of 15 March was extended to 27 March 2006. The sample material was certified, and the certified value communicated to the participants in August 2006. The individual certificates of performance were distributed in December 2006. These were accompanied by an individual and comprehensive explanation of the scorings and their settings, which allowed the intercomparison participants to make a detailed evaluation of their performance.

5 Test material

5.1 A CRM

The IMEP-22 material is a certified reference material (CRM) that is on the market since April 2007. It is produced by the European Reference Material (ERM) consortium, the partners of which are the Federal Institute for Materials Research and Testing (BAM, Germany), LGC Ltd (United Kingdom) and the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre (IRMM, Belgium). The raw material was obtained and processed by IRMM. Characterisation, homogeneity and stability tests were performed by, or under auspices of, the members of the ERM consortium. Relevant details are described below, a comprehensive description can be found in the certification report that is available from the ERM website [9].

5.2 Origin and packaging

The IMEP-22 raw material originated from BP CTC, The Manorway, Stanford-le-Hope, Essex, UK. The material was homogenised and packed in special 20 ml borosilicate ampoules with a 1-mm wall-thickness to provide a rugged containment. In order to prevent degradation of organic sulphur compounds and darkening of the petrol by light (borosilicate glass is colourless and transparent), the participants were asked to store the ampoules in the dark on receipt of the material (for details see chapter 8).

5.3 Homogeneity and stability

The homogeneity study was carried out by BAM. Approx. 30 ampoules were randomly selected from the entire batch and analysed in triplicate for sulphur using combustion fluorescence. The statistical evaluation of the measurement data included an outlier test, a regression analysis to evaluate potential trends in the analytical and filling sequences, a check for normality and quantification of the homogeneity. The between-bottle variation was found to be less than or equal to 2.3%.

The stability study was carried out by a third party under guidance of the consortium. The potential extent of degradation during one week of transport at 60 °C was quantified in terms of a standard uncertainty and equal to 0.01 mg·kg⁻¹, which is negligible in the frame of the intercomparison. The potential degradation during a 39 months' storage at 60 °C was quantified in terms of a standard uncertainty and equal to 2.0 mg·kg⁻¹. Hence the material was found suitable for distribution to the participants under ambient conditions, and refrigirated storage during the period between receipt and measurement of the sample without the need to undertake any corrections to the reference value and its uncertainty because of limited stability.

6 The certified reference value and its uncertainty

The certified reference value was determined by IRMM by using two-way Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID-ICP-MS), a primary method of analysis. The measured value is traceable to the SI. IRMM has proven its measurement capability by successful participation in the CCQM key comparison K35 on sulphur in diesel [10]. The measured value was confirmed by further measurements performed by BAM and LGC Ltd. The associated uncertainty was determined by combining the uncertainty of characterisation and the contribution for inhomogeneity.

The resulting certified reference sulphur content in petrol and its expanded uncertainty is (20.5 \pm 1.1) mg·kg⁻¹. The estimated expanded uncertainty with a coverage factor k=2 corresponds to a level of confidence of about 95 %, as defined in the Guide to the Expression of Uncertainty in Measurement [11]. Further details regarding the homogeneity, stability and characterisation studies are described in the material certification report which is available on request from the ERM website [9].

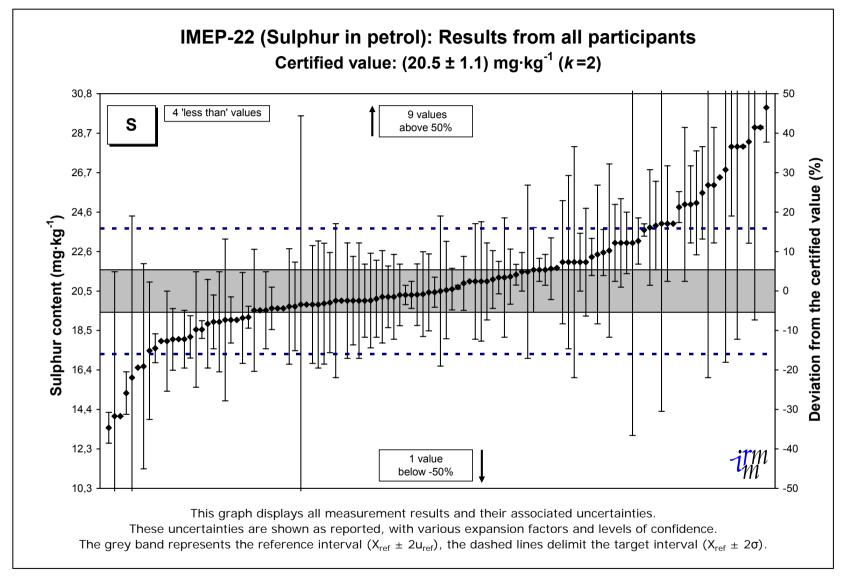
7 Invitation and registration of participants

Potentially interested laboratories were contacted via various channels. National accreditation bodies were contacted via the EA coordinator for IMEP-22. Customs laboratories involved in the DG TAXUD GCL-action 2 activity were individually contacted by the ILC coordinator. A general letter of invitation (cf. Annex 1) was placed on the IMEP website and distributed via the IMEP regional coordinators. These coordinators assisted IMEP to reach laboratories within their countries. They are usually affiliated with national metrology institutes, accreditation bodies or other national competence centres in the field of chemical measurements. All interested laboratories registered online and confirmed their registration by fax.

There were 141 registrations for participation from 140 laboratories in 35 countries. A total of 127 laboratories in 34 countries (32 of which in Europe) reported 128 measurement results. There were 13 cancellations. From the 127 participants, 74 enrolled as EA nominated laboratories, 17 joined via the collaboration with DG TAXUD, 3 registered as both nominated by EA and affiliated with DG TAXUD and 34 as non-affiliated IMEP-22 participants. In total, 21 laboratories participated in the frame of the IRMM support to EU candidate countries and the CARDS programme.

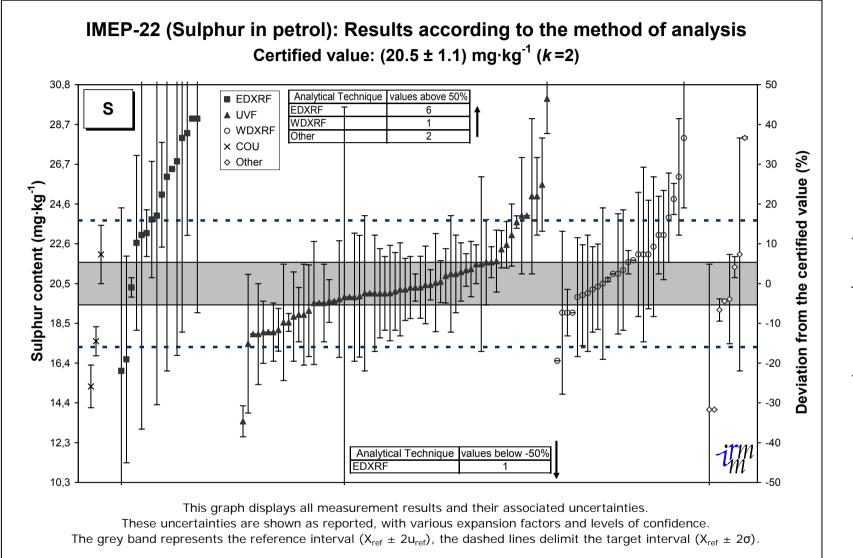
Table 1 lists the participating countries, the number of registrations and reported results, and the regional coordinators involved in IMEP-22.

