

JRC TECHNICAL REPORTS

Report on the inter-laboratory comparison organised by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons

Four marker PAHs in smoked black pepper

Stefanka Bratinova, Lubomir Karasek Thomas Wenzl

2016

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Contact information

Name: Stefanka Bratinova Address:Retieseweg 111, Geel 2440, Belgium E-mail: Stefanka-Petkova.BRATINOVA@ec.europa.eu Tel.: +32 (0)14 571 800

JRC Science Hub

https://ec.europa.eu/jrc

JRC 103414

EUR 28124 EN

PDF ISBN 978-92-79-62166-6 ISSN 1831-9424 doi:10.2787/408598

Luxembourg: Publications Office of the European Union, 2016

© European Union, 2016

Reproduction is authorised provided the source is acknowledged.

How to cite: Stefanka Bratinova, Lubomir Karasek, and Thomas Wenzl , Report on the inter-laboratory comparison organised by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons, Four marker PAHs in smoked black pepper, EUR 28124 EN; doi:10.2787/408598

All images © European Union 2016

Table of content

 Introduction	5 6 6 8 8
 Scope Setup of the exercise 3.1 Participating Laboratories	6 6 8 8
 3. Setup of the exercise 3.1 Participating Laboratories	6 6 8 8
3.1 Participating Laboratories	6 8 8
3 2 Time frame	8 8
5.2 Time frame	8 °
3.3 Confidentiality	0
3.4 Design of the proficiency test	0
4. Test materials	8
4.1 Preparation	8
4.2 Homogeneity and stability	9
4.3 Assigned value and standard deviation for proficiency assessment	9
5. Evaluation of laboratories	. 10
5.1 General	. 10
5.2 Evaluation parameter	. 10
5.3 Evaluation of results	. 11
5.4 Additional information extracted from the questionnaire	. 16
5.5 Compliance assessment	. 17
6. Follow-up actions for underperforming laboratories	. 18
Conclusion	. 19
References	. 19
List of abbreviations and definitions	. 21
List of figures	. 22
List of tables	. 23
ANNEXES	. 24

Abstract

This report presents the results of the inter-laboratory comparison (ILC) organised as a proficiency test (PT) by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EURL PAHs) on the determination of the four EU marker PAHs, benz[a]anthracene (BAA), benzo[a]pyrene (BAP), benzo[b]fluoranthene (BBF) and chrysene (CHR) in smoked black pepper.

The test material used in this exercise was commercial smoked black peppercorns acquired from an on-line store, which were in the EURL PAH laboratories finely ground and homogenised. Participants also received a solution of PAHs in the solvent of their choice (either toluene or acetonitrile) with known PAH content for the verification of their instrument calibration.

Both officially nominated National Reference Laboratories (NRLs) and official food control laboratories (OCLs) of the EU Member States participated in the study. Twenty-nine NRLs and 18 OCLs subscribed for participation.

The test material was characterised at the EURL PAH. The assigned values and their uncertainties were determined from independent replicate measurements on two different days by a primary method of measurement.

Participants were free to choose the method of analysis. The performance of the participating laboratories in the determination of the target PAHs in the test material was expressed by both z-scores and zeta-scores. Additionally, the compliance of reported method performance characteristics was checked against specifications given in legislation.

This PT demonstrated the competence of the participating laboratories in the analysis of regulated PAHs in smoked black pepper. About 67% percent of the reported test results were graded with z-scores below an absolute value of two, indicating acceptable agreement with the independently assigned values of the test material.

The EURL PAH asked participants to assess also compliance of the sample with legislative limits. Seventy one percent of the participants, who answered to this question, assessed the compliance of the test sample with EU legislation correctly.

The EURL-PAH is operated by a JRC Unit, which is an ISO/IEC 17043 accredited PT provider and the respective rules were applied during all phases of this PT.

1. Introduction

The European Commission's Joint Research Centre operates the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons in Food (EURL PAH). One of its core tasks is to organise comparative testing for the National Reference Laboratories (NRLs) [1, 2].

Polycyclic aromatic hydrocarbons (PAHs) constitute a large class of organic substances. The chemical structure of PAHs consists of two or more fused aromatic rings. PAHs may be formed during the incomplete combustion of organic matter and can be found in the environment. In food, PAHs may be formed during industrial food processing and domestic food preparation, such as smoking, drying, roasting, baking, frying, or grilling [3,4].

Of the many hundreds of different PAHs, benzo[a]pyrene is, the most studied which is often used as a marker for PAHs in ambient air and food [5]. The European Commission revised in 2011 legislation on PAHs taking thereby into consideration the conclusions drawn by the European Food Safety Authority (EFSA) on "Polycylic Aromatic Hydrocarbons in Food" [6]. New maximum levels (MLs) for the sum of four substances (PAH4) - benzo[a]pyrene (BAP), benz[a]anthracene (BAA), benzo[b]fluoranthene (BBF) and chrysene (CHR), (Table 1) were introduced whilst a separate maximum level for benzo[a]pyrene was maintained [7, 8].

In recent years, high levels of PAHs were found in dried herbs and dried spices which were reasoned by the application of bad drying practices. Consequently, maximum levels were set for PAHs in dried herbs and dried spices, laid down in Commission Regulation (EU) 2015/1933 from 27 October 2015 [9].

Traditional smoking and processing methods applied for the production of smoked paprika and smoked cardamom resulted in high levels of PAHs. However, given that the consumption of these spices is low, and to enable these smoked products to remain on the market, they were exempted from the maximum levels set by the Commission Regulation [9].

Along with salt, pepper is one of the oldest and best-known spices. A small portion of the traded pepper is smoked before sale over hickory wood for achieving a subtle, yet smoky flavour. Smoked black pepper is not exempted from Commission Regulation (EU) 2015/1933 and has therefore to comply with the set maximum levels [9].

In support to the implementation of the Commission Regulation (EU) No 2015/1933 [9], the EURL PAH agreed with NRLs to focus in the 2016 EURL PAH proficiency test (PT) exercise on the determination of PAHs in herbs and spices, in particular in smoked black pepper.

Table 1: Names and structures of the four EU marker PAHs.

1	Benz[<i>a</i>]anthracene (BAA)	2	Benzo[<i>a</i>]pyrene (BAP)	
3	Benzo[<i>b</i>]fluoranthene (BBF)	4	Chrysene (CHR)	

2. Scope

As specified in Regulation (EC) No 882/2004 on official controls performed to ensure the verification of compliance with food and feed law, animal health and animal welfare rules [2], one of the core duties of EURLs is to organise comparative testing.

This PT aimed to evaluate the comparability of results reported by NRLs and EU official food control laboratories (OCLs) for the four EU marker PAHs in smoked black pepper. The appropriateness of the reported measurement uncertainty was also evaluated as this parameter is important in the compliance assessment of food with EU maximum levels.

The PT was designed and evaluated under the umbrella of the organiser's accreditation according to ISO/IEC 17043:2010 [10].

3. Setup of the exercise

3.1 Participating Laboratories

Officially nominated NRLs and OCLs of the EU Member States were admitted as participants. The participants are listed in Table 2 and Table 3, respectively.

Institute	Country
AGES GmbH	Austria
Scientific Institute of Public Health (WIV-ISP)	Belgium
Croatian Veterinary Institute - Branch Veterinary Institute of Split	Croatia
State General Laboratory	Cyprus
State Veterinary Institute Prague	Czech Republic
Bundesamt für Verbraucherschutz und Lebensmittelsicherheit	Germany
Danish Food Administration	Denmark
Health Board	Estonia
Centro Nacional de Alimentación. Agencia Española de Seguridad Alimentaria y Nutrición (AESAN)	Spain
Finnish Food Safety Authority Evira	Finland
LABERCA - Oniris	France
General Chemical State Laboratory	Greece
National Food Chain Safety Office, Feed Investigation	Hungary
National Food Chain Safety Office, Food and Feed Safety Directorate	Hungary
Istituto Superiore di Sanità (ISS)	Italy
Public Analyst Laboratory	Ireland
National Food and Veterinary Risk Assessment Institute	Lithuania
Laboratoire National de Santé	Luxembourg

Table 2: List of participating National Reference Laboratories (NRL)

Institute of Food Safety, Animal Health and Environment "BIOR"	Latvia
RIKILT	the Netherlands
National Institute of Public Health - National Institute of Hygiene	Poland
ASAE - Autoridade de Seguranca Alimentar e Economica	Portugal
Swedish National Food Agency	Sweden
Institute of Public Health Maribor, Institute of Environmental Protection	Slovenia
State Veterinary and Food Institute Dolny Kubin	Slovakia
Fera Science Ltd	UK

From the 28 NRLs, 2 NRLs did not report results.

Table 3: List of participating Official Food Control Laboratories (OCL)

Institute	Country	
LVA GmbH Klosterneuburg	Austria	
Institut für Umwelt und Lebensmittelsicherheit des Landes Vorarlberg	Austria	
Federal Laboratory for the Safety of Food chain, Tervuren	Belgium	
SGS Bulgaria Ltd.	Bulgaria	
Finnish Customs Laboratory	Finland	
CVUA-MEL	Germany	
Thüringer Landesamt für Verbrauchrschutz	Germany	
Landeslabor Berlin-Brandenburg	Germany	
Bavarian Food Safety Authority - Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit	Germany	
CVUA Karlsruhe	Germany	
CVUA-RRW	Germany	
Landesuntersuchtungsamt für Chemie, Hygiene und Veterinärmedizin	Germany	
Landesuntersuchungsanstalt für das Gesundheits-und Veterinärwesen Sachsen	Germany	
LAVES (Lower Saxony State Office for Consumer Protection and Food Safety)	Germany	
Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche	Italy	
Istituto Zooprofilattico Sperimentale Lombardia Emilia Romagna	Italy	
NofaLab B.V.	The Netherlands	
Dr. A. Verwey B.V.	The Netherlands	
Edinburgh Scientific Services	UK	
Glasgow Scientific Services	UK	

From the 21 registered OCLs, 1 OCLs did not report results.

3.2 Time frame

The PT was announced on the IRMM web page (see ANNEX 1) and invitation letters were sent to the laboratories on 01 February 2016 (see ANNEX 2) with deadline for registration via EUSurvey webpage (see ANNEX 3) until 22 February 2016. Test samples were dispatched (see ANNEX 4) on 15-16 March 2016 and the deadline for reporting of results was set to 22 April 2016. The documents sent to the participants are presented in ANNEX 5.

3.3 Confidentiality

The laboratory codes of participants are disclosed only to the participants, unless they were enrolled in the study by a third party, covering the participation fee. In this case the codes of the respective laboratories will be also disclosed to the enrolling third party. In all other cases codes will only be disclosed on a request and upon the written consent of the participant.

3.4 Design of the proficiency test

The design of the PT foresaw triplicate analysis of the test items and reporting of individual results of replicate analyses for individual analytes based on the mass of the entire test portion (on product basis). Additionally a "values for proficiency assessment", in the following denoted as "final values", were requested for both the single analytes and the sum of the four PAHs. They had to be expressed on product basis as well. All results had to be reported corrected for recovery; the "final values" had also to be accompanied by the respective expanded measurement uncertainties and the corresponding coverage factors. Only final values were used for performance assessment.

