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Brief history of Benford’s Law

S. Newcomb (1881): the first pages of logarithmic tables are
more consumed than the last ones =⇒ they are used more
frequently

F. Benford (1938; 57 years later!)

→ examinations of data coming from many sources (electricity
bills, street addresses...)

→ he rediscovered the same phenomenon.

nowadays known as Benford’s Law:
The “frequency”of the numbers with first significant decimal
digit p is

log10
p + 1

p

in particular it is not uniform as could be expected!
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A number–theoretic formulation

How can we interpret the word “frequency ”?
A possible answer

A ⊆ N

A(x) = #
(
A ∩ [1, x ]

)
= number (#) of integers belonging to A and less or equal to x

→ Attempt of definition of “frequency ”of A

= “natural”density of A = d(A) = limn→∞
A(n)
n .

→ Difficulty: For Ap = {integers with first digit = p} the limit
doesn’t exist! In fact

d(A) = lim inf
n→∞

A(n)

n
=

1

9p
; d(A) = lim sup

n→∞

A(n)

n
=

10

9p
.
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A number–theoretic formulation

No density= no frequency?
Let’s try to argue more widely. Attach a “weight”µ({k}) = 1 to
each integer k. Then

“natural measure”of (A ∩ [1, n]) = µ(A ∩ [1, n])

=
∑

1≤k≤n,
k∈A

µ({k}) =
∑

1≤k≤n,
k∈A

1 = A(n)

“natural measure”of [1, n] = µ(N ∩ [1, n]) =
∑

1≤k≤n
µ({k}) = n

A(n)

n
=
µ(A ∩ [1, n])

µ(N ∩ [1, n])
.
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A number–theoretic formulation

What about other weights? For instance µ({k}) = 1
k . Then

“logarithmic measure”of (A∩ [1, n]) = µ(A∩ [1, n]) =
∑

1≤k≤n,
k∈A

1

k

“logarithmic measure”of [1, n] = µ(N ∩ [1, n]) =
∑

1≤k≤n

1

k

“logarithmic”density of A = δ(A) =

lim
n→∞

µ(A ∩ [1, n])

µ(N ∩ [1, n])
= lim

n→∞

1

log n

∑
1≤k≤n,
k∈A

1

k
.

The term “logarithmic”comes from

µ(N ∩ [1, n]) =
∑

1≤k≤n

1

k
∼ log n.

And now

δ(Ap) = log10
p + 1

p
!!
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A number–theoretic formulation

P = set of prime numbers. It is known that, with µ({k}) = 1
k

lim
n→∞

µ(Ap ∩ P ∩ [1, n])

µ(P ∩ [1, n])
= lim

n→∞

∑
1≤k≤n,k∈Ap∩P

1
k∑

1≤k≤n,k∈P
1
k

= log10
p + 1

p
.

With a term borrowed from probability, we call

lim
n→∞

µ(A ∩ P ∩ [1, n])

µ(P ∩ [1, n])
= logaritmic density of A, conditioned to P.
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Questions

So, the conditional logarithmic density of Ap , given P, is equal to
its (non-conditional) logarithmic density.

Question 1

Which sets other than P?

Question 2

Which sets other than Ap?
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Answer to question 1

Any “regular”set H will do
What is regularity?

(counting function of H)(x) = H(x) = #(H ∩ [1, x ])

= number of elements of H that are less or equal to x

Definition

H ⊆ N is “regular”with exponent λ ∈ (0, 1] if the function

L(x) =
H(x)

x

is “slowly varying ”as x →∞ i.e.∼ behaves approximately as a
constant for large x .

Examples of slowly varying functions: log x , 1
log x , log log x , sin 1

x ...
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Examples of regular sets

H = {nr , n ∈ N} = set of r–th powers

H(x) = bx
1
r eis regularly varying with exponentλ =

1

r
.

H = set of all powers

H(x) ∼
√
x

=⇒ H is regularly varying with exponent λ = 1
2 .

H = P

(counting function of P)(x) = π(x) ∼ x

log x

=⇒ π is regularly varying with exponent λ = 1.
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Answer to question 2

A =
⋃
n

(
[pn, qn[∩N

)
with

pn ∼ σqn, n→∞, σ < 1

What about Ap?

Ap =
⋃
n

(
[p · 10n, (p + 1) · 10n[∩N

)
(for ex. (p = 3): 371 ∈ [300, 400[= [3 · 102, 4 · 102[, so 371 belongs
to the second interval (n = 2).
In this case

pn = p · 10n, qn = (p + 1) · 10n, σ =
p

p + 1
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A probabilistic formulation

Define the

mantissa in base 10 of x =M(x) ∈ [1, 10[

M(x) = 10{log10 x}

Meaning

[a] = (lower) integer part of a = greatest integer less or equal to a.
{a} =fractional part of a = a− bac

WARNING!