Country	Number of registrations	Number of results	Regional coordinator
Austria	3	2	Bundesministerium für Wirtschaft und Arbeit
Belgium	3	3	
Bosnia and Herzegovina	4	3	University of Sarajevo
Bulgaria	5	5	National Center of Metrology
Croatia	3	3	Croatian Accreditation Agency
Cyprus	2	1	State General Laboratory
Czech Republic	10	10	Czech Metrology Institute
Estonia	5	4	University of Tartu
France	4	3	Bureau National de Metrologie
Finland	1	1	
	40	40	Federal Institute for
Germany	10	10	Materials Research and Testing
Greece	2	2	Aristotle University of Thessaloniki
Hungary	3	3	National Office of Measures
Ireland	1	1	
Italy	3	2	
Japan	1	1	
Latvia	5	5	Latvian National Accreditation Bureau
Lithuania	2	2	Semiconductor Physics Institute
FYR Macedonia	2	0	Institute for Accreditation of Republic of Macedonia
The Netherlands	3	3	NMI Van Swinden Laboratorium
Norway	1	1	
Poland	30	27	Warsaw University
Destaural	4	4	Associação dos Laboratórios
Portugal			Acreditados de Portugal
Romania	3	3	National Institute of Metrology
Russian Republic	1	1	
Serbia and Montenegro	8	6	Bureau of Measures and Precious Metals
Slovakia	1	1	Slovak Institute of Metrology
Slovenia	2	2	Metrology Institute of the Republic of Slovenia
South Africa	2	2	National Metrology Laboratory
Spain	5	5	
Sweden	2	2	Swedish National Testing and Research Institute
Switzerland	1	1	
Turkey	1	1	
United Arab Emirates	1	1	
United Kingdom	7	7	Laboratory of the Government Chemist
	total: 141	total: 128	1


Table 1: Participating countries, number of reported results and regional coordinators

8 Sample dispatch and data collection

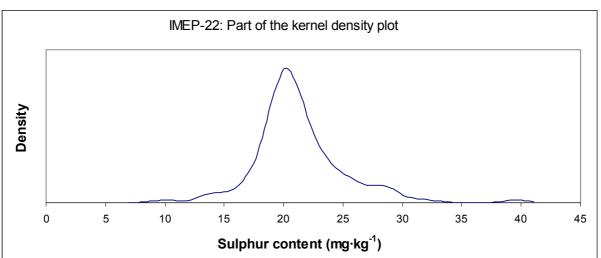
The samples were dispatched to the participants together with a letter with recommendations regarding the storage conditions and instructions on reporting, including timings and the individual participant code (cf. Annex 2), and an acknowledgment of receipt form. Packages were delivered by IRMM to participants via the regional coordinators where possible. Laboratories from countries without a coordinator received their packages directly from IRMM. All participants returned the sample receipt form. The sampels were delivered within one week, only three samples were delivered within two weeks, which was considered acceptable in view of the high stability of the material.


All IMEP-22 participants reported their measurement results online through the IMEP website. In addition, laboratories were asked to print and sign the report form and return it to IRMM. The online result was validated only after receipt of the signed copy. IMEP accepted requests for corrections of submitted results until the reporting deadline. In addition, participants were asked to complete a questionnaire (cf. Annex 3). All but one participants completed the questionnaire.

All reported information was treated confidentially. The identity of laboratories who had been nominated by EA was disclosed to EA, as stated in the invitation to this group of participants.

IMEP-22 Sulphur in Petrol

IMEP-22 Sulphur in Petrol


9 Reported results

9.1 General observations

A total of 127 laboratories reported 128 measurement results. One laboratory provided two results and is counted in this report as two independent laboratories to ease further analysis. Four "smaller than" values were reported and not further assessed. The evaluation in this report is based on the remaining 124 measurement results. Furthermore, 127 questionnaires were submitted, one participant did not complete a questionnaire. Laboratories reported their measurement results in $mg \cdot kg^{-1}$ or $\mu g \cdot kg^{-1}$. No obvious peculiarities were detected.

9.2 Measurement results

Figure 1 shows the 124 measurement results and their reported uncertainties. The kernel density plot in Figure 3 shows that the results are approximately normally distributed with maximum density at 20.2 mg·kg⁻¹. The symmetry of the curve is only skewed by additional density in the range of 23-30 mg·kg⁻¹. The robust mean and standard deviation were calculated according to algorithm A of ISO 13528 [12] and found to be 21.4 mg·kg⁻¹ and 3.3 mg·kg⁻¹, respectively. The robust mean is in agreement with the certified range of $(20.5 \pm 1.1) \text{ mg·kg}^{-1}$.

The software used to calculate robust statistics and kernel densities was provided by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry [13, 14].

10 Evaluation of results

10.1 Selection of scores and their settings

The laboratory results are scored with z and zeta scores in concordance with ISO 13528 [12] and the International Harmonised Protocol [15]:

$$z = \frac{x_{lab} - X_{ref}}{\hat{\sigma}}$$
 and $zeta = \frac{x_{lab} - X_{ref}}{\sqrt{u_{ref}^2 + u_{lab}^2}}$

where

X _{lab}	is the measurement result reported by a participant
X_{ref}	is the certified reference value (assigned value): 20.5 mg·kg ⁻¹
U _{ref}	is the standard uncertainty of the reference value: 0.55 $mg \cdot kg^{-1}$
U _{lab}	is the standard uncertainty reported by a participant
$\hat{\sigma}$	is the standard deviation for proficiency assessment: 1.63 mg·kg ⁻¹

Both scores can be interpreted as:

satisfactory result for $|\text{score}| \le 2$ questionable result for $2 < |\text{score}| \le 3$ unsatisfactory result for |score| > 3

The IMEP-22 **z** score compares the deviation from the reference value with method performance requirements derived from European legislation. It indicates whether a laboratory is able to operate its method for the analysis of sulphur in petrol, at the given concentration, in compliance with the relevant Directive 2003/17/EC [16]. According to the Directive, compliance should be examined on the basis of the analytical methods referred to in European standard EN 228:1999 [17]. These methods concern ISO 20846 [18] and ISO 20884 [19] which both contain comparable reproducibility limits at the 95% probability level for the sulphur concentration at hand. The largest reproducibility was selected and divided by 2.8 to get the reproducibility standard deviation s_R [20]. This value was used as the standard deviation for proficiency assessment (denominator of the z score equation) $\hat{\sigma} = 1.63 \text{ mg} \cdot \text{kg}^{-1}$.

The **zeta score** is provided only for laboratories having reported an uncertainty. According to the International Harmonised Protocol [15] it provides an indication of whether the estimate of uncertainty is consistent with the laboratory's deviation from the reference value. The interpretation is similar to the interpretation of the z score. An unsatisfactory score might be caused by an underestimated uncertainty or by a large deviation from the reference value.

The standard uncertainty of the laboratory (u_{lab}) was calculated as follows. If an uncertainty was reported, the reported uncertainty was divided by the coverage factor k. If no coverage factor was given, the reported uncertainty was considered as the half-width of a rectangular distribution. The reported uncertainty was then divided by $\sqrt{3}$, in accordance with recommendations issued by Eurachem and CITAC [21].

An **additional assessment** is made related to the reported uncertainty. It aims at giving the laboratory an indication of the plausibility of its uncertainty estimate. The standard uncertainty should fall in a range between a minimal required (u_{min}) , and a maximal allowed (u_{max}) reported standard uncertainty. u_{min} is set to the standard uncertainty of the reference value. It is unlikely that a participating routine laboratory is able to measure the measurand with a smaller uncertainty than the reference laboratory itself. u_{max} is set equal to the reproducibility standard deviation s_R as derived from the Directive. Both u_{min} and u_{max} are rounded and set to 0.50 and 2.0 mg·kg⁻¹, respectively. If the standard uncertainty $u_{lab} < u_{min}$ it is likely that the laboratory underestimates its uncertainty. If $u_{lab} > u_{max}$ then uncertainty exceeds maximum legislative requirements.

The International Harmonised Protocol [15] suggests that participants can **recalculate the scores** applying their own scoring criteria. The standard deviation for proficiency assessment $\hat{\sigma}$ used in this intercomparison is based on legislative requirements and thought to be fit for the purpose of most of the participants. If this purpose is different, laboratories may recalculate the z score with a $\hat{\sigma}$ which better fits their purposes. In analogy, this also holds for the maximal allowed reported standard uncertainty u_{max}, which is derived from the same legislative requirements.

10.2 Scoring of the laboratory results

A z score was calculated for all results. In addition, a zeta score was calculated for those results that were accompanied by an uncertainty statement, and it was tested whether this uncertainty was within range. Annex 4 lists the scores for all measurement results. Annex 5 and Annex 6 exemplarily show the certificate of performance plus the explanatory notes that were sent to the participants.