Participants were asked to report besides analysis results also details of the performance of the applied analytical method (see ANNEX 9). Additionally, the EURL PAH asked participants (NRLs and official control laboratories) to assess the compliance of the sample according to the current legislative limits.

Each participant received at least one ampoule of a solution of the target PAHs in the chosen solvent (2 ml), with known content, and one amber glass vial containing the smoked black pepper test material.

4. Test materials

4.1 Preparation

The test item of this PT was smoked black pepper. Participants also received a solution of the 4 EU markers PAHs either in acetonitrile or in toluene (according to their choice, see ANNEX 5) with known concentrations, which allowed them to check their instrument calibration against an independent reference. Participants received the technical specifications (see ANNEX 6) of the chosen solution together with the test material.

The smoked black pepper powder test item was prepared at the EURL PAH starting from two kilos of smoked black peppercorns, acquired via an on-line shop. The material was ground to a fine powder and homogenized. Aliquots of about 25 g were packed in amber glass screw cap vials and stored in a refrigerator at about 4 °C.

The standard solutions were prepared from neat reference substances checked against certified reference materials (NIST). Single standard stock solutions of each analyte

were produced from neat substances on a microbalance and dissolution in toluene. Mixed standards were prepared gravimetrically from the single standard stock solutions in the respective solvents and further diluted to the concentrations specified in ANNEX 6. The standard solutions were ampouled under inert atmosphere and flame sealed in 2 ml amber glass ampoules.

4.2 Homogeneity and stability

The smoked black pepper powder was tested for significant inhomogeneity, according to the IUPAC International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories, and for sufficient homogeneity according to ISO 13528:2015 [11]. Homogeneity experiments consisted of sample extraction by pressurized liquid extraction, size-exclusion chromatography followed by solid phase extraction clean-up and gas-chromatography with mass-spectrometric detection. The method precision complied with the requirements laid down in ISO 13528:2015 [11].

Homogeneity experiments included duplicate analysis of 10 samples randomly selected along the filling sequence among the amber glass vials prepared for dispatch. The duplicate analyses were performed in random order. The test material was rated sufficiently homogenous and no trend was observed. Details of the homogeneity tests are given in ANNEX 7.

The stability of the test material was evaluated following the requirements in ISO13528:2015. Six randomly selected samples were stored at two different conditions over the period from the dispatch of the material to the end of the submission of the results.

The first set of 3 samples was stored in a refrigerator at recommended conditions ($\sim +4$ °C). The second set of 3 samples was stored for the whole period of the study in a deep freezer at the reference temperature (~ -80 °C). After the deadline for reporting of results had expired, all 6 samples were analysed in duplicate under repeatability conditions.

Significant differences of the analyte contents of the test samples were not found. Hence stability of the test samples can be assumed over the whole period of the study provided that the recommended storage conditions were applied (ANNEX 8)

4.3 Assigned value and standard deviation for proficiency assessment

The assigned values were determined at the EURL PAH applying an analytical method based on isotope dilution mass spectrometry (WI-D-0607) [12]. This implied the preparation of standard solutions from two totally independent sources - NIST SRM 2260a and neat certified reference materials BCR® from IRMM. The analytical method was fully validated by collaborative trial and is accredited according to ISO 17025. This method became recently a European standard EN16619:2015. The respective associated uncertainties of the assigned values were calculated based on GUM approach [13].

The assigned value for the sum of 4 PAH was calculated from the individual assigned values, and its corresponding uncertainty was calculated from the uncertainties of the individual assigned values according to law of error propagation considering covariances.

The standard deviation for proficiency assessment, σ_P , was set for the individual analytes equal to the maximum tolerable uncertainty (Uf), which is calculated according to Equation 1 [8]. A LOD value of 0.30 µg/kg, and α equal to 0.2 were applied for this purpose. The standard deviation for proficiency testing was calculated for the SUM4PAH parameter from the σ_P - values of the individual analytes applying the law of error propagation.

Equation 1
$$u_f = \sqrt{(\text{LOD}/2)^2 + (\alpha \text{C})^2}$$
 [7]

where u_f relates to the maximum tolerated standard measurement uncertainty, LOD to the limit of detection, a to a numeric factor depending on the concentration C as given in Commission Regulation (EC) No 333/2007, amended by Regulation (EC) 836/2011 [8].

Table 4: Assigned values and their associated expanded uncertainties (k=2) for the smoked black pepper test item, expressed based on mass of entire product (on product basis).

Analista	Analyte	Assigned value	U	σ _P	
Analyte	snort name	µg/kg	µg/kg	µg/kg	%
Benz[a]anthracene	BAA	34.22	2.06	6.85	20.0
Chysene	CHR	39.84	3.34	7.97	20.0
Benzo[b]fluoranthene	BBF	17.16	1.28	3.44	20.0
Benzo[a]pyrene	BAP	14.40	1.04	2.88	20.0
Sum of the four marker PAHs	SUM4PAH	105.62	4.26	11.42	10.8

 σ_p standard deviation for proficiency assessment.

U expanded uncertainty of the assigned value (k=2).

5. Evaluation of laboratories

5.1 General

The most important evaluation parameter was the performance of the laboratories in the determination of the target PAHs in the test material, which was expressed by z-scores [11]. zeta-Scores were calculated in addition considering the uncertainty of the test results as estimated by each participant.

The compliance with legislation of the performance characteristics of the analytical methods applied by the participants for the analysis of the test sample was evaluated as well.

The results as reported by participants are listed in ANNEX 10. In case the coverage factor k was not reported by the participant, a coverage factor of two was assumed.

5.2 Evaluation parameter

z-Scores

z-Scores were calculated based on the final values. Equation 2 presents the formula for calculation of z-scores.

Equation 2

$$z = \frac{\left(x_{lab} - X_{assigned}\right)}{\sigma_{P}}$$
[9]

where z refers to the z-score, x_{lab} to the reported "final value", $X_{assigned}$ to the assigned value, and σ_P to the standard deviation for proficiency testing.

zeta-Scores

In addition to z-scores, zeta-scores were calculated. In contrast to z-scores, zeta-scores describe the agreement of the reported result with the assigned value within the respective uncertainties. zeta-Scores were calculated according to Equation 3.

Equation 3

$$zeta = \frac{x_{lab} - X_{assigned}}{\sqrt{u_{lab}^2 + u_{assigned}^2}}$$
[9]

where zeta refers to the zeta-score, x_{lab} to the reported "final value", $X_{assigned}$ to the assigned value, u_{lab} to the standard measurement uncertainty of the reported result, and $u_{assigned}$ to the standard uncertainty of the assigned value.

Whenever uncertainties of reported results were not provided by the participants, they were set in Equation 3 to zero, which is most unfavourable for zeta score calculation.

Unsatisfactorily large zeta-scores might be caused by underestimated measurement uncertainties, large bias, or a combination of both. Therefore, reported uncertainties were checked against the uncertainties of the reference values. It should be mentioned that some laboratories might have reported absolute uncertainties instead of the requested relative measurement uncertainties, resulting in very low, unrealistic values for that parameter.

On the contrary, satisfactory zeta scores might be obtained even with high bias if the uncertainty is sufficiently high. However, legislation specifies maximum tolerable standard uncertainties. Uncertainties exceeding them are not considered fit-for-purpose. Therefore, the uncertainties reported by the participants for the 4 marker PAHs were checked whether they comply with the threshold values provided by the "fitness-for-purpose" function (Equation 1). The results reported by the participants and the maximum tolerated LOD of $0.30 \mu g/kg$ were used for the calculation of the respective threshold values. Reported uncertainties that were non-compliant are highlighted in yellow in Table 6.

Performance classification scheme

The performance of the laboratories was classified according to ISO/IEC 17043:2010 [10]. The following scheme is applied for the interpretation of both z-scores and zeta scores:

 $|\text{score}| \le 2.0 = \text{satisfactory performance}$ 2.0<|score| < 3.0 = questionable performance $|\text{score}| \ge 3.0 = \text{unsatisfactory performance}$

5.3 Evaluation of results

z-Scores were attributed only to the "final values". The individual results of replicate analyses were not rated.

Each laboratory had to report a total of 5 results; therefore the expected total number of results of the 49 participants was 245. Three participants did not report results at all and other participants did not report results for all 5 parameters. In total 226 results were received, which equals to 92.2 % of the expected. The results, as reported by participants are presented in ANNEX 10.

Statistical evaluation of the results was performed using PROLab software [13]. Robust mean values and robust standard deviations were calculated according to Algorithm A+S of ISO 13528:2015 [11].

It should be noted that the confidence intervals of the robust means calculated from the participants' results (ANNEX 10, Kernel density plot) overlap well with the confidence intervals of the assigned values. The robust standard deviation (rSD) of the results of participants reported for BaP in smoked black pepper test material were lower than the target SD, however for the rest of the analytes, the rSDs of the result were higher than the target SD.

66.4% of the results reported by the participants obtained satisfactory z-scores $\leq +/-2$ while 64.7% of the results had satisfactory zeta-score (Figure 1). In contrast to previous PTs, the difference between the rates of satisfactory z-scores and zeta scores is very small, which indicate a significant improvement of the participants in the estimation of realistic uncertainties.

22.6% of the results fall into the unsatisfactory performance range with z-scores > |3|.

Figure 1: Histogram of z- and zeta-scores for the contents of BAA, BAP, BBF, CHR, and the SUM4PAH

Figure 2 presents the distribution of performance ratings (z- and zeta-scores) for the individual measurands for the whole population (I), NRLs (II) and OCLs (III). It contains also an overview of the compliance of reported uncertainty, according to the criteria explained further on and the classification shown in the tables of the Annex 11.

Figure 2: Percentage/number (label on bars) of laboratories with satisfactory (green), questionable (yellow) and unsatisfactory performance (red)

I - all participants

Figure 3 and Figure 4 provide overviews of the individual z-scores and zeta-scores assigned to the results reported for the smoked black pepper test material by NRLs and OCLs respectively. The larger the triangles, the larger were the differences to the assigned values. Yellow triangles represent z-scores in the questionable and red triangle in the non-satisfactory performance range. The corresponding scores were presented next to the triangles.

Twenty-three participants obtained for at least four out of five rated results z-scores in the satisfactory performance range. However, 20 participants were less successful. They reported at maximum two results that were considered satisfactory. Three participants (OCLs) did not report any result that fell into the satisfactory performance range. It should be mentioned that the smoked black pepper test material was highly contaminated with PAHs, which could have caused issues with the working range of methods applied by some participants. Moreover several participants reported chromatographic problems linked to interferences stemming from the matrix or nontarget PAHs. Given the complexity of the study, the performance of the NRLs may be summarised as satisfactory with room for improvement. Big differences were noted in the performances of NRLs and OCLs, especially for BAA, which caused for three quarters of the OCLs troubles. The numerical values of the calculated z (zeta)-scores were compiled in the tables of Annex 10. All scores in the questionable performance range were highlighted in yellow, while scores, indicating unsatisfactory performance are presented with red background.