→ {2, 76} = 2, 76− 2 = 0, 76

→ {−3, 84} = −3, 84− (−4) = 0, 16.
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A probabilistic formulation

An example with x = 0, 00487

10−3 = 0, 001 ≤ 0, 00487 < 0, 01 = 10−2

⇐⇒ −3 ≤ log10 0, 00487,−2

⇐⇒ blog10 0, 00487c = −3

Using the scientific notation

0, 00487 = 4, 87 · 10−3 = 4, 87 · 10blog10 0,00487c

= 4, 87 · 10log10 0,00487−{log10 0,00487}

= 4, 87 · 10log10 0,00487 · 10−{log10 0,00487}

= 4, 87 · 0, 00487 · 10−{log10 0,00487}
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A probabilistic formulation

4, 87 · 10−{log10 0,00487}︸ ︷︷ ︸
=M(0,00487)

= 1

⇐⇒

M(0, 00487) = 4, 87

i.e.

the mantissa of x is the number which multiplies
the power of 10 when x is written in scientific notation.
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How to formulate Benford’s law in terms of the mantissa ?

The first significant digit of x = p
⇐⇒

M(x) is between p and p + 1:

P(the first significant digit of x = p) = P
(
p ≤M(x) < p + 1

)
Thus Benford’s law says that

P
(
p ≤M(x) < p + 1

)
= log10

p + 1

p
= log10(p + 1)− log10 p,

or equivalently

For any 1 ≤ t ≤ 10, the proportion of x > 0 which satisfy
M(x) ∈ [1, t[ is

β([1, t[) = log10 t
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How to justify Benford’s law in terms of the mantissa ?

Janvresse and De La Rue heuristics:
Consider data as coming from a r.v. on the interval [0,A].

Benford himself noticed:
the greater the number of sources of data, the better their
mantissae fit the law.
Hence if the data X come from various origins and their maxima A
come from various origin as well, then both X and A must follow
Benford law.

Questions

(a) does there exists a law on [1, 10[ followed by both M(X ) and
M(A)?

(b) if M(A) does not verify the same law as M(X ), is it possible
to iterate the procedure somehow? Which law do we obtain
as a limit?
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How to justify Benford’s law in terms of the mantissa ?

Many people have wondered why some factors explaining empirical
data seem to act multiplicatively.

An interpretation:

we see an everyday-life number X as coming from an interval
[0,A], where the maximum A is itself an everyday-life number; this
amounts to consider a product, since a continuous random variable
on some interval [0,A] can be seen as the product of A by a
random variable on [0, 1].

So

Theorem

Let X = AY , where Y is a continuous random variable with
distribution ν and A is a positive random variable independent of
Y . If M(A) and M(X ) follow the same probability distribution,
then this distribution is Benford’s law.
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How to justify Benford’s law in terms of the mantissa ?

This result can be related to the scale-invariance property of
Benford’s law.

Leading idea:

if there exists a universal law describing the distribution of
mantissae of real numbers, it does not depend on the system of
measurement. So we expect this law to be scale invariant.
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How to justify Benford’s law in terms of the mantissa ?

The Theorem naturally leads to consider a Markov chain (Mn)n≥1,
such that Mn follows the same law the mantissa of a product of n
independent random variables with law ν.

What is a Markov chain?

A Markov chain is a stochastic model describing a sequence of
possible events in which the probability of each event depends on
the states attained previously only through the current state.

i.e.

If the chain is currently in state si , then it moves to state sj at the
next step with a probability which does not depend upon which
states the chain was in before the current one.
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How to justify Benford’s law in terms of the mantissa ?

Known fact
Under some conditions, the mantissa of such a product converges
to Benford’s law.

Indeed we prove

Proposition

The unique invariant measure of Mn is Benford’s law.
Meaning:

If we start with M0 having Benford distribution, then every Mn is
Benford.

We also prove that this invariant measure is unique and the
convergence is exponential. Precisely
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How to justify Benford’s law in terms of the mantissa ?

Theorem

(Mn)n≥0is a Markov chain on [1,10[. Moreover, Mn, conditioned
on Mn−1 has the same law as the mantissa of the product of
Mn−1Y , where Y is an independent random variable with law ν.

Proposition

For every measurable set B ⊆ [1, 10]

|P(Mn ∈ B)− β(B)| ≤ ν
([ 1

10
, 1
])n

Hence, if ν
([

1
10 , 1

])
< 1 the convergence is exponentially fast.

The interest relies in the fact that the exponential speed is
expressed in terms of the law ν de Y .
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How to justify Benford’s law in terms of the mantissa ?

Thank you to the organizers for the invitation

Thank you for your attention
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