Score	Satisfactory	Questionable	Unsatisfactory	no rating
z score	70%	9%	21%	0%
zeta score	58%	10%	19%	13% *
u _{lab} within range	56%		31%	13% *

Table 2: Overview of performance ratings

* 13% did not report an uncertainty

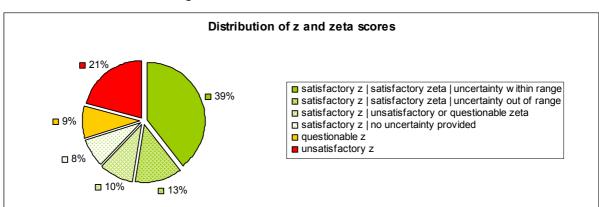

Table 2 summarises the distribution of scores. A 70% share of the participants obtained a satisfactory z score. These laboratories fulfilled the legislative requirements laid down in Directive 2003/17/EC. A share of 95% satisfactory z scores could have been expected on the basis of the method reproducibilities provided in ISO 20846 and 20884. There is an obvious discrepancy between legislative requirements and laboratory performance.

Figure 4 gives more details on the 70% share of participants with a satisfactory z score. It shows that 52% (half of the participants) obtained satisfactory z *and* zeta scores, and 39% also obtained an additional satisfactory rating for the magnitude of the reported uncertainty. These laboratories fulfilled both legislative and metrological requirements.

An uncertainty estimate was provided by 87% of the participants, and 77% of the estimates was accompanied by a coverage factor. These encouraging figures contrast with the modest 39% share of results with satisfactory over-all performance. It shows that many laboratories still encounter difficulties to provide a reasonable uncertainty estimate.

These laboratories are advised to become familiar with the principles of uncertainty estimation as described by ISO [11] and, on a sectoral level, e.g. EURACHEM and CITAC [21]. The questionnaire revealed that the principles contained in these documents were applied by most (78%) of the laboratories that performed best (i.e. the 39% share).

The questionnaire also showed that only 24% of the participants reported the measurement uncertainty to their customers on a regular basis and 50% on request. The difference with the 87% share that reported an uncertainty in IMEP-22 suggests that part of the laboratories had used this intercomparison as a measurement uncertainty reporting exercise.

Figure 4: Distribution of z and zeta scores

11 Further information regarding the results

Further information regarding the participants and their results was inquired during the process of online result reporting. All 128 participants indicated their method of analysis, and the questionnaire was completed by 127 participants. Issues that may be relevant to the outcome of the intercomparison are discussed below.

11.1 Analytical techniques

The participants' methods of analysis resembled their routine methods in 124 cases (97%). The methods that were used most frequently are listed in Table 3 with their respective robust mean and standard deviation, calculated according to algorithm A of ISO 13528 [12]. An exceptionally large robust mean was observed for results obtained with EDXRF. Better results in terms of bias and reproducibility were obtained with WDXRF and UVF, which confirms earlier findings [22]. Figure 2 shows participants' measurement results grouped by analytical method.

ISO and ASTM standards were followed by 89% of the laboratories. The standards that were applied most frequently are listed in Table 4. Several laboratories mentioned ISO 20847 and ISO 8754. These standards are however based on conventional EDXRF methods and state that they are not applicable for sulphur contents below 30 and 300 mg·kg⁻¹, respectively.

Analytical	Acronym	Robust mean [mg∙kg ⁻¹]	Robust StD [mg·kg ⁻¹]	Number of results
Coulometric Analysis / Oxidative Micro Coulometry	COU	18.2	3.9	3
Ultra-violet Fluorescence	UVF	20.3	1.7	62
Wavelength Dispersive X-ray Fluorescence	WDXRF	21.5	2.1	28
Energy Dispersive X-ray Fluorescence	EDXRF	28.7	13.2	25
Other		26.4	13.1	10

Table 3: Analytical methods used

Table 4: Official methods used (multiple selections were possible)

Standard	Number of replies	Standard	Number of replies
ISO 20846 (UVF)	44	ASTM D 5453 (UVF)	18
ISO 20884 (WDXRF)	16	ASTM D 2622 (WDXRF)	7
ISO 20847 (EDXRF)	8		
ISO 14596 (WDXRF)	7	Other	8
ISO 8754 (EDXRF)	10	No official analytical method used	14

11.2 A representative study

Most of the samples (98%) were analysed by the routine analyst and according to the laboratory's routine procedures. Many participants (81%) declared to have a large experience with this type of analysis and indeed, 82% indicated analysis of 50 or more samples per year. Most of the participants (97%) stem from various countries in Europe. These figures suggest that IMEP-22 has representatively studied the current capability for routine fuel sulphur content measurements at approx. 20 mg·kg⁻¹ in Europe.

11.3 Use of CRMs and participation in PT

The majority of the participants (75%) indicated their participation in similar ILCs during the past three years. Annex 7 provides an overview of all reported ILCs. Many laboratories (65%) indicated to have a petrol reference material at their disposal which has been certified for its sulphur content. Annex 8 provides an overview of all reported CRMs.

11.4 Quality management system

The vast majority (94%) of the participants indicated that their laboratory activities comply with a quality management system: 6% of all participants declared compliance with the ISO 9000 series only, and 88% with ISO/IEC 17025. In addition, the participants were asked whether they were accredited, certified or authorized (e.g. by law or by a regulatory authority) for sulphur analysis in road transport fuels. Table 5 lists the replies.

Status	Number of laboratories
Accredited	83 (65%)
Authorised	33 (26%)
Certified	23 (18%)
None of these	36 (28%)

Table 5: Laboratory accreditation, certification or authorisation for sulphur analysis in roadfuels (multiple answers were possible)

11.5 Motivation for participation

The participants were asked to indicate the reason for participation in this intercomparison. Demonstration of measurement capability to other parties such as the accreditation body, regulator, customer or the own management appeared to be the main motivation for participation with a share of 68%. This was followed by participation for internal quality assurance purposes with a share of 31%.

12 Conclusion

This intercomparison studied the capability of analytical laboratories to measure a sulphur content of 20.5 $mg\cdot kg^{-1}$ in petrol. It is thought to be representative for laboratories in Europe that operate this type of measurement on a routine basis. The assessment was made against a reproducibility requirement laid down in EU Directive 2003/17/EC.

A 70% share of the laboratories provided measurement results that were compliant with the requirements laid down in the Directive. They obtained a satisfactory z score. Many laboratories provided a measurement result that also fulfilled metrological requirements: a 52% share obtained satisfactory z and zeta scores, and 39% of all participants also obtained an additional satisfactory rating for the reported magnitude of uncertainty.

The unexpectedly large share of 30% questionable and unsatisfactory z scores indicates the presence of a discrepancy between the requirements of EU Directive 2003/17/EC and the performance of the average European routine laboratory.

13 Acknowledgements

IMEP-22 would not have been possible without the support of many colleagues. The authors would like to thank those involved in the production and certification of the intercomparison sample material: Thomas Linsinger and Christophe Quétel (IRMM, Belgium), Jochen Vogl (BAM, Germany) and Steve Wood (LGC, United Kingdom).

We also warmly acknowledge the support of R. Leubolt (BMWA, Austria and EA coordinator for IMEP-22) and M. Bednarova (CAI, Czech Republic and EA-ILC in Testing Committee) for coordination of the EA laboratories, and M. Dillen (DG-TAXUD) for liaising with the customs laboratories involved in the GCL-action 2. The authors are very grateful for the continuous support received from the regional coordinators: J. Pasalic Huremovic (Bosnia and Herzegovina), D. Ivanova (Bulgaria), V. Mucko (Croatia), C. Michael (Cyprus), P. Nováček (Czech Republic), K. Carneiro (Denmark), I. Leito (Estonia), G. Labarraque (France), G. Dudek and U. Eggert (Germany), A. Voulgaropoulos (Greece), Z. Nagyné Szilágyi (Hungary), J. Valinieks (Latvia), A. Galdikas (Lithuania), G. Angelovski (Macedonia), E. Bulska (Poland), A. Duarte (Portugal), S. Duta and G. Mares (Romania), B. Cséfalvayová (Slovakia), M. Božiček and N. Majcen (Slovenia), M. Linsky (South Africa), B. Magnusson (Sweden), H. Ent (The Netherlands), P. Yildizlar (Turkey), D. Woods and B. Brookman (United Kingdom).

In addition the efforts of many IRMM colleagues are acknowledged. To conclude the authors would like to express in particular their gratitude to the participating laboratories for their efforts and for their interest in the IMEP interlaboratory comparison programme.