The distributions of results for the individual analytes are displayed in the figures of ANNEX 10 together with respective Kernel density plots. The figures show for each analyte individual analysis results of the three replicate determinations.

Figure 3: Graphical presentation of z- and zeta- scores corresponding to the "final values for proficiency assessment" reported by the NRLs for the contents of BAA, BAP, BBF, CHR, and the SUM4PAH parameter in the smoked black pepper test material.

Figure 4: Graphical presentation of z and zeta-scores corresponding to the "final values for proficiency assessment" reported by the OCLs for the contents of BAA, BAP, BBF, CHR, and the SUM4PAH parameter in the smoked black pepper test material.

Scores for smoked black pepper

The plausibility of the uncertainty statements of the laboratories was assessed in the current PT classifying every reported uncertainty into three groups (Annex 10 and Figure 2) according to the following rules.

The standard measurement uncertainty from a laboratory (u_{lab}) is most likely to fall in a range between a minimum and a maximum uncertainty (case "a": u_{min} \leq u_{lab} \leq u_{max}). The minimum uncertainty (u_{min}) is set for the respective analyte to the standard uncertainty of the assigned value (u_{ref}). This is based on the assumption that it is unlikely that a laboratory carrying out the analysis on a routine basis would determine the measurand with a smaller measurement uncertainty than that achieved in the experiments for the characterisation of the test material, which were based on isotope dilution mass spectrometry applying bracketing calibration. The maximum uncertainty is set to the standard deviation accepted for the assessment of results (σ), in this PT set to the maximum threshold given by the "fitness-for-purpose" function U_f. Consequently, case "a" becomes: u_{ref} \leq u_{lab} $\leq \sigma$.

If u_{lab} is smaller than u_{ref} (case "b": $u_{lab} < u_{ref}$) the laboratory might have underestimated its measurement uncertainty.

If u_{lab} is larger than σ (case "c": $u_{lab} > \sigma$) the laboratory might have overestimated its measurement uncertainty, or applied an analytical method that was not fit-for-purpose. Both cases require corrective action!

As can be concluded from Figure 2, the measurement uncertainties estimated by NRLs were more plausible, and to a higher degree compliant with legislation, than those

estimated by OCLs. This is particularly applicable to uncertainty estimates for the sum parameter.

Although the estimation of measurement uncertainties improved over recent PT rounds, the EURL PAH will continue to pay attention to this parameter, in the PTs to come, as measurement uncertainty has major implications on the assessment of compliance of food according to European legislation.

As indicated by the Kernel density plots displayed in Annex 11, the distributions of results are close to the Gaussian distribution. The major modes are close to the assigned (reference) values and the robust means calculated from the results of the participants. This supports the conclusion that the measurement of PAHs in smoked black pepper is from the statistical point of view under control. However, plotting Kernel density distributions in dependence of the applied analytical techniques reveal technique-dependant differences in the distributions of results for BAA and CHR. Systematically higher rSDs were noted for results obtained by HPLC-FD compared to results obtained by GC-MS measurements (Table 5). Stronger matrix effects affecting separation and peak integration might explain this finding.

BAA SMPEPPER HPLC 37.67 7.16% 72.07% 48 17 38.64% BAA SMPEPPER HPLC 37.67 7.16% 72.07% 48 17 38.64% BAA SMPEPPER HPLC 37.67 7.16% 72.07% 48 17 38.64% BAA SMPEPPER GC-MS(MS) 35.55 1.54% 17.79% 9 3 6.82% BAA SMPEPPER GC-MS(MS) 35.55 1.54% 17.79% 9 3 6.82% BAP SMPEPPER GC-MINS 13.86 4.32% 20.99% 54 19 42.22% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP
Sample-measurant combination : smoked black peper - BAA Sample-measurant combination : smoked black peper - BAA BAA SMPEPPER GC-MS(MS) 35.54 3.93% 26.93% 667 24 54.55% BAA SMPEPPER GC-MS(MS) 35.55 1.54% 177.79% 9 3 6.82% BAA SMPEPPER GC-HIMS 35.55 1.54% 177.79% 9 3 6.82% BAA SMPEPPER GC-HIMS 35.55 1.54% 177.79% 9 3 6.82% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-HRMS 14.34 4.56% 12.36% 9 3 6.67% Image: Sample-measurant combination : smoked black peper - BBF Image: Sample-measurant combination : smoked black peper - BBF Image: Sample-measurant combination : smoked black peper - BBF Image: Sample-measurant combination : smoked black peper - BBF Image: Sample-measurant combination : smoked black peper - BBF Image: Sample-measurant combination : smoked black peper - BBF Image: Sample-measurant combin
- Sample-measurand combination : smoked black pepper - BAA BAA SMPEPPER HPLC 37.67 7.16% 72.07% 48 17 38.64% BAA SMPEPPER GC-MS(MS) 35.54 3.93% 26.93% 67 24 54.55% BAA SMPEPPER GC-HRMS 35.55 1.54% 17.79% 9 3 6.82% - Sample-measurand combination : smoked black pepper - BAP 124 44 100.0 BAP SMPEPPER HPLC 13.86 4.32% 20.99% 54 19 42.22% BAP SMPEPPER GC-HRMS 14.47 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-HRMS 14.34 4.66% 12.36% 9 3 6.67% Sample-measurand combination : smoked black pepper - BBF 126 45 100.0 126 45 100.0 - Sample-measurand combination : smoked black pepper - BBF 126 45 100.0 126 45
BAA SMPEPPER HPLC 37.67 7.16% 72.07% 48 17 38.64% BAA SMPEPPER GC-MS(MS) 35.54 3.93% 26.93% 67 24 54.55% BAA SMPEPPER GC-MRMS 35.55 1.93% 26.93% 67 24 54.55% BAA SMPEPPER GC-HRMS 35.55 1.93% 17.79% 9 3 6.82% - Sample-measurand combination : smoked black peper - BAP 124 44 100.0 BAP SMPEPPER HPLC 13.86 4.32% 20.99% 54 19 42.22% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-MR(MS) 14.34 4.56% 12.36% 9 3 6.67% 1 Sample-measurand combination : smoked black peper - BBF 100.0 126 45 100.0 3 BBF SMPEPPER HPLC
BAA SMPEPPER GC-MS(MS) 35.54 3.93% 26.93% 67 24 54.55% BAA SMPEPPER GC-HRMS 35.55 1.54% 17.79% 9 3 6.82% BAA SMPEPPER GC-MS(MS) 35.55 1.54% 17.79% 9 3 6.82% Sample-measurand combination : smoked black perper - BAP 124 4.44 100.0 BAP SMPEPPER HPLC 13.86 4.32% 20.99% 54 19 42.22% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-MS(MS) 14.34 4.56% 12.36% 9 3 6.67% BBF SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.25% BBF SMPEPPER GC-M
BAA SMPEPPER GC-HRMS 35.55 1.54% 17.79% 9 3 6.82% Sample-measurand combination : smoked black peper - BAP 100.0 124 44 100.0 BAP SMPEPPER HPLC 13.86 4.32% 20.99% 54 19 42.22% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 116.43% 633 23 51.11% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 116.43% 633 23 51.11% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 112.64% 9 3 6.67% Sample-measurand combination : smoked black peper - BBF 100.0 126 45 100.0 SBF SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER GC-MS(MS) 18.71 4.86% 31.05% 64 23 51.11% BBF SMPEPPER GC-MS(MS) 18.33
Image: Normal state
Barple-measurand combination : smoked black pepper - BAP BAP SMPEPPER HPLC 13.86 4.32% 20.99% 54 19 42.22% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-MRMS 14.47 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-HRMS 14.34 4.56% 12.36% 9 3 6.67% BAP SMPEPPER GC-HRMS 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER GC-MS(MS) 18.71 4.85% 31.05% 64 23 51.11% BBF SMPEPPER GC-MRMS 18.33 18.6% 11.00% 9 3 6.67%
BAP SMPEPPER HPLC 13.86 4.32% 20.99% 54 19 42.22% BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-MRMS 14.34 4.66% 12.36% 9 3 6.67% - Sample-measurand combination : smoked black peper · BBF 126 45 100.0 - SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER GC-MS(S) 18.71 4.85% 31.05% 64 23 51.11% BBF SMPEPPER GC-HRMS 18.33 1.86% 11.00% 9 3 6.67%
BAP SMPEPPER GC-MS(MS) 14.67 6.00% 16.43% 63 23 51.11% BAP SMPEPPER GC-HRMS 14.34 4.56% 12.36% 9 3 6.67% - Sample-measurand combination : smoked black pepper - BBF - <td< td=""></td<>
BAP SMPEPPER GC-HRMS 14.34 4.56% 12.36% 9 3 6.67% - Sample-measurand combination : smoked black pepper - BBF Image: SMPEPPER BBF SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER GC-MS(MS) 18.71 4.85% 31.05% 64 23 51.11% BBF SMPEPPER GC-HRMS 18.33 1.86% 11.00% 9 3 6.67%
Image: Constraint of the state of
BBF SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER GC-MS(MS) 18.71 4.85% 31.05% 64 23 51.11% BBF SMPEPPER GC-HRMS 18.33 1.86% 11.00% 9 3 6.67%
BBF SMPEPPER HPLC 18.17 7.37% 45.07% 54 19 42.22% BBF SMPEPPER GC-MS(MS) 18.71 4.85% 31.05% 64 23 51.11% BBF SMPEPPER GC-HRMS 18.33 1.86% 11.00% 9 3 6.67%
BBF SMPEPPER GC-MS(MS) 18.71 4.85% 31.05% 64 23 51.11% BBF SMPEPPER GC-HRMS 18.33 1.86% 11.00% 9 3 6.67%
BBF SMPEPPER GC-HRMS 18.33 1.86% 11.00% 9 3 6.67%
127 45 100.0
- Sample-measurand combination : smoked black pepper - CHR
CHR SMPEPPER HPLC 40.06 6.95% 64.72% 51 18 40.00%
CHR SMPEPPER GC-MS(MS) 44.54 2.93% 27.21% 65 24 53.33%
CHR SMPEPPER GC-HRMS 46.82 2.80% 23.11% 9 3 6.67%
- Sample-measurand combination : smoked black peoper - SUM4PAHS
SUM4PAHS SMPEPPER HPLC 109.16 6.81% 58.00% 34 12 27.27%
SUM4PAHS SMPEPPER GC-MS(MS) 113.83 2.81% 19.30% 40 16 36.36%
SLIMAPAHS SWPEPPER CC-HEMS 115.05 2.46% 15.26% 9 3 6.8%

Table	5.	Statistical	parameters	depending	on	applied	analysis	technique
-------	----	-------------	------------	-----------	----	---------	----------	-----------

Inconsistencies were still observed in the number of significant figures of reported measurement results and associated uncertainties. The EURL PAH will address this issue again at the coming workshop as a harmonised way of reporting results makes part of the proper implementation of EU legislation.

In general NRLs performed better than non-NRLs, not only in terms of z- and zetascores but also for their reasonable measurement uncertainty statements (Fig.2)

5.4 Additional information extracted from the questionnaire

Additional information was gathered from the questionnaire filled in by the participants (ANNEX 9). Data is presented as reported.