Abbreviations

AMC	Analytical Methods Committee of the Royal Society of Chemistry
ASTM	American Society for Testing and Materials
BAM	Bundesanstalt für Materialforschung und –prüfung (Berlin, Germany)
BIPM	Bureau International des Poids et Mésures (Paris, France)
CARDS	Community Assistance for Reconstruction, Development and Stabilisation
CCQM	Comité Consultatif pour la Quantité de Matière
CIPM	Comité International des Poids et Mésures (Paris, France)
CITAC	Co-operation for International Traceability in Analytical Chemistry
COU	Coulometry
CRM	Certified Reference Material
EA	European Co-operation for Accreditation
EC	European Commission
EDXRF	Energy Dispersive X-Ray Fluorescence
EN	European Norm
ERM	European Reference Materials
EU	European Union
EURACHEM	A focus for Analytical Chemistry in Europe
GUM	Guide to the Expression of Uncertainty in Measurement
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
ILC	Interlaboratory Comparison
IMEP	International Measurement Evaluation Programme
IRMM	Institute for Reference Materials and Measurements
ISO	International Organisation for Standardisation
IUPAC	International Union for Pure and Applied Chemistry
JRC	Joint Research Centre
PT	Proficiency Test or Proficiency Testing
SI	The International System of Units
UVF	Ultra-Violet Fluorescence
WDXRF	Wavelenght Dispersive X-Ray Fluorescence

References

- 1 Directive 2003/17/EC of the European Parliament and of the Council of 3 March 2003, amending Directive 98/70/EC relating to the quality of petrol and diesel fuels
- 2 Council Directive 70/220/EEC of 20 March 1970 on the approximation of the laws of the Member States relating to measures to be taken against air pollution by gases from positive-ignition engines of motor vehicles
- 3 Directive 2001/100/EC of the European Parliament and of the Council of 7 December 2001, amending Directive 70/220/EEC relating to measures to be taken against air pollution by gases from positive-ignition engines of motor vehicles
- 4 Council Directive 88/77/EEC of 3 December 1987 on the approximation of the laws of the Member States relating to the measures to be taken against the emission of gaseous pollutants from diesel engines for use in vehicles, amended by Commission Directive 2001/27/EC
- 5 Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Directive 93/12/EEC
- 6 EN 228:1999; Automotive fuels Unleaded petrol requirements and test methods
- 7 EN 590:1999; Automotive fuels Diesel requirements and test methods
- 8 EUR 21765 EN: 2005; Sulphur in Diesel fuel (gasoil) Report to Participants
- 9 http://www.erm-crm.org
- 10 http://kcdb.bipm.org
- 11 Guide to the Expression of Uncertainty in Measurement, ISO (1993)
- 12 ISO 13528:2005; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons
- 13 Robust statistics: a method of coping with outliers (2001), an AMC Technical Brief issued by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry, http://www.rsc.org
- 14 Representing data distributions with Kernel density estimates (2006), an AMC Technical Brief issued by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry, http://www.rsc.org
- 15 The International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories by M. Thompson et al., Pure and Applied Chemistry (2006), 78, 145–196
- 16 Directive 2003/17/EC of the European Parliament and of the Council of 3 March 2003, amending Directive 98/70/EC relating to the quality of petrol and diesel fuels
- 17 EN 228:1999; Automotive fuels Unleaded petrol requirements and test methods

- 18 ISO 20846:2004; Petroleum products Determination of sulfur content of automotive fuels Ultraviolet fluorescence method
- 19 ISO 20884:2004; Petroleum products Determination of sulfur content of automotive fuels Wavelength-dispersive X-ray fluorescence spectrometry
- 20 ISO 5725:1994; Accuracy (trueness and precision) of measurement methods and results
- 21 Quantifying Uncertainty in Analytical Measurement, Eurachem/CITAC (2000), http://www.eurachem.ul.pt
- 22 Round Robin Exercise for Sulphur Test Methods for EN 228 and EN 590 Fuel Specifications (2002), CEN/TC 19/WG 27

Annexes

Annex 1:	General invitation to participants 2	24
Annex 2:	Letter accompanying the sample 2	26
Annex 3:	Questionnaire	27
Annex 4:	Laboratory measurement and scoring results	30
Annex 5:	Individual certificate of performance 3	3
Annex 6:	Explanatory notes to the certificate 3	34
Annex 7:	ILC participation	6
Annex 8:	CRM usage 3	37

Annex 1: General invitation to participants

EUROPEAN COMMISSION DRECTORATE GENERAL Joint Research Centre	IMEP
	Geel, 24 November 2005 IM/L/112/05
International Measurement Ex	valuation Programme
IMEP-22: Sulphur	in Petrol
IMEP, the International Measurement Evaluation operated by the Institute for Reference Materials to picture objectively the degree of equivaler comparing them with external reference valu results). Previous IMEP® interlaboratory comp elements in various matrices such as water, set can find detailed information about these http://www.imep.ws. Participating laboratories re- undisclosed amount content values, which a analytical procedures. Participation in IMEP is op	and Measurements (IRMM) in order nee of chemical measurements by les (not derived from participants' parisons have focused on different diment, serum, fish and others. You activities on the IMEP website ceive a test sample with certified, but re to be measured using routine
IRMM is now launching the IMEP-22 intercompa sulphur in petrol. This study is complementary in diesel. Both studies are organised in the fra environmental policies. The test sample is pro contains approx. 20 µg/g sulphur in a petrol m ampoules.	to the previous IMEP-18 on sulphur ame of support to EU ¹ and national vided in 20 ml glass ampoules and
The participation fee is 200 € per laboratory (dis participants from the new EU member states and Albania, Bulgaria, Bosnia-Herzegovina, Cyprus, I Hungary, Latvia, Lithuania, FYR of Macedonia, M Montenegro, Slovakia, Slovenia and Turkey. For participation is free of charge. In addition, laborat Action 2 are also free of charge.	the western Balkan countries: Croatia, Czech Republic, Estonia, Malta, Poland, Rumania, Serbia- participants from these countries,
Registration deadline will be 23 December 20 early 2006, and deadline for reporting results w reference value will be published on the IME certificates will be issued in May 2006. The parti- Autumn of 2006.	ill be one month later. The sample's P website in April 2006. Individual
¹ EU Directive 2003/17/EC, amending Directive 98/70/EC	regarding the quality of petrol and diesel fuels
Retieseweg, 8-2440 Geel, Belgium Tel.: +32-(0)14-571 673 • Fax: +32-(0)14	

How to register for IMEP-22: 1. Please use this link to register online: http://www.imm.irc.be/imepapp/registerForComparison.action?comparison=66 Once you have submitted your registration electronically (and pressed the button "Register" on the registration form), you will be asked to print the form and return it, preferably by fax to IRMM. It is your confirmation of registration. Please contact us if we can help you further or if you have any questions. With kind regards Johanne/ Van de Kleeke Johannes van de Kreeke IMEP-22 Coordinator Retieseweg, 8-2440 Geel, Belgium Tel.: +32-(0)14-571 673 • Fax: +32-(0)14-571 865 jrc-irmm-imep@cec.eu.int • http://www.imep.ws • http://www.irmm.jrc.be

Annex 2: Letter accompanying the sample

EUROP	EAN COMMISSION	irm
DIRECTORAT		Institute for Reference Materials and Measurements
		Geel, 4 January 2006 IM/L/4/06
IMEP-22: Sulp	hur in petrol	
Dear «title» «surname»		
the determination of the 40 ml of petrol, packed printed on the ampoule form. Please return this the package in good or	total amount content of S in petrol. in two sealed glass ampoules of 20 n labels have no relevance. Included y form by fax* <i>directly</i> after sample n	terlaboratory comparison which involves In this package you will find the material: ml each. The different sample numbers you also find the sample confirmation receipt, so as to know whether you received dark place (e.g. refrigerator) if you do not
measurement result (no treat the information co results only. Directly at be prompted to print th IRMM by fax** before t	ntained in the questionnaire confider ter submitting your results and the q e completed report form. Please do s	d to complete the questionnaire . We will ntially and use it for further evaluation of uestionnaire information online, you will so, sign this paper version and return it to March 2006. Check your results carefully
	ng your result and completing the qu rch 2006. For online reporting you	
	Your personal password key is: «pa	articipation_key».
http://www.imm.jrc.be		l on our website by early April 2006 (see <u>ndex.htm</u>). Individual certificates and the 2006.
lf you have any questic With kind regards	ns or problems, please do not hesitat	te to contact us.
Johannel Va	n de Kleeke	
Dr. Johannes van de Kr IMEP-22 Coordinator	eeke	
Cc: Lutgart van Nevel		
	ility to send a fax you can scan in th umber and e-mail details in the foot	e document and send it to us by e-mail. er of this letter.
Retieseweg, B-2440 Geel, B	elgium	