36% of the participants did not have yet experience with the determination of PAHs in herbs and spices and especially not with smoked black pepper, as this food category was regulated very recently only. Almost half of the participants used non validated/verified methods.

From the rest of the participants, seventeen were already accredited for the category herbs and spices and used validated method, but half of them did not have experience with black pepper as matrix. Detailed analysis of the individual results reported by this more experienced group of participants showed a significantly higher percentage of satisfactory performance ratings (80 % satisfactory z-scores) compared to less experienced laboratories, reaching 90 % of z-scores less than an absolute value of three.

Nine participants prepared their calibration solutions in the laboratory from neat compounds, while the rest used commercial standard mixtures in solvent. No significant difference was noticed between the results of both populations.

5.5 Compliance assessment

As important as the correct analysis of the test sample is the interpretation of results. The assigned analyte contents of the smoked black pepper test material exceeded the maximum level specified for BAP and the sum of four PAHs as laid down in the Commission Regulation (EU) No 2015/1933. The respective maximum levels (ML) for BAP and for the sum of the four PAHs are 10.0 μ g/kg and 50.0 μ g/kg.

The EURL asked the participants in this study to assess, based on their analysis results, the compliance of the sample with the current legislative limits. Figure 5 presents the distribution of the reported results with associated uncertainties for BaP and the sum of four PAHs in relation to the maximum levels defined in legislation (indicated by red lines).

The decision criterion for non-compliance is specified in Commission Regulation (EC) No 333/2007 [7]. A lot or sub-lot shall be rejected if the content value of this lot or sub-lot is beyond reasonable doubt above the respective maximum level given in legislation, taking into account the expanded measurement uncertainty and correction for recovery. This translates in a content value that is derived from the measured and recovery corrected content value by subtraction of the expanded uncertainty (k=2). This situation is provided in Figure 6 if the lower end of the error bar (representing the expanded measurement uncertainty) associated with the reported result (black dot) is above the red line.

Thirty laboratories out of 42 assessing compliance with legislative limits, classified the test sample correctly as non-compliant. Twelve laboratories classified the sample as compliant. Amongst them were 3 laboratories (139, 215, 243), for which the conclusion was technically correct, due to their biased results. Five participants (101, 129, 133, 140, 142) did not reply to the questionnaire and another two (215, 243) classified the sample as compliant without having value for one or the two regulated parameters (BaP and the SUM4PAHs).

Due to the high analyte contents of the test sample, which exceeded the MLs significantly, around 71 % of the participants, who replied to the questionnaire, assessed the compliance of the test sample with EU legislation correctly. However the conclusions drawn by four participants (136, 144, 212 and 238) lack scientifically a solid basis. As a consequence, a lot of attention will be paid in future to the interpretation of the analytical results.

The solid red lines represent the current maximum levels (MLs) of $10.0 \mu g/kg$ for BAP and $50.0 \mu g/kg$ for the sum of four PAHs respectively.

6. Follow-up actions for underperforming laboratories

All laboratories that got "questionable" or "non-satisfactory" performance ratings (z-scores) are urged to perform root cause analysis, and to implement corrective actions.

The EURL will set up follow-up measures in due time for all NRLs that received for at least one of the four PAHs (BAA, BAP, BBF, and CHR) z-scores > |3| as required by Regulation (EC) 882/2004, and by the "Protocol for management of underperformance in comparative testing and/or lack of collaboration of National Reference Laboratories (NRLs) with European Union Reference Laboratories (EURLs) activities". These laboratories shall perform as an immediate action root-cause-analysis, and shall report to the EURL PAH in writing the identified cause for their underperformance as well as the corrective actions that they are going to take. A repetition of this PT is envisaged for the near future.

Conclusion

Forty six participants reported analysis results. The performance of most participants was satisfactory. More than 66 % of the results reported by NRLs and OCLs respectively obtained satisfactory performance ratings. The, compared to previous PTs, rather lower rate of successful performance might be attributed to the complexity of the matrix, and the fact that more than a half of the participants did not have prior experience with it.

The great majority of participants in this inter-laboratory comparison applied analytical methods which, with regard to performance characteristics, were compliant with EU legislation. However, some participants are urged to improve in this respect.

References

- 1 EU, Regulation (EC) No 776/2006 the European Parliament and of the Council of 23 May 2006 amending Annex VII to Regulation (EC) No 882/2004 of the European Parliament and of the Council as regards Community reference laboratories. Official Journal of the European Union, 2006. L 136: p. 3-8. Available from: <u>http://eurex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006: 136:0003:008:EN: PDF</u>
- 2 EU, Regulation (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules. Official Journal of the European Communities, 2004. **L191**: p. 1-52. Available from:

http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:191:0001:0052:en:pdf

- 3 EU, Opinion of the Scientific Committee on Food on the risks to human health of Polycyclic Aromatic Hydrocarbons in food. (2002). Available from: <u>http://europa.eu.int/comm/food/fs /sc/scf/out153 en.pdf</u>
- 4 IARC. Overall Evaluations of Carcinogenicity to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to humans (2006). Available from: http://monographs.iarc.fr/ENG/Classification/ crthgr01.php
- 5 EU, Commission Recommendation (2005/108/EC) of 4 February 2005 on the further investigation into the levels of polycyclic aromatic hydrocarbons in certain foods. Official Journal of the European Union, 2005. L 34: p. 43-45. Available from: 5<u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:034: 0043</u>:0045:EN:PDF
- 6 EFSA, Polycyclic Aromatic Hydrocarbons in Food, Scientific Opinion of the Panel on Contaminants in the Food Chain, (Question N° EFSA-Q-2007-136), Adopted on 9 June 2008, <u>http://www.efsa.Europa eu/sites/</u>
- 7 EU, Commission Regulation (EC) No 835/2011 of 19 August 2011, amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, 2006. L 215: p. 4-8. Available from: <u>http://eur-lex.europa.eu/ LexUriServ/LexUriServ.do?uri=OJ:L:2011 :215:</u> 0004:0008:EN:PDF
- 8 EU, Regulation (EU) No 836/2011 the European Parliament and of the Council of 19 August 2011 amending Regulation (EC) No 333/2007, laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium,

mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs: Official Journal of the European Union, 2011. **L 215**: p. 9-16 Available from <u>http://eur-lex.europa.eu/</u> LexUriServ/LexUriServ.do?uri=OJ:L:2011:215: 0009:0016:EN:PDF

- 9 Commission Regulation (EU) 2015/1933 of 27 October 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in cocoa fibre, banana chips, food supplements, dried herbs and dried spices <u>http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R</u> <u>1933&from=EN</u>
- 10 ISO/IEC 17043:2010. "Conformity assessment General requirements for proficiency testing providers". Geneva, Switzerland
- 11 ISO 13528:2015 "Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons", issued by International Organisation for Standardisation, Geneva, Switzerland
- 12 WI-D-0607 Determination of 4 EU target PAHs in fatty food matrices by pressurized liquid extraction, size-exclusion chromatography followed by solid phase extraction clean-up and gas-chromatography with mass-spectrometric detection, EURL PAH
- 13 PROLab, Software for PT programs and collaborative studies; <u>http://quodata.de/en</u> /software/for-interlaboratory-tests.html
- 14 IUPAC International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories. <u>http://www.iupac.org/publications/pac/2006/pdf/7801x</u> 0145.pdf
- 15 Evaluation of measurement data Guide to the expression of uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections)

List of abbreviations and definitions

BAA -	Benz[a]anthracene							
BAP -	Benzo[<i>a</i>]pyrene							
BBF -	Benzo[b]fluoranthene							
CHR -	Chrysene							
EC -	European Commission							
EFSA -	European Food Safety Authority							
EU –	European Union							
EURL PAH -	European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons							
ILC –	Inter-laboratory comparison							
IRMM -	Institute for Reference Materials and Measurements							
ISO	International Organisation for Standardisation							
IUPAC	International Union for Pure and Applied Chemistry							
JRC -	Joint Research Centre							
LOD -	Limit of Detection							
LOQ -	Limit of Quantitation							
ML -	Maximum level							
NIST	National Institute of Standards and Technology							
NRL -	National Reference Laboratory							
OCL -	Official food control laboratory							
PAHs -	Polycyclic aromatic hydrocarbons							
PT -	Proficiency test							
SUM4PAH-	Sum of the four markers PAHs							

21

List of figures

Figure 1: Histogram of z- and zeta-scores for the contents of BAA, BAP, BBF, CHR, and the SUM4PAH

Figure 2 Percentage/number (label on bars) of laboratories with satisfactory (green), questionable (yellow) and unsatisfactory performance (red)

Figure 3: Graphical presentation of z- and zeta-scores corresponding to the "final values for proficiency assessment" reported by the NRLs for the contents of BAA, BAP, BBF, CHR, and the SUM4PAH parameter in the smoked black pepper test material.

Figure 4: Graphical presentation of z- and zeta-scores corresponding to the "final values for proficiency assessment" reported by the OCLs for the contents of BAA, BAP, BBF, CHR, and the SUM4PAH parameter in the smoked black pepper test material.

Figure 5. Distribution of the results reported by the participants and the associated expanded measurement uncertainties for BaP and the SUM PAHs in relation to the MLs.

List of tables

Table 1: Names and structures of the four EU marker PAHs.

Table 2: List of participating National Reference Laboratories

Table 3: List of participating Official Food Control Laboratories

Table 4: Assigned values and their associated expanded uncertainties (k=2) for the smoked black pepper test item, expressed based on mass of the entire product (on product basis).

Table 5: Statistical parameters depending on applied analysis technique

ANNEXES

- ANNEX 1 Announcement of the PT on the IRMM webpage
- ANNEX 2 Announcement via e-mail and invitation
- ANNEX 3 Registration form
- ANNEX 4 Announcement of material dispatch
- ANNEX 5 Documents sent to participants
- ANNEX 6 Technical specifications of the calibration solutions
- ANNEX 7 Homogeneity of the test material
- ANNEX 8 Stability test of the test material
- ANNEX 9 Questionnaire and answers from the participants
- ANNEX 10 Method performance LOD and LOQ
- ANNEX 11 Data reported by participants

ANNEX 1: Announcement of the PT on the IRMM webpage

100 March 100 Ma					
1. A. D. S.	JOINT RESEARCH CENTRE				
European Commission	The European Co	ommission's science and knowledge service			
European Commission 3 IBC Science Hub 3 K	oviedos 3 Reference & messur	ement 5 Interlationation: comparisons 5 EU-8L 2016 PT PAU in smoked papper			
About us Research	Koowledge Worki	no with us. News & events. Our Institutes. Our Communities			
		A nue di Stata N nere			
		A MUE IN AND IN 193			
Knowledge	< Go back to the list				
Reference & measurement	EU-RL 2016	PT PAH in smoked pepper			
Selected publications					
Measurements matter 😤 European Union Reference	Description	Octormination of 4 marker PAHs in amoked popper			
Laboratorica	Status	Registration Open			
comparisons	Year	2016 Proficiency Test			
All comparisons ×	Perticipation	Reatricted			
IMEP ×	Contect	Jrefirmmeurl-pah@cc.curopa.cu			
REIMER H	IL category	Other			
Reference Materials (RM) H	More	The European Union Reference Laboratory for Polycydic Aromatic Hydrocarbona organiaes a proficiency test on the determination of 4 marker PAHs (see Table 1) in			
Scientific tools & detebeses		amoked pepper.			
Training		The expective of this study is to evaluate the expedilities of European National Reference Laboratories (NRLs) and Official Food Control Laboratories (OCLs) in the			
Publications		determination of the target analytes and their sum in smoked pepper.			
Patenta & technologies		Participation is admitted to maximum \$0 official fand entrol laboratories which will			
Photos		accepted in the order of registration.			
Videos		Perficipation is free of charge for NRLs for PAHs.			
		The participation fee is EUR 450 (four hundred fifty hundred) per registration for GC which do not have NRL status			
		Test material and analytes			
		The test sample for the determination of the EU marker PAHs will consist of an amber place vial containing about 22 p of homeopoland ample if access newler test sample.			
		Bons[a]antBracono (BaA)			
		benzo[b]fluoranthene (BbP)			
		benzo[a]pyrene (5aP)			
		chrysone (CHR)			
		Sum of the four marker PAHs			
		to addition, participants will get an amount with a volution of RAHs with dividented			
		analyte content, in, depending on their preference, either acctonitrile or toluene. This			
		actuation will be supplied to allow the participants verifying their instrument celibratio against an independent standard.			
		General outline			
		Participants are requested to perform three <u>independent</u> analyses of each sample. These analyses shall be performed on the same day. Participants have to report the results for individual analytes of the replicate analyses. These results have to be respected corrected for remover.			
		Participants will be also asked to report a single value for scoring, the "final value",			
		both for the individual analytes as well as for the sum of the four marker PAHs. Thes results will have to be reported accompanied by the respective measurement.			
		uncertainty.			
		Purfiler details will be communicated to participants at a later stage.			
		The performance of the performants in the determination of 21Ms in worked must will			
		be rated by statores and seta-scores.			
		The standard deviations for proficiency assessment will be derived:			
		 For the four individual target analytes, from the fitness-for-purpose function give in Commission Regulation (EC) No 333/2007, assuming a value of 0.3 works for 			
		the limit of detection. * For their sum, from the set values of the individual analytes, applying the law of			
		uncertainty propagation.			
	Registration URL	https://cc.curopa.cu/cusurvcy/runner/2016_PT_smoked_pepper			
	Registration	Monday, 22 Pebruary 2016			
	Semple dispetch	Second half of March 2016			
	Reporting of results	4 weeks after dispatch			
	Report to perticipents	August 2016			
	Kaunarda	fa=A/fa=A			
	Reference	EURL for polycyclic aromatic hydrocarbona			
	leboratories				

ANNEX 2: Announcement of the PT via e-mail

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons

> Geel, 01/02/2016 Ref. Ares(2016) 637851

Inter-laboratory comparison on the determination of four EU marker PAHs in smoked pepper

Dear Madam/Sir,

Registration for participation in the inter-laboratory comparison study organised by the EURL PAH on the determination of the 4 marker PAHs in smoked pepper is open until 22th February 2016.

Participation is mandatory and free of charge for National Reference Laboratories (NRLs) for PAHs. Confidentiality of data is granted.

In support to the NRLs, and to facilitate fulfilling their tasks as defined in Regulation (EC) No 882/2004, EU Official Food Control Laboratories (OCLs) falling under the responsibility of the NRLs may participate in the study. <u>The participation fee for official food control laboratories</u> is 450 Euro per participation.

The target analytes are listed in the following Table.

benz[a]anthracene (BaA)				
benzo[b]fluoranthene (BbF)				
benzo[<i>a</i>]pyrene (BaP)				
chrysene (CHR)				
SUM of the 4 marker PAHs				

Results have to be reported corrected for recovery and accompanied by the respective measurement uncertainty for both the individual PAHs and the sum of the four marker PAHs. Additionally participants will be asked to perform compliance assessment according to the corresponding legislative limits

Each participant will be provided with an amber glass vial containing approximately 22 g of smoked pepper test sample

Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211 Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-imm-eurl-pah@ec.europa.eu Web site: http://imm.jrc.ec.europa.eu Participants will also receive a standard solution in either acetonitrile or toluene with disclosed content; which may be used for verification of instrument calibration.

This inter-laboratory comparison is organised under accreditation to ISO 17043.

Detailed information will soon be available on the EURL website:

http://irmm.jrc.ec.europa.eu/EURLs/EURL_PAHs/interlaboratory_comparisons/Pages/inde x.aspx

Timing:

- Deadline for registration: 22th February 2016
- Dispatch of samples: second half of March. A detailed outline of the study will be included in the parcels. Participants will be asked to return a sample receipt to the organiser
- Deadline for reporting of results: 4 weeks after the dispatch of the samples.

Registration procedure:

You are invited to register via following link: <u>https://ec.europa.eu/eusurvey/runner/2016_PT_smoked_pepper</u>

PT coordinator	Second contact
Stefanka Bratinova	Thomas Wenzl
Fax: 0032-14-571783 e-mail: <u>irc-irmm-eurl-pah@ec.europa.eu</u>	

Participants are invited to indicate the preferred solvent type of the standard solution (either toluene or acetonitrile) in the Registration Form as well as any justify additional requests.

Distribution of information:

The NRLs are kindly requested to distribute as soon as possible this information and the link to the Registration form to the OCLs under their responsibility, and to assist the EURL in identifying laboratories that are eligible to participate in the study.

Access of NRLs to performance data of official food control laboratories:

Two options:

1) NRL enrols OCLs and covers participation fee.

The NRL submits to the EURL a list of participants including name and address of laboratory, and details of the contact person (name, address - <u>no post box!</u> - email and telephone number). The coverage of the participation fees must be confirmed and details for invoicing (e.g. order number) have to be provided. It shall be made clear, that the full participation fee is payable upon dispatch of the test samples. In return,

2

Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211 Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-imm-eurl-pah@ec.europa.eu

Web site: http://imm.jrc.ec.europa.eu

2) The OCL (identified as such by the respective NRL) enrols itself in the inter-laboratory comparison and covers the participation fee. The NRL will get access to performance data of the OCL only upon providing to the EU-RL for PAHs a letter of consent.

Should you require further clarification, please do not hesitate to contact the EURL team via:

JRC-IRMM-EURL-PAH@ec.europa.eu

With kind regards,

Stefanka Bratinova

Cc: Thomas Wenzl, Beatriz de la Calle, Franz Ulberth

Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211 Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-irmm-eurl-pah@ec.europa.eu

Web site: http://irmm.jrc.ec.europa.eu

3

ANNEX 3: Registration form

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons

> Geel, 01/02/2016 Ref. Ares(2016) 637851

Inter-laboratory comparison on the determination of four EU marker PAHs in smoked pepper

Dear Madam/Sir,

Registration for participation in the inter-laboratory comparison study organised by the EURL PAH on the determination of the 4 marker PAHs in smoked pepper is **open until 22th February 2016**.

Participation is mandatory and free of charge for National Reference Laboratories (NRLs) for PAHs. Confidentiality of data is granted.

In support to the NRLs, and to facilitate fulfilling their tasks as defined in Regulation (EC) No 882/2004, EU Official Food Control Laboratories (OCLs) falling under the responsibility of the NRLs may participate in the study. <u>The participation fee for official food control laboratories is 450 Euro per participation</u>.

The target analytes are listed in the following Table.

benz[a]anthracene (BaA)
benzo[b]fluoranthene (BbF)
benzo[a]pyrene (BaP)
chrysene (CHR)
SUM of the 4 marker PAHs

Results have to be reported corrected for recovery and accompanied by the respective measurement uncertainty for both the individual PAHs and the sum of the four marker PAHs. Additionally participants will be asked to perform compliance assessment according to the corresponding legislative limits

Each participant will be provided with an amber glass vial containing approximately 22 g of smoked pepper test sample

Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211 Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-imm-eurl-pah@ec.europa.eu Web site: http://imm.jrc.ec.europa.eu Participants will also receive a standard solution in either acetonitrile or toluene with disclosed content; which may be used for verification of instrument calibration.

This inter-laboratory comparison is organised under accreditation to ISO 17043.

Detailed information will soon be available on the EURL website:

http://irmm.jrc.ec.europa.eu/EURLs/EURL_PAHs/interlaboratory_comparisons/Pages/inde x.aspx

Timing:

- Deadline for registration: 22th February 2016
- Dispatch of samples: second half of March. A detailed outline of the study will be included in the parcels. Participants will be asked to return a sample receipt to the organiser
- Deadline for reporting of results: 4 weeks after the dispatch of the samples.

Registration procedure:

You are invited to register via following link: https://ec.europa.eu/eusurvey/runner/2016 PT smoked pepper

Stefanka Bratinova

PT coordinator

Second contact

Fax: 0032-14-571783 e-mail: jrc-irmm-eurl-pah@ec.europa.eu

Participants are invited to indicate the preferred solvent type of the standard solution (either toluene or acetonitrile) in the Registration Form as well as any justify additional requests.

Distribution of information:

The NRLs are kindly requested to distribute as soon as possible this information and the link to the Registration form to the OCLs under their responsibility, and to assist the EURL in identifying laboratories that are eligible to participate in the study.

Access of NRLs to performance data of official food control laboratories: Two options:

- 1) NRL enrols OCLs and covers participation fee.
 - The NRL submits to the EURL a list of participants including name and address of laboratory, and details of the contact person (name, address <u>no post box!</u> email and telephone number). The coverage of the participation fees must be confirmed and details for invoicing (e.g. order number) have to be provided. It shall be made clear, that the full participation fee is payable upon dispatch of the test samples. In return, the 111 Br340 Geel, Belvium Telephore (32:16) 77(21)

Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211 Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-imm-eurl-pah@ec.europa.eu

Web site: http://imm.jrc.ec.europa.eu

ANNEX 4: Announcement of material dispatch

ANNEX 5: Documents sent to participants - OUTLINE and REPORTING INSTRUCTIONS

EUROPEAN COMMISSION

DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons

Geel, 04 March 2016

EURL-PAH 2016 PT- PAHs in smoked pepper

Dear Madame/Sir,

The inter-laboratory comparison study organised by the EU-RL PAHs on the determination of four EU marker PAHs in smoked pepper starts with the dispatch of the samples.

The target analytes are the four EU marker PAHs (benzo[a]pyrene, benzo[b]fluoranthene, benz[a]anthracene, chrysene) and their sum. The participants are requested to report results on all of them.

Each participant is provided with amber glass vials containing a portion of smoked pepper, naturally contaminated with PAHs and a known standard solution in either toluene or acetonitrile for checking of the instrument calibration against an external reference.

Outline of the study.

The participating laboratories shall apply for the analyses a method of their choice.

The laboratories shall report the results by <u>22nd April 2016 at the latest</u> following the instructions provided further on in this document.