Annex 3: Questionnaire

1.	non-experienced?	as experienced or less- and	
	experienced less- or non-experienced		
	S amount content measurements O		
2.	2. How many samples of this type does your laboratory routinely analyse per year? ○ <50 ○ 51-200 ○ 200-500 ○ >500		
3.	 Via which information channel(s) have you been informed about this IMEP interlaboratory comparison choice) 		one
	via IRMM	Yes	
	via your regional IMEP co-ordinator		
	via the IRMM web site		
	via your Accreditation Body		
	via DG TAXUD		
	OTHER		
	If OTHER, please supply additional information		
4.	4. Was the IMEP Certified Test Sample analysed by the same analyst who usually performs such analyse O Yes O No	es?	
	If NO, please complete the following questions (4a and 4b):-		
	more same	less	
	4a. Was the IMEP sample analyst more/same/less experienced? 4b. What was your motivation for this change?	0	
	4b. What was your mouvation for this change?		
5.	5. Was the IMEP Certified Test Sample treated according to the same analytical procedure as routinely u this concentration level? Ves O No	used for this sample type and	d
	If NO, why not?		
6.	6. Indicate the sample mass used (g).		
7.	7. Did the analytical procedure involve a digestion step? ○ Yes ○ No		
	If YES, please complete the following questions (7a and 7b):-		
	7a. Which acids or reagents used?		
	7b. What type of digestion procedure and/or equipment used? (microwave, High Pressure Ashing-HPA, I	bomb, dry ashing)	
8.	 Did the analytical procedure involve a separation step? Yes No 		
	If YES, please explain		
9.	9. Did the analytical procedure involve a preconcentration step?		
	O Yes O No		
	If YES, please supply additional information		

10.	Did the analytical procedure involve a dilution step?			
	If YES, please supply additional information concerning the solvents used and the dilu	tion factor		
11.	Did you analyse the S in this petrol material following any official analytical method?	(e.g. ISO/CEN)		
	If YES, please specify which official analytical method			
12.	Do you have in your laboratory a Petrol Certified Reference Material (CRM) at your dis	sposal certified for	S?	
	If YES, please complete the following questions (12a, 12b and 12c):-			
		Yes	No	
	12a. Is the CRM used in your laboratory for validation of procedures?	0	0	
	12b. Is the CRM used in your laboratory for calibration of instruments?	0	0	
	12c. Please state which CRM and supplier.			
	the past 3 years? ○ Yes ○ No If Yes, please state which proficiency testing organiser.			
14.	Is your laboratory involved in this type of analysis for customs related activities?			Yes No
	If YES, is your laboratory involved in the interlaboratory comparison "S in mineral oils" \boldsymbol{v}	which is co-ordinate	d by DG TAXU	
15.	Is your laboratory working according to a quality management system? Yes No 			
	If YES, please state which system. (You can make more than one choice)			
	EN (2000		Yes	
	EN 45000 series			
	ISO 9000 series ISO 17025			
	ISU 17025 OTHER (e.g. CEN, GLP, EPA, TQM, national standards)			
	If OTHER, please supply additional information			
16.	ls your laboratory certified, accredited or authorised (e.g. by law or regulatory autho	ritv) for S analvsis i	n road transp	ort fuels?
	Yes No			
	Certified 🔘 🔘			
	Accredited O O			
	Authorised 🔿 🔿			

- 17. Do you report uncertainties on chemical measurements to your usual customers? O Yes O on request O No

18.	Are you familiar with the determination of measurement uncertainty according to the Guide to the Expression of Uncertainty in
	Measurement (GUM, issued by ISO in 1993) or any sectoral guidance based on the principles of the GUM, e.g. the Guide for Quantifying
	Uncertainty in Analytical Measurement (issued by Eurachem and Citac in 2000)?
	O Yes O No

19. Were the reported uncertainties calculated according to the above mentioned guides?

O Yes O No	
If NO, how was the measurement uncertainty evaluated?	

20. Was your participation to this intercomparison used to demonstrate your measurement capability to (you can make more than one choice):

	res
your management	
your customers	
regulating or accreditation body	
participation was intended for internal quality control puposes	
other	
If other, please supply additional information	

21. Who filled in the questionnaire?

	Yes
The analyst	
The laboratory supervisor	
Other	

22. Who filled in the report form?

res

23. The limit of quantification is the smallest concentration of the unknown that can reliably be quantified (not only detected) by the instrumental method (usually 10 x the standard deviation of the instrumental noise level). What is your laboratory limit of quantification for S in petrol?

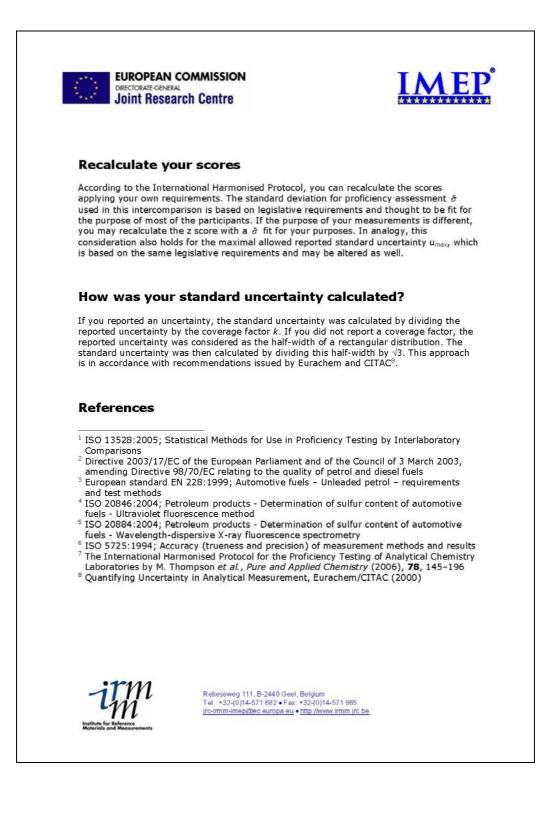
24. Do you have any comments regarding the questionnaire?

Annex 4: Laboratory measurement and scoring results

nr abbreviates for *not reported*. Ratings are colour coded: red indicates an unsatisfactory, yellow a questionable and green a satisfactory result.