The participants are requested to report the results obtained from three replicate analyses. They also have to report a final value for proficiency assessment. Results have to be reported corrected for recovery and the results for proficiency assessment ("final values") have to be accompanied by the respective measurement uncertainty (also for the sum parameter).

Additionally participants are asked to perform compliance assessment according to the CURRENT legislative limits.

Participants are also requested to report together with the results details of the applied analysis method and some method performance characteristics.

Test material and analytes

 One 60 ml amber vial, labelled as <u>"EU-RL PAHs PT 2016 Interlaboratory comparison, 4 EU PAHs in smoked</u> <u>black pepper</u>" containing > 20 g of a naturally contaminated homogenised smoked black pepper. The analyte content shall be determined in <u>triplicate</u>. The participants have to report to the EU-RL besides the individual results of the replicate analyses also one value, on which they would like their performance to be assessed. This value is called on the reporting file "final value".

Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211. http://imm.jrc.ec.europa.eu Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-irmm-crl-pah@ec.europa.eu

If not analysed immediately after receiving, please store the smoked black pepper sample in the refrigerator, protected of light.

2. Depending on your preference, one ampoule, labelled as "PAH4 in acetonitrile", or "PAH4 in toluene", with about 1 ml of a solution of 4 EU priority PAHs in acetonitrile, respectively toluene. The analyte concentration of your preferred solution is given in the attached document. The solutions may be used by the participants to check their instrument calibration against an independent reference. Participants do not have to report results for this solution.

Please bear in mind that the solutions <u>do not contain any internal standard</u>. The standard solution in acetonitrile contains small amounts of toluene, which stem from the preparation of stock solution from neat materials.

Reporting the results

Data generated by the participants will be collected by using software RingDat, supplementary to ProLab software, used until now for professional data handling and statistical analyses of interlaboratory tests results. You will receive by mail some files for reporting results. You should follow the following instructions:

1. If not available already, please download the data entry program RingDat free from the QuoData web page using following link: <u>http://quodata.de/fileadmin/RingDat/ringdat4_en.exe</u>

User: ringdat Password: prolabdata

 Save to the same folder the two lab specific files with the extension "*.LAB" and "*.LA2", generated by the ProLab software and provided to each laboratory individually (personal files) by mail.

3. Start the RingDat.exe program and open "*.LAB" file for reporting the results. A table will appear with cells for every measurand/sample combination

- the name of each laboratory is codified by the software,
- The "*.LA2" file contains information about the participant laboratory name and laboratory code;
- The "*.LAB" file is unique to each laboratory (personal) and contains information about the samples and measurands, that have to be analysed and reported.
- First tab contains the detailed information for the laboratory
 Second tab. contains table for optimizing the provide Yeu could
- Second tab contains table for entering the results. You could filter the entries by sample or by measurand. The cells marked with red are mandatory to be filled
- Third tab contains a general questionnaire.

4. Fill in the result table with your data.

Open Elove	data 💙	Finish input		Phatacol	💡 Help 📑	Piogramin	Update					
b detaily Measured val	keen Queenfor	n and Annymers										
est 2016 PT P	AH in sm	oked blac	ik pop	por								
Sample Name 🔫	Measured -	Description -	Unit •	Analytical method	 Final Val 	e Vaher 1	Value 2 Value 3	NU (abc)	Coverage Factor k	Linit of detection (LOD), µg kg-1	Limit of quantification (LDQ), µg kg-1	
3 Sample Name -	Measurand _	Description -	Unit	Analytical method	 Final Vak 	er Vahær 1 V	Value 2 Value 3	MU (abc)	Coverage Factor k	Linit of detection (LCD), µg kg-1	Limit of quantification (LDQ), µg kg-f	
3 Sample Name -	Measurand - 844 84P	Description _ 844 84P	Unit _ µg%g	Analytical method	 Final Val 	e Value 1	Value 2 Value 3	MU (abc)	Coverage Factor k	Linit of detection (LOD), µg kg/t	Limit of quantification (LDQ), µg kg-1	
3 Sample Name -	Meanuard 844 84P 88F	Description - 844 84P 88F	Unit _ Lipiko Lipiko Lipiko	Analytical method	 Final Val 	e Vaker 1 V	Value 2 Value 3	MU (abc)	Eoverage Factor k	Linit of detection (LCO), µg kg-1	Limit of quantification (LDQ), µg kg-1	
Sample Name omaked black pepper smaked black pepper omaked black pepper smaked black pepper	Measurand _ 844 84P 88F CHR	Description _ BAA BAP BIF CHB	Unit Loho Loho Loho Loho	Analytical method	 Final Vak 	e Value 1	Value 2 Value 3	MU (abc)	Coverage Factor k	Linit of detection (LCO), µg kg-1	Limit of quantification (LDQ), µg kg-f	

5. Afterwards, please fill in the questionnaire on the next tab.

io. 6	Question	Answer
1	Did you have previous experience with the analysis of spice and herbs?	O No O Yes
2	How many spice and herb samples have you analysed in the past lew years?	
3	Did you apply standardised method for the lanalysis of the 4 PAHs in the test sample?	C No C Yes
4	Which method for PAH analysis did you used	
5	Did you have deviations from the standardised method?	No Yes
6	II YES, please specily	
7	Is your method verified Availabled for herb and spices metrices and which?	
9	Are you accredited for analysis of PAHs in herb and spices?	⊖ No ⊝ Yes
9	What kind of calibrants did you use?	 laboratory prepared from reat substance pure/seed mix in solvent
10	What is your sample intake in gram?	
11	Did you experience problem during analysi s?	
12	Did you experience problems during reporting?	
13	Is the test sample compliant with the CURRENT legislative meximum levels [NLs]?	© No ⊙ Yes
14	ûnviremerks, comments, sundestions	

6. After finishing the input, save the file using the button on the top menu of the window. You could change the inputs after saving the file as long as you haven't pushed "Finish input" button. At the end finalise the data entry by pushing the "Finish input" button.

7. Send both the "*.LAB" and "*.LA" files back to us by e-mail on our functional mail box - <u>irc-irmm-eurl-pah@ec.europa.eu</u>

8. If you want to correct some of your entries after finishing the input, you should use the original *.LAB file downloaded from the mail.

In case of questions, please do not hesitate to contact us.

With kind regards,

Stefanka Bratinova EURL-PAHs

SAMPLE RECEIPT

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons

PROFICIENCY TESTING MATERIAL RECEIPT FORM

2016 PT- PAHs in smoked black pepper

Contact person	
Affiliation	
City, Country	

Content of the parcel

- 1. One 60 ml amber glass vial containing about 20 g of smoked black pepper
- 2. One 2 ml amber glass ampule, containing about 1 ml of 4 markers PAHs in solvent
- 3. PAH standard solution specification sheet
- 4. Solvent safety data sheet
- One sample receipt form (= this form), which is e-mailed as well to be filed and send electronically

IF NOT ANALYSED IMMEDIATLY AFTER RECEIVING THE PARCEL, PLEASE PUT THE TEST SAMPLES IN THE REFRIGERATOR.

Please ensure that the items listed below have been received undamaged, and then describe the relevant statement:

Date of the receipt of the test materials	
All items have been received undamaged	YES / NO
If NO, please list damaged items	

Please return the completed form to

Stefanka Bratinova

ANNEX 6: Technical specifications of the calibration solutions

ACETONITRILE SOLUTION

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons

Geel, 24/02/2016

Standard solution specification sheet	PAH4 in ACETONITRILE
Date of production: 18/02/2016	Total volume: 1 mL
Expiry date: August 2016	

TOLUENE SOLUTION

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons

Geel, 24/02/2016

Standard solution specification sheet	PAH4 in TOLUENE
Date of production: 18/02/2016	Total volume: 1 mL
Expiry date: August 2016	

Standard solution composition:

	Product name	CAS	Conc.*	Conc.*	U**
			(ng/g)	(ng/mL)	± %
1	Benz[a]anthracene	56-55-3	64.3	50.6	0.3
2	Benzo[a]pyrene	50-32-8	64.2	50.5	0.4
3	Benzo[b]fluoranthene	205-99-2	64.0	50.3	0.5
4	Chrysene	218-01-9	64.9	51.1	0.4
5	SUM PAH4		257.4	202.4	0.9

* The concentrations were calculated taking into account the purity statements of the single products. The concentration values are based on the gravimetrical preparation data.

** U is the expanded uncertainty calculated by multiplying the combined standard uncertainty with the coverage factor 2 (corresponding to a confidence level of 95%). The standard uncertainty is equal to the square root of the sum of the squares of the uncertainties associated with each single operation involved in the preparation of this standard solution.

Solvent: Acetonitrile:Toluene (m/m 99.4:0.6)

Standard solution composition:

	Product name	CAS	Conc.*	Conc.*	U**
			(ng/g)	(ng/mL)	± %
1	Benz[a]anthracene	56-55-3	58.0	50.3	0.3
2	Benzo[a]pyrene	50-32-8	57.8	50.1	0.4
3	Benzo[b]fluoranthene	205-99-2	57.6	50.0	0.5
4	Chrysene	218-01-9	58.5	50.7	0.4
5	SUM PAH4		232.0	201.1	0.9

* The concentrations were calculated taking into account the purity statements of the single products. The concentration values are based on the gravimetrical preparation data.

** U is the expanded uncertainty calculated by multiplying the combined standard uncertainty with the coverage factor 2 (corresponding to a confidence level of 95%). The standard uncertainty is equal to the square root of the sum of the squares of the uncertainties associated with each single operation involved in the preparation of this standard solution.

Solvent: Toluene

Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211 Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-irmm-eurl-pah@ec.europa.eu Web site: http://irmm.jrc.ec.europa.eu Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211 Telephone: direct line (32-14) 571 320. Fax: (32-14) 571 783.

E-mail: jrc-irmm-eurl-pah@ec.europa.eu Web site: http://irmm.jrc.ec.europa.eu

ANNEX 7: Homogeneity of the smoked black pepper test material

	n	= 10							
	mean	= 34.457	2 20%	= σ-trg((%)				
0.17978	22 s ,	= 0.4240	1 6.8914	3 = σ-trg					BaA
√MSW	/ =	= 1.0280	8						
	 	= 0.5905	1 2 0674	$3 = 0.3*\sigma$		1	713738000	3	
	S _S	- 0.5505	1 2.0074.	<u> </u>		1.	/15/50005	'	
	ISO-135	28 passe	d						
	100 100								
	F	= 0.3401	9 3.0203	8 = Fcrit					
		passe	d						
	IUPAC								
	(MSB-MSW)	/2 -0.348	7 9.1031	5 = F1*(0)	,3*σ) ² +F2*	MSW			
		passe	d						
						-			
Bottle	Result a	Result b	o diff	sum	avg	26.50			
Ampoule 0	8 32.60	35.13	-2.5	67.7	3 33.87	36.00			
Ampoule 1	4 34.18	36.31	-2.1	13 70.4	9 35.25	35.50	, 	_	
Ampoule 2	2 33.92	35.09	-1.1	<u>17 69.0</u>	1 34.51	35.00	, 		
Ampoule 3	9 34.04	35.44	-1.4	40 69.4	8 34.74	34.50)		• •
Ampoule 4	3 33.84	33.99	-0.1	67.8	2 33.91	34.00) + +	+ <u>-</u> .	
Ampoule 5	4 33.90	35.11	-1.2	21 69.0	0 34.50	33.50)	• •	─── ◆ <mark>↓</mark>
	7 34.30 3 34.03	34.32	0.0	18 69.6	8 34.34	33.00)		
Ampoule 8	<u> </u>	34.73	-1 1	12 68.2	8 34 14	32.50	, 🕂 🔶 —		
Ampoule 9	5 35.50	33.46	2.0	03 68.9	6 34.48	32.00		4 6	8 10
							0 2	4 0	0 10
		$\Sigma(diff)^2$	= 21.139	2					
	v	ar(sum)/2	=	0.3595	6 =MSB				
	·	10							
	n =	20 7915	2004	-a + ra(0)	(-)				
0 70527	mean –	39.7613	20%	= 0-tig(%	0)				СНР
0.78537	s _x =	0.88621	7.9563	= o-trg					CIIK
VMSW =	s _w =	1.3061							
	s _s =	0.25994	2.38689	= 0,3 *σ		0.6	53420757		
	ISO-13528	passed							
	_								
	F =	0.92078	3.02038	= Fcrit					
	F =	0.92078 passed	3.02038	= Fcrit					
(M	F =	0.92078 passed	3.02038	= Fcrit	*-12+52*1	AC14/			
(M	F = IUPAC ISB-MSW)/2	0.92078 passed -0.0676	3.02038 12.4338	= Fcrit = F1*(0,3	*σ) ² +F2*N	1SW			
(M	F = IUPAC ISB-MSW)/2	0.92078 passed -0.0676 passed	3.02038 12.4338	= Fcrit = F1*(0,3	*σ) ² +F2*N	1SW			
(M	F = IUPAC ISB-MSW)/2	0.92078 passed -0.0676 passed	3.02038 12.4338	= Fcrit = F1*(0,3	*σ) ² +F2*N	1SW			
(M Bottle	F = IUPAC SB-MSW)/2 Result a	0.92078 passed -0.0676 passed Result b	3.02038 12.4338 diff	= Fcrit = F1*(0,3 sum	*σ) ² +F2*N avg	1SW			
(M Bottle Ampoule 08 Ampoule 14	F = IUPAC ISB-MSW)/2 Result a 36.70 39.32	0.92078 passed -0.0676 passed Result b 40.16 39.08	3.02038 12.4338 diff -3.46	= Fcrit = F1*(0,3 <u>sum</u> 76.85 78.40	*σ) ² +F2*N avg 38.43 39.20	43.00 - 42.00 -			
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22	F = IUPAC ISB-MSW)/2 Result a 36.70 39.32 38.88	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69	3.02038 12.4338 diff -3.46 0.23 -1.81	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57	*σ) ² +F2*N avg 38.43 39.20 39.79	43.00 - 42.00 - 41.00 -			
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39	F = IUPAC SB-MSW)/2 Result a 36.70 39.32 38.88 41.79	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68	43.00 - 42.00 - 41.00 -			
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43	F = IUPAC SB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57 39.94	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22 0.39	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68 40.13	43.00 - 42.00 - 41.00 - 40.00 -			
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54	F = IUPAC SB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33 39.63	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57 39.94 40.67	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22 0.39 -1.04	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27 80.29	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68 40.13 40.15	43.00 - 42.00 - 41.00 - 40.00 - 39.00 -			
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67	F = IUPAC ISB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33 39.63 38.40	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57 39.94 40.67 40.42	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22 0.39 -1.04 -2.02	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27 80.29 78.81	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68 40.13 40.15 39.41	43.00 - 42.00 - 41.00 - 39.00 - 38.00 -			
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 54 Ampoule 73	F = IUPAC SB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33 39.63 38.40 40.09	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57 39.94 40.67 40.42 40.17	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22 0.39 -1.04 -2.02 -0.08	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27 80.29 78.81 80.26	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68 40.13 40.15 39.41 40.13	43.00 - 42.00 - 41.00 - 39.00 - 38.00 - 37.00 -		*	
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 57 Ampoule 73 Ampoule 87	F = IUPAC SB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33 39.63 38.40 40.09 38.71	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57 39.94 40.67 40.42 40.17 41.23	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22 0.39 -1.04 -2.02 -0.08 -2.52	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27 80.29 78.81 80.26 79.94	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68 40.13 40.15 39.41 40.13 39.97	43.00 - 42.00 - 41.00 - 39.00 - 38.00 - 37.00 -	*		
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 54 Ampoule 73 Ampoule 87 Ampoule 95	F = IUPAC ISB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33 39.63 38.40 40.09 38.71 40.26	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57 39.94 40.67 40.67 40.42 40.17 41.23 37.59	3.02038 12.4338 12.4338 -3.46 0.23 -1.81 0.22 0.39 -1.04 -2.02 -0.08 -2.52 2.67	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27 80.29 78.81 80.26 79.94 _77.86	*σ) ² +F2*N <u>avg</u> <u>38.43</u> <u>39.20</u> <u>39.79</u> <u>41.68</u> <u>40.13</u> <u>40.15</u> <u>39.41</u> <u>40.13</u> <u>39.97</u> <u>38.93</u>	43.00 - 42.00 - 41.00 - 39.00 - 38.00 - 36.00 -			
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73 Ampoule 87 Ampoule 95	F = IUPAC ISB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33 39.63 38.40 40.09 38.71 40.26	0.92078 passed -0.0676 passed Result b 40.16 39.08 40.69 41.57 39.94 40.67 40.42 40.17 41.23 37.59	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22 0.39 -1.04 -2.02 -0.08 -2.52 2.67	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27 80.29 78.81 80.26 79.94 77.86	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68 40.13 40.15 39.41 40.13 39.97 38.93	43.00 - 42.00 - 41.00 - 39.00 - 38.00 - 36.00 -		4 6	
(M Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 87 Ampoule 95	F = IUPAC SB-MSW)/2 Result a 36.70 39.32 38.88 41.79 40.33 39.63 38.40 40.09 38.71 40.26	0.92078 passed -0.0676 passed 40.16 39.08 40.69 41.57 39.94 40.67 40.42 40.17 40.42 40.17 41.23 37.59 Σ(diff) ² =	3.02038 12.4338 diff -3.46 0.23 -1.81 0.22 0.39 -1.04 -2.02 -0.08 -2.52 2.67 34.1177	= Fcrit = F1*(0,3 sum 76.85 78.40 79.57 83.37 80.27 80.29 78.81 80.26 79.94 77.86	*σ) ² +F2*N avg 38.43 39.20 39.79 41.68 40.13 40.13 39.41 40.13 39.97 38.93	43.00 - 42.00 - 41.00 - 39.00 - 38.00 - 36.00 -		4 6	

	n =	10								
	mean =	16.9483	20%	= σ-trg(%	/o)					
0.11272	s _x =	0.33574	3.38967	= σ-trg					BbF	
√MSW =	s _w =	0.47155								
	s _s =	0.03931	1.0169	= 0,3 *σ		0.	23191101			
	ISO-13528	passed								
	F =	1.0139	3.02038	= Fcrit						
		passed								
	IUPAC									
(M	ISB-MSW)/2	0.00154	2.16866	= F1*(0,3)	[*] σ) ² +F2*I	MSW				
		passed								
	- ··									
Bottle	Result a	Result b	diff	sum	avg	40.50				
Bottle Ampoule 08	Result a 15.67	16.90	diff -1.22	sum 32.57	avg 16.29	18.50 -				
Bottle Ampoule 08 Ampoule 14	Result a 15.67 17.15	16.90 17.94	diff -1.22 -0.78	sum 32.57 35.09	avg 16.29 17.54	18.50 - 18.00 -				
Bottle Ampoule 08 Ampoule 14 Ampoule 22	Result a 15.67 17.15 16.22	Result b 16.90 17.94 17.04	diff -1.22 -0.78 -0.82	sum 32.57 35.09 33.27	avg 16.29 17.54 16.63	18.50 -	•			
BottleAmpoule08Ampoule14Ampoule22Ampoule39	Result a 15.67 17.15 16.22 17.03	Result b 16.90 17.94 17.04 17.22	-1.22 -0.78 -0.82 -0.19	sum 32.57 35.09 33.27 34.26	avg 16.29 17.54 16.63 17.13	18.50 - 18.00 - 17.50 -	•		•	
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43	Result a 15.67 17.15 16.22 17.03 16.80	Result b 16.90 17.94 17.04 17.22 16.89	diff -1.22 -0.78 -0.82 -0.19 -0.09	sum 32.57 35.09 33.27 34.26 33.69	avg 16.29 17.54 16.63 17.13 16.85	18.50 - 18.00 - 17.50 - 17.00 -	•	•		
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54	Result a 15.67 17.15 16.22 17.03 16.80 16.85	Result b 16.90 17.94 17.04 17.22 16.89 17.26	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41	sum 32.57 35.09 33.27 34.26 33.69 34.11	avg 16.29 17.54 16.63 17.13 16.85 17.06	18.50 - 18.00 - 17.50 - 17.00 -	•	• •		
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67	Result a 15.67 17.15 16.22 17.03 16.80 16.85 16.80	Result b 16.90 17.94 17.04 17.22 16.89 17.26 17.13	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41 -0.33	sum 32.57 35.09 33.27 34.26 33.69 34.11 33.93	avg 16.29 17.54 16.63 17.13 16.85 17.06 16.96	18.50 - 18.00 - 17.50 - 17.00 - 16.50 -	•	• •	•	
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73	Result a 15.67 17.15 16.22 17.03 16.80 16.85 16.80 17.45	Result b 16.90 17.94 17.04 17.22 16.89 17.26 17.13 16.94	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41 -0.33 0.51	sum 32.57 35.09 33.27 34.26 33.69 34.11 33.93 34.39	avg 16.29 17.54 16.63 17.13 16.85 17.06 16.96 17.20	18.50 - 18.00 - 17.50 - 17.00 - 16.50 - 16.00 -	•	• •	•	
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73 Ampoule 87	Result a 15.67 17.15 16.22 17.03 16.80 16.85 16.80 16.55	Result b 16.90 17.94 17.04 17.22 16.89 17.26 17.13 16.94 17.20	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41 -0.33 0.51 -0.65	sum 32.57 35.09 33.27 34.26 33.69 34.11 33.93 34.39 33.75	avg 16.29 17.54 16.63 17.13 16.85 17.06 16.96 17.20 16.87	18.50 - 18.00 - 17.50 - 17.00 - 16.50 - 16.00 -	•	• •	•	
BottleAmpoule 08Ampoule 14Ampoule 22Ampoule 39Ampoule 43Ampoule 54Ampoule 67Ampoule 73Ampoule 87Ampoule 95	Result a 15.67 17.15 16.22 17.03 16.80 16.85 16.80 17.45 16.55 17.36	Result b 16.90 17.94 17.04 17.22 16.89 17.26 17.13 16.94 17.20 16.55	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41 -0.33 0.51 -0.65 0.81	sum 32.57 35.09 33.27 34.26 33.69 34.11 33.93 34.39 33.75 33.91	avg 16.29 17.54 16.63 17.13 16.85 17.06 16.96 17.20 16.87 16.95	18.50 - 18.00 - 17.50 - 17.00 - 16.50 - 16.00 - 15.50 -	* * *	• • •	*	
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73 Ampoule 87 Ampoule 95	Result a 15.67 17.15 16.22 17.03 16.80 16.85 16.80 17.45 16.55 17.36	Result b 16.90 17.94 17.04 17.22 16.89 17.26 17.13 16.94 17.20 16.55	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41 -0.33 0.51 -0.65 0.81	sum 32.57 35.09 33.27 34.26 33.69 34.11 33.93 34.39 33.75 33.91	avg 16.29 17.54 16.63 17.13 16.85 17.06 16.96 17.20 16.87 16.95	18.50 - 18.00 - 17.50 - 17.00 - 16.50 - 16.00 - 15.50 -	• • •	• • • • •	8	
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 54 Ampoule 73 Ampoule 87 Ampoule 95	Result a 15.67 17.15 16.22 17.03 16.80 16.85 16.80 17.45 16.55 17.36	Result b 16.90 17.94 17.04 17.22 16.89 17.26 17.13 16.94 17.20 16.55	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41 -0.33 0.51 -0.65 0.81 4.44711	sum 32.57 35.09 33.27 34.26 33.69 34.11 33.93 34.39 33.75 33.91	avg 16.29 17.54 16.63 17.13 16.85 17.06 16.96 17.20 16.87 16.95	18.50 - 18.00 - 17.50 - 17.00 - 16.50 - 16.00 - 15.50 -	• • •	• • • 4 6	8	
Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73 Ampoule 87 Ampoule 95	Result a 15.67 17.15 16.22 17.03 16.80 16.85 16.55 17.36	Result b 16.90 17.94 17.04 17.22 16.89 17.26 17.13 16.94 17.20 16.55	diff -1.22 -0.78 -0.82 -0.19 -0.09 -0.41 -0.33 0.51 -0.65 0.81 4.44711	sum 32.57 35.09 33.27 34.26 33.69 34.11 33.93 34.39 33.75 33.91 0.22545	avg 16.29 17.54 16.63 17.13 16.85 17.06 16.96 17.20 16.87 16.95 =MSB	18.50 - 18.00 - 17.50 - 17.00 - 16.50 - 16.00 - 15.50 -	* *) 2	• • • • •	8	