Reported sulphur content	Reported uncertainty	Coverage factor <i>k</i>	Calculated standard uncertainty	Analytical method	z score	zeta score	Uncertainty within range?
[mg·kg ⁻¹]	[mg·kg ⁻¹]		[mg·kg ⁻¹]				
< 14	nr	nr		EDXRF-CON			
< 19,28	nr			UVF			
< 50	nr			IR/Leco			
< 97	nr			OXFORD LAB-X 3000			
10	7	nr	4,04	EDXRF-CON	-6,4	-2,6	no
13,4	0,8	2	0,40	UVF	-4,4	-10,4	no
,				Internal method based on			
14	nr	nr		ASTM D5453	-4,0		
				energy-dispersive X-ray			
				fluoresence spectrometry ISO			
14	7,5	2	3,75	20847	-4,0	-1,7	no
15,2	1,1	2	0,55	COU	-3,3	-6,8	yes
16	8,4	2	4,20	EDXRF-CON	-2,8	-1,1	no
16,52	nr	nr		WDXRF	-2,4		
16,59	5,33	2	2,67	EDXRF-CON	-2,4	-1,4	no
17,4	3,57	2	1,79	UVF	-1,9	-1,7	yes
17,53	0,75	2	0,38	COU	-1,8	-4,5	no
17,9	nr	nr		UVF	-1,6	.,.	
17,9	2,6	2	1,30	UVF	-1,6	-1,8	yes
17,99	1,6	2	0,80	UVF	-1,5	-2,6	
18	1		0,00	UVF	-1,5	-2,0	yes
18	nr	nr 2	0.75	UVF		0.7	
	1,5		0,75	1 -	-1,5	-2,7	yes
18,12	1,1	2	0,55	UVF	-1,5	-3,1	yes
18,5	0,46	2	0,23	UVF	-1,2	-3,4	no
18,5	3	2	1,50	UVF	-1,2	-1,3	yes
18,8	2,3	nr	1,33	UVF	-1,0	-1,2	yes
18,9	1,4	2	0,70	UVF	-1,0	-1,8	yes
18,9	2,6	2	1,30	UVF	-1,0	-1,1	yes
19	nr	nr		WDXRF	-0,9		
19	1,2	2	0,60	WDXRF	-0,9	-1,8	yes
19	4,2	2	2,10	WDXRF	-0,9	-0,7	no
19,1	2,36	2	1,18	UVF	-0,9	-1,1	yes
19,14	0,57	2	0,29	BAS ISO 8754, XRF	-0,8	-2,2	no
19,5	nr	nr		UVF	-0,6		
19,5	2	2	1,00	UVF	-0,6	-0,9	yes
19,5	3,17	nr	1,83	UVF	-0,6	-0,5	yes
19,6	nr	nr		ICP-OES	-0,6		
19,6	nr	nr	1	UVF	-0,6		1
19,6	1,1	2	0,55	UVF	-0,6	-1,2	yes
19,7	2,3	2	1,15	Antek	-0,5	-0,6	yes
19,7	3	2	1,50	UVF	-0,5	-0,5	yes
19,7	nr	nr	1,00	UVF	-0,3	3,3	900
19,8	3,06	nr	1,77	WDXRF	-0,4	-0,4	Ves
				UVF			yes
19,8	3,3	nr	1,91		-0,4	-0,4	yes
19,8	9,8	2	4,90	UVF	-0,4	-0,1	no
19,85	3,14	1	3,14	UVF	-0,4	-0,2	no
19,9	2,6	2	1,30	WDXRF	-0,4	-0,4	yes
20	nr	nr		UVF	-0,3		
20	1,9	2	0,95	UVF	-0,3	-0,5	yes
20	2,3	2	1,15	UVF	-0,3	-0,4	yes
20	3	95	0,03	UVF	-0,3	-0,9	no
20	3	nr	1,73	WDXRF	-0,3	-0,3	yes
20	4	2	2,00	UVF	-0,3	-0,2	yes

Reported sulphur content	Reported uncertainty	Coverage factor <i>k</i>	Calculated standard uncertainty	Analytical method	z score	zeta score	Uncertainty within range?
[mg·kg ⁻¹]	[mg·kg ⁻¹]		[mg·kg ⁻¹]				
20,01	2,46	2	1,23	UVF	-0,3	-0,4	yes
20,1	2	2	1,00	UVF	-0,2	-0,4	yes
20,2	1,6	2	0,80	UVF	-0,2	-0,3	yes
20,2	2,2	nr	1,27	WDXRF	-0,2	-0,2	yes
20,2	2,4	2	1,20	UVF	-0,2	-0,2	yes
20,3	0,5	2	0,25	EDXRF-CON	-0,1	-0,3	no
20,3	0,7	2	0,35	UVF	-0,1	-0,3	no
20,3	1,6	2	0,80	UVF	-0,1	-0,2	yes
20,31	1,6	2	0,80	UVF	-0,1	-0,2	yes
20,34	2,2	nr	1,27	WDXRF	-0,1	-0,1	yes
20,43	2	2	1,00	UVF	0,0	-0,1	yes
20,44	0,78	2	0,39	UVF	0,0	-0,1	no
20,5	3,9	2	1,95	WDXRF	0,0	0,0	yes
20,55	2,53	2	1,27	UVF	0,0	0,0	yes
20,6	1,08	2	0,54	UVF	0,1	0,1	yes
20,7	0,1	nr	0,06	WDXRF	0,1	0,4	no
20,9	1,4	nr	0,81	UVF	0,2	0,4	yes
21	nr	nr		WDXRF	0,3		
21	2	2	1,00	UVF	0,3	0,4	yes
21	3	2	1,50	UVF	0,3	0,3	yes
21	3,1	2	1,55	WDXRF	0,3	0,3	yes
21,1	1,5	1	1,50	UVF	0,4	0,4	yes
21,2	0,84	nr	0,48	UVF	0,4	1,0	no
21,2	3,1	2	1,55	WDXRF	0,4	0,4	yes
21,25	1,43	nr	0,83	UVF	0,5	0,8	yes
21,35	0,54	nr	0,31	MONOCHROMATIC WDXRF	0,5	1,3	no
21,5	1	2	0,50	UVF	0,6	1,3	yes
21,5	4,5	2	2,25	UVF	0,6	0,4	no
21,6	0,6	0,98	0,61	WDXRF	0,7	1,3	yes
21,6	0,8	2	0,40	UVF	0,7	1,6	no
21,6	2,2	2	1,10	UVF	0,7	0,9	yes
21,66	1,6	2	0,80	UVF	0,7	1,2	yes
21,7	nr	nr		WDXRF	0,7		
22	1,5	nr	0,87	coulometric analysis	0,9	1,5	yes
22	2,8	2	1,40	WDXRF	0,9	1,0	yes
22	3,2	2	1,60	WDXRF	0,9	0,9	yes
22	4,5	nr	2,60	WDXRF	0,9	0,6	no
22	6	2	3,00	ISO 20847 - EDXR	0,9	0,5	no
22,27	0,96	2	0,48	UVF	1,1	2,4	no
22,4	3,6	2	1,80	WDXRF	1,2	1,0	yes
22,5	1,2	2	0,60		1,2	2,5	yes
22,6	4,5	2	2,25	EDXRF-CON	1,3	0,9	no
23	1,6	2	0,80	UVF	1,5	2,6	yes
23	2	nr	1,15	WDXRF	1,5	2,0	yes
23	2,3	nr	1,33	WDXRF	1,5	1,7	yes
23	10	nr	5,77	EDXRF	1,5	0,4	no
23,1	1,2	2	0,60	EDXRF-PXS	1,6	3,2	yes
23,67	0,32	2,45	0,13	UVF	1,9	5,6	no
23.6	3	2	1.50	EDXRF (oxinst method) ASTM	2.0	2.1	VOS
23,8		2	1,50	D2 review WDXRF	2,0	2,1 2,7	yes
23,9	2,3		1,15	UVF	2,1 2,1	2,1	yes
24	nr 3	nr 2	1,50	UVF		2,2	Ves
24	9,7488	2 0,982759	9,92	EDXRF-CON	2,1 2,1	0,4	yes
	1			WDXRF-CON			no
24,86	0,8	nr	0,46	UVF	2,7	6,1	no
25 25	4	nr 2	1,15 2,00	UVF	2,8 2,8	3,5 2,2	yes
		2					yes
25,08 25,6	2,7 2,4		1,35 1,39	EDXRF-PXS UVF	2,8 3,1	3,1 3,4	yes
	3	nr		WDXRF		1	yes
26	10	2	1,50 5,00	EDXRF-CON	3,4 3,4	3,4 1,1	yes


Reported sulphur content	Reported uncertainty	Coverage factor <i>k</i>	Calculated standard uncertainty	Analytical method	z score	zeta score	Uncertainty within range?
[mg·kg ⁻¹]	[mg·kg ⁻¹]		[mg·kg ⁻¹]				
				EDXRF Spectrometry Using Low Background Proportional			
26,4	nr	nr		Counter	3,6		
26,8	10	2	5,00	EDXRF-CON	3,9	1,3	no
28	3,6	2	1,80	WDXRF-INT	4,6	4,0	yes
28	10	nr	5,77	EDXRF-PXS	4,6	1,3	no
28,01	0,05	2	0,03	BDS 8428	4,6	13,6	no
28,25	5,26	nr	3,04	EDXRF-CON	4,8	2,5	no
29	0,06	2	0,03	EDXRF-CON	5,2	15,4	no
29	10	nr	5,77	EDXRF-PXS	5,2	1,5	no
30,03	1,8	2	0,90	UVF	5,8	9,0	yes
32	nr	nr		WDXRF	7,1		
39,5	2,4	nr	1,39	TXRF	11,7	12,7	yes
43	nr	nr		EDXRF-CON	13,8		
48	11	2	5,50	EDXRF-PXS	16,9	5,0	no
58	10	2	5,00	Wichbold burning, sulfur on IC	23,0	7,5	no
61,8	2	2	1,00	EDXRF-CON	25,3	36,2	yes
63,4	6,4	3	2,13	EDXRF-CON	26,3	19,5	no
91,5	3,672	3	1,22	EDXRF-CON	43.6	52.9	ves
106,3	9	2	4,50	EDXRF-CON	52,6	18,9	no

Annex 5: Individual certificate of performance

Jo	ectorate-general	Centre			
					0 December 2 004-IM(2006)D/3
IMEP-22	Individual	certificat	e of perfo	ormance	
ORC DEF ADI ADI ZIP	LE FIRSTNAME S GANISATIONNAM PARTMENT DRESS1 DRESS2 CITY JNTRY				
Measurand and Your analytical Sulphur a		CHNIQUE		ur in petrol fuel	
10 40 - 50 M 10 40	Uncertainty	Coverage	Value	Uncertainty	Coverage
Value	Oncertainty		[mg/kg]	[mg/kg]	factor, k
Value [mg/kg]	[mg/kg]	factor, k	[mg/kg]	[mg/kg]	Tuecor, A
[mg/kg] 20.5 * This is an estir	1.1* mated expanded ui	2 ncertainty with a	LVALUE	U-REPORTED or k=2, correspond tificate for further	K-REPORTED
[mg/kg] 20.5 * This is an estir confidence of ab	1.1* mated expanded ui	2 ncertainty with a attached IMEP-	LVALUE	U-REPORTED or k=2, correspond	K-REPORTED ling to a level of details).
[mg/kg] 20.5 * This is an estir confidence of ab	1.1* mated expanded un out 95 % (see the	2 ncertainty with a attached IMEP-	LVALUE a coverage fact 22 material cer	U-REPORTED or k=2, correspond tificate for further	K-REPORTED ling to a level of details).
[mg/kg] 20.5 * This is an estir confidence of ab Performa Designation	1.1* mated expanded un out 95 % (see the nce scores Formula	2 ncertainty with attached IMEP-	LVALUE a coverage fact 22 material cer Value	U-REPORTED or $k=2$, correspond tificate for further $ z \le 2$ $2 < z \le 3$ z > 3 $ zeta \le 2$	K-REPORTED ding to a level of details). pretation satisfactory questionable
[mg/kg] 20.5 * This is an estir confidence of ab Performa Designation z score	1.1* mated expanded un out 95 % (see the NCE SCORES Formula $z = \frac{x_{lab} - X_{ris}}{\hat{\sigma}}$ $zeta = \frac{x_{lab}}{\sqrt{u_{ref}^2}}$	2 ncertainty with i attached IMEP- ef - X _{ref} + U ² _{lab}	LVALUE a coverage facto 22 material cer Value Z	U-REPORTED or k=2, correspond tificate for further z ≤2 2< z ≤3 z >3 zeta ≤2 2< zeta ≤2	K-REPORTED ding to a level of details). pretation satisfactory questionable unsatisfactory questionable
[mg/kg] 20.5 * This is an estir confidence of ab Performa Designation z score zeta score Uncertainty within range ? In this table, x _{iat} u _{ref} the correspond The standard der The sceptable in respectively. Plei	1.1* mated expanded un out 95 % (see the Formula $z = \frac{x_{iab} - X_{re}}{\hat{\sigma}}$ $zeta = \frac{x_{iab}}{\sqrt{u_{ref}^2}}$ $u_{min} \le u_{iab} \le u_{iab} \le u_{iab} \le u_{iab}$ is the measurement information for proficient minimum and maximations are see the attached	2 ncertainty with i attached IMEP- ef - X _{ref} + U ² _{lab} ≤ U _{max} ent result you re certainty; U _{lab} is ncy assessment imum standard ed explanatory i	LVALUE a coverage factor 22 material cert Value Z ZETA RANGE coverage factor ô is set to 1.6 uncertainties and	U-REPORTED or k=2, correspond tificate for further z ≤2 2< z ≤3 z >3 zeta ≤2 2< zeta ≤3 zeta >3 yes no the certified reference i3 mg/kg, based or re set to 0.50 and 2	K-REPORTED ling to a level of details). pretation satisfactory questionable unsatisfactory satisfactory unsatisfactory unsatisfactory unsatisfactory unsatisfactory unsatisfactory the value and retainty you report to EU legislation.
[mg/kg] 20.5 * This is an estir confidence of ab Performa Designation z score Zeta score Uncertainty within range 3 In this table, x _{iat} Uncertainty within range 3 In this table, x _{iat} Uncertainty within range 4 Designation Correspondent The acceptable of respectively. Ple	1.1* mated expanded un out 95 % (see the EXAMPLE Formula $z = \frac{X_{lab} - X_{rc}}{\partial}$ $zeta = \frac{X_{lab} - X_{rc}}{\sqrt{u_{ref}^2}}$ $zeta = \frac{x_{lab} - x_{rc}}{\sqrt{u_{ref}^2}}$	2 ncertainty with i attached IMEP- ef - X _{ref} + U ² _{lab} ≤ U _{max} ent result you re certainty; U _{lab} is ncy assessment imum standard ed explanatory i	LVALUE a coverage factor 22 material cert Value Z ZETA RANGE coverage factor ô is set to 1.6 uncertainties and	U-REPORTED or k=2, correspond tificate for further z ≤2 2< z ≤3 z >3 zeta ≤2 2< zeta ≤3 zeta >3 yes no the certified reference i3 mg/kg, based or re set to 0.50 and 2	K-REPORTED ting to a level of details). pretation satisfactory questionable unsatisfactory questionable unsatisfactory satisfactory unsatisfactory unsatisfactory unsatisfactory unsatisfactory conserved tainty you report to EU legislation. 2.0 mg/kg,

Annex 6: Explanatory notes to the certificate

Annex 7: ILC participation

Intercomparison(s) designation	Intercomparison(s) designation
IIS (SGS Redwood)	ASTM
For each year we participate in the following interlaboratory comparisons: ASTM (39 samples) and INTA (15 samples)	ASTM Interlaboratory Crosscheck Program, Shell Correlation Shemes, Institute for Interlaboratory Studies, DNVPS International Round Robin Program
ASTM; Petro Lab GMBH; IIS	POLLAB-PETROL
IRMM, PETROLAB GMBH	Mol S.A. Hungary
Round Robin 2/2004 organized by Fortum Oil Research Technology, Finland. IRMM-IMEP-18.	Institut for Interlaboratory Studies, Spijkenisse, The Netherlands
RR Saybolt WCP, RR Saybolt-Russia, IMEP-18 Gasoil	IIS, DIN / FAM, IFP, IMEP-18, CEN TC19 WG27
SWIFT-WFD is funded by the European Commission	IIS, Spijkenisse, the Netherlands
IIS	BP ICPMS
irmm	core laboratory
POLLAB	SMPCS
IIS; IRMM, PETROLAB	RRT's organized by Total
IFP (Institut Francais du Petrole), IMEP 18	Pollab Petrol
INTERLABORATORY EXAMINATION	IIS
IMEP-18, Pollab-Petrol	IRMM
NIVA, IMEP	SGS IIS, FAM Germany
Association of Analytikal Centers "Analitika" - member ILAC	BP Inter-Centre Precision Monitoring Scheme (ICPMS)
SGS IIS, FAM Germany	ASTM
Institute for Interlaboratory Study ND ,POLLAB PL	lis
IIS	FAM Hamburg
"GAFTA", ""Hydro Agri", BSI Inspectorate, Estonian	Fachausschuss Mineralöl- und Brennstoffnormung
Customs.	(FAM)
Saybolt LP(Houston, USA) worldwideround robintest for	Coomet - Russia via National Metrological Institute -
Saybolt group of companies	Bulgaria
Institute for Interlaboratory Studies	IMEP
EC-JRC IRMM	UNICHIM
Institute for Interlaboratory Studies	Institute For Interlaboratory Studies, EC-JRC IRMM
BPICPMS	IRMM; CEN; EI; ASTM
ASTM, IIS	IMEP-18
IRMM	IMEP 18, IIS04G03
Institute for Interlaboratory Studies	IIS
INTA (Instituto Nacional Tecnica Aeroespacial) IFP (Instituto Français du Petrole)	Bulgarian Accreditation Service - Executive Agency at the Ministry of Economy and Energy
IMEP-18	POLLAB
FAM Hamburg	IMEP
IMEP 18 - IRMM	DIN /Petrolab GmbH; IMEP-18
ASTM	IRMM IMEP-18, Energy Insitute EI/T401/2004
Collaborative trials	UNICHIM
IIs05B03, IIS05G01, IIS04G03, IMEP-18, IIS04G01, IIS04B02	IMEP-18; Inter-laboratory precision study ASTM D02.03
IRMM, (IMEP 18)	POLLAB
ASTM	IP/ESSO
POLLAB	ASTM, IIS, IFP interlaboratory comparisons
SABS Mapping program	POLLAB
SABS Mapping program	SGS IIS, German FAM
IIS, ELCS, ICPMS	IIS (Holland) and TOTAL(France)
IMEP 18	FAM
IMEP 18	Customs Technical Laboratory Prague
SGS Latvia Ltd.; A/S Ventamonjaks, Ventspils, Latvia	Instytute for Interlaboratory Studies, April 20, 2005
ASTM , IFP	ASTM, Institute for Interlaboratory Studies
Institute for Interlaboratory Studies (The Netherlands),	IRMM (round robin test of SY124 in gas oil), iis
Petrol-Pollab (Poland) POLLAB	(Proficiency Test for Summer Gasoil) POLLAB
FULLAD	FULLAD

Annex 8: CRM usage

Certified reference material(s) designation
MidLevel Sulfur calibration set, AccuStandard, USA
Merck de
MBH
Sulfur 10 mg/kg in Mineral Oil, Analytical Service, Inc. is used as RM material, procuct Code SMO1C.
Accustandard D- 5453-ML-SET
Conostan
IIS
analytical reference materials international
PAC, ROFA
AccuStandards
FLUID
AR-6201(0,0011%m/m S - ultra low kerosene), AR-2041(0,053%m/m S - crude oil standard), Alpha
Resources, Inc.
SRM 2723a from NIST; D-2622-LL-30X-4 from ISOSTANDARDS; SU-GO-497 from NORMA#R; S = 0.005% from CONOSTAN
NIST SRM 1616a - NIST SRM 1617a
CRM from MERK
Analytical Services, Inc. Code No. SDF1C - 30.0
Set of Calibration standards: Sulphor in Reference fuel-S-RF-I, ROFA Austria
NORMA, ROFA
Set of Calibration standards Sulpfur in reference fuel S-RF-I, Reference standard Sulfur in gasoline
150 +/- 25 mg/kg Sulfur in Isooctane 10.0+-0.1 Accu Standard
Standards for Low-Level Sulfur Analysis, VHG Labs
0.25 -1000 ng/¿I , ANTEK Instruments, LP
NIST SRM 2299
Standard Reference Material 2724b, U.S. Department of Commerce, National Institute of Standards
and Technology
SRM 2298; SRM2299 (NIST); D6428 (Isostandards Material)
NIST-2299
CRM BCR 106 Sulphur 0,502 % ± 0,008 % hm.
Dibutylsulfid - MERCK
The Woodlands
MBH Analytical LTD
Butyl Sulfide
NIST STM1624d and STM 2770
AccuStandard
Normar, Rofa
VHG Labs, Inc.; supplier SIA "Armgate", Latvia
18.2±2.1 Norma France
ASTM D5453 total sulfur by UV fluorescence - Thermo Electron Corporation USA
Sulfur in Isooctane, D-5453-ML-03, D-5453-ML-02, AccuStandard
CRM supplier is "MBH" from USA
AccuStandard Inc.
SDF10C, lot 121505, 0.0000 wt%;0.0015wt%;0.0050wt% Analytical Services Inc.
AccuStandard Inc.

Leco suitable standarts and SWMO-LT-IX-4; SWMO-LT-50X-4, SWMO-LT-400X-4	
10ppm Sulfur in Gasoline Analytical Services inc	
dibuthylsulphide, Merck - Germany	
0.0020% Sulfur in Gasoline, MBH Analytical Ltd.	
· · · · · · · · · · · · · · · · · · ·	
STD-12 laboratory sample	
Acu standard	
Sulphur Content for Diesel Fuel: 48.5 mg/kg (interval of confidence=4.1 mg/kg), ROFA F	rance
ROFA	
Supplier IIS	
NIST 2723a	
Nist CRM 2294 from CROMLAB	
NIST CRM's	
AccuStandard Inc. Item Number STP-1X-4	
OXFORD INSTRUMENTS	
NIST	
Series SMO8C(L) and (H) by Analytical Service	
CRM and supplier Sulfur in Isooctane 20.0+/-0.2 AccStandard Inc.	
CHIRON Norway	
MBH 258XMN, MERCK CERTIPURE S	
Amstandard Ldt	
NIST 1624d and 2770	
Sulfur in isooctane ; 10.0+-0.1 ; 50.03+-0.5 (supplier: Accustandard Inc.)	
8 ppm & 25 ppm from ANALYTICAL SERVICES	
NIST1616b, NIST 2723a, NIST 2770, NIST8771	
Low level Sulfur Standard (5, 10, 30, 50 ppm)\ Sulfur Blank Standard - Supplier: AccuStar	ndard Inc.
ITN	
ULTRAstandard (di-n-butyl sulfide in toluene) - ULTRA Scientific	
ULTRASTANDARD (di-n-butyl sulfide in toluene)	
SU-GO-497 40 mg/kg	
NORMALAB 18 +/- 2.1 mg/kg	
AccuStandard Inc.	
AccuStandard Inc.element:D-5453 Low Level Sulfur;supplier - Company Amstandard	
FAM roudn robin sample	
Sulfur 25 ppm in light mineral oil, FLUXANA HD Elektronik Accustandard Ink.	
Sulfur in isooctane, Organic Standard Solutions International, LLC	
SCP SCIENCE Canada; AlphaResources, Inc. USA;	
AccuStandard Inc	
Paragaon Scientific	
NIST, BCR	
France	
For calibration D-5453-ML-SET, B4110036-41 . For validation STP+3X+4, B2010222	

European Commission

EUR 22774 EN – DG Joint Research Centre, Institute for Reference Materials and Measurements – IMEP-22 Sulphur in Petrol: Interlaboratory Comparison Report *Authors: J. van de Kreeke, L. van Nevel, S. Bynens, I. Verbist, P. Robouch, B. de la Calle and P.D.P. Taylor* Luxembourg: Office for Official Publications of the European Communities 2007 – 42 pp. – 21 x 29.7 cm EUR - Scientific and Technical Research series; ISSN 1018-5593 ISBN 978-92-79-06029-8 Catalogue number LA-NA-22774-EN-C

Abstract

EU Directive 2003/17/EC lays down requirements for the sulphur content in automotive petrol and provides criteria for appropriate methods of analysis to monitor compliance with these requirements. The sulphur content of automotive petrol is currently between 10 and 50 mg•kg⁻¹, and will be limited to 10 mg•kg⁻¹ as of 2009.

IMEP-22 studies whether the laboratories involved in petrol analysis in the frame of EU legislation are able to measure a sulphur content of 20.5 mg•kg⁻¹. This value was certified by IRMM using a primary method of measurement. Most of the 128 participants were routine laboratories located in Europe, and the intercomparison is thought to be representa-tive for this group.

A satisfactory z score was obtained by 70% of the participants. These laboratories fulfilled the legislative requirements laid down in Directive 2003/17/EC. The unexpectedly large share of 30% questionable and unsatisfactory z scores indicates the presence of a discrepancy between the requirements of EU Directive 2003/17/EC and the performance of the average European routine laboratory.

Eighty-seven per cent of the participants had followed the invitation to report an estimate of their measurement uncertainty. A zeta score was calculated for these results, and it was tested whether this uncertainty was within range. Half of the participants obtained satisfactory z and zeta scores, and 39% also obtained an additional satisfactory rating for the magnitude of the reported uncertainty. These laboratories fulfilled both legislative and metrological requirements.

Several specific groups of laboratories participated in the frame of IRMM's support to EU policy. Customs laboratories were contacted via DG TAXUD and accredited laboratories were nominated by their accreditation bodies in the frame of the collaboration between IRMM and EA, the European Co-operation for Accreditation. In addition, laboratories from Acceding and Western Balkan countries participated in the frame of the IRMM support to the EU's CARDS programme.

The mission of the Joint Research Centre is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Community. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