	n =	10									
	mean =	14.3934	20%	= σ-trg (%	/ 0)						
0.06553	s _x =	0.25598	2.87869	= σ-trg						BaP	
√MSW =	s _w =	0.40227									
	s _s =	0.12404	0.86361	= 0,3 *σ		0.80	5176215	3			
	ISO-13528	passed									
	F =	0.80985	3.02038	= Fcrit							
		passed						_			
	IUPAC							_			
(М	ISB-MSW)/2	-0.0154	1.56557	= F1*(0,3)	*σ) ² +F2*N	1SW					
		passed									
					1						
Bottle	Result a	Result b	diff	sum	avg	15.40					
Bottle Ampoule 08	Result a 14.01	Result b 15.14	diff -1.13	sum 29.15	avg 14.57	15.40					
Bottle Ampoule 08 Ampoule 14	Result a 14.01 14.47	Result b 15.14 13.84	diff -1.13 0.64	sum 29.15 28.31	avg 14.57 14.16	15.40 -	•			•	
Bottle Ampoule 08 Ampoule 14 Ampoule 22	Result a 14.01 14.47 14.61	Result b 15.14 13.84 14.85	diff -1.13 0.64 -0.24	sum 29.15 28.31 29.46	avg 14.57 14.16 14.73	15.40 - 15.20 - 15.00 -	•			•	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39	Result a 14.01 14.47 14.61 14.31	Result b15.1413.8414.8514.36	diff -1.13 0.64 -0.24 -0.06	sum 29.15 28.31 29.46 28.67	avg 14.57 14.16 14.73 14.34	15.40 - 15.20 - 15.00 - 14.80 -	•			•	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43	Result a 14.01 14.47 14.61 14.31 13.96	Result b15.1413.8414.8514.3614.14	diff -1.13 0.64 -0.24 -0.06 -0.19	Sum 29.15 28.31 29.46 28.67 28.10	avg 14.57 14.16 14.73 14.34 14.05	15.40 - 15.20 - 15.00 - 14.80 - 14.60 -	•			•	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54	Result a 14.01 14.47 14.61 14.31 13.96 14.11	Result b15.1413.8414.8514.3614.1414.42	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32	Sum 29.15 28.31 29.46 28.67 28.10 28.53	avg 14.57 14.16 14.73 14.34 14.05 14.26	15.40 15.20 15.00 14.80 14.60 14.40	•	L		•	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67	Result a 14.01 14.47 14.61 14.31 13.96 14.11 14.13	Result b15.1413.8414.8514.3614.1414.4214.42	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32 -0.29	Sum 29.15 28.31 29.46 28.67 28.10 28.53 28.54	avg 14.57 14.16 14.73 14.34 14.05 14.26 14.27	15.40 15.20 15.00 14.80 14.60 14.40 14.20	•			• •	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73	Result a 14.01 14.47 14.61 14.31 13.96 14.11 14.57	Result b15.1413.8414.8514.3614.1414.4214.4215.16	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32 -0.29 -0.59	Sum 29.15 28.31 29.46 28.67 28.10 28.53 28.54 29.73	avg 14.57 14.16 14.73 14.34 14.05 14.26 14.27 14.87	15.40 15.20 15.00 14.80 14.60 14.40 14.20 14.00	•			•	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73 Ampoule 87	Result a 14.01 14.47 14.61 14.31 13.96 14.11 14.57 13.89	Result b15.1413.8414.8514.3614.1414.4214.4215.1614.67	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32 -0.29 -0.59 -0.78	Sum 29.15 28.31 29.46 28.67 28.10 28.53 28.54 29.73 28.56	avg 14.57 14.16 14.73 14.34 14.05 14.26 14.27 14.87 14.28	15.40 15.20 15.00 14.80 14.60 14.40 14.20 14.00 13.80	•			•	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 73 Ampoule 87 Ampoule 95	Result a 14.01 14.47 14.61 14.31 13.96 14.11 14.57 13.89 14.69	Result b 15.14 13.84 14.85 14.36 14.42 14.42 15.16 14.67 14.12	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32 -0.29 -0.59 -0.59 -0.78 0.56	Sum 29.15 28.31 29.46 28.67 28.10 28.53 28.54 29.73 28.56 28.81	avg 14.57 14.16 14.73 14.34 14.05 14.26 14.27 14.87 14.28 14.28 14.40	15.40 15.20 15.00 14.80 14.60 14.40 14.20 14.00 13.80 13.60	*	•		*	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 87 Ampoule 95	Result a 14.01 14.47 14.61 14.31 13.96 14.11 14.57 13.89 14.69	Result b 15.14 13.84 14.85 14.36 14.14 14.42 14.42 15.16 14.67 14.12	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32 -0.29 -0.59 -0.78 0.56	Sum 29.15 28.31 29.46 28.67 28.10 28.53 28.54 29.73 28.56 28.81	avg 14.57 14.16 14.73 14.34 14.05 14.26 14.27 14.87 14.28 14.28	15.40 15.20 15.00 14.80 14.60 14.40 14.20 14.00 13.80 13.60 0	÷	4	6	* * *	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 43 Ampoule 54 Ampoule 67 Ampoule 87 Ampoule 95	Result a 14.01 14.47 14.61 14.31 13.96 14.11 14.57 13.89 14.69	Result b 15.14 13.84 14.85 14.36 14.42 14.42 15.16 14.67 14.12	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32 -0.29 -0.59 -0.78 0.56 3.23648	Sum 29.15 28.31 29.46 28.67 28.10 28.53 28.54 29.73 28.56 28.81	avg 14.57 14.16 14.73 14.34 14.05 14.26 14.27 14.87 14.28 14.40	15.40 15.20 15.00 14.80 14.60 14.40 14.20 14.00 13.80 13.60 0	* * 2	4	÷	• • 8	
Bottle Ampoule 08 Ampoule 14 Ampoule 22 Ampoule 39 Ampoule 54 Ampoule 54 Ampoule 73 Ampoule 87 Ampoule 95	Result a 14.01 14.47 14.61 14.31 13.96 14.11 14.13 14.57 13.89 14.69 Var(Result b 15.14 13.84 14.85 14.36 14.14 14.42 15.16 14.67 14.12 State State 14.12	diff -1.13 0.64 -0.24 -0.06 -0.19 -0.32 -0.29 -0.59 -0.78 0.56 3.23648	sum 29.15 28.31 29.46 28.67 28.10 28.53 28.54 29.73 28.56 28.81	avg 14.57 14.16 14.73 14.34 14.05 14.26 14.27 14.87 14.28 14.40 =MSB	15.40 15.20 15.00 14.80 14.60 14.40 14.20 14.00 13.80 13.60 0	* * 2	4	6	* * *	

ANNEX 8. Stability of the smoked black pepper test material for the period of the study

- in a refrigerator at recommended conditions (~ -4 °C).

- in a deep freezer at the reference conditions - (~ -80 °C).

ANNEX 9. Questionnaire and answers from the participants

🛆 👿 Cue	Question	Answers	Global no.	Edit type
		Click here to define a new question for	2016 PT PAH in smok	ed black pepper.
g test : 2016 PT PAH in smoked black pe	oper (14 questions, 497 answers)			
1 previous experience	Did you have previous experience with the analysis of spice and herbs?	41 Answers		1 RadioGroup
2 how many sample analysed	How many spice and herb samples have you analysed in the past few years?	41 Answers		2 ComboBox
3 standardised method	Did you apply standardised method for the analysis of the 4 PAHs in the test sample?	40 Answers		3 RadioGroup
4 method for PAH analysis	Which method for PAH analysis did you used (name of the standard method or laboratory method)?	37 Answers		7 Memo
5 deviations from the method	Did you have deviations from the standardised method?	35 Answers		4 RadioGroup
6 If YES, please specify	If YES, please specify	17 Answers		5 Memo
7 verified/validated method	Is your method verified/validated for herb and spices matrices and which?	38 Answers		9 Memo
8 Accreditation	Are you accredited for analysis of PAHs in herb and spices?	40 Answers		6 RadioGroup
9 type of calibrants	What kind of calibrants did you use?	41 Answers		8 RadioGroup
10 Sample intake	What is your sample intake in gram?	40 Answers		14 TextEdit
11 problems during analysis	Did you experience problem during analysis?	37 Answers		10 Memo
12 problems during reporting	Did you experience problems during reporting?	36 Answers		11 Memo
13 sample compliant with MLs	Is the test sample compliant with the CURRENT legislative maximum levels (MLs)?	41 Answers		12 RadioGroup
14 Any remarks, comments, sugg	est Any remarks, comments, suggestions	13 Answers		13 Merno

ad details	Measured values Uuestions and Answers					
No. 🛆	Question	Answer				
1	Did you have previous experience with the analysis of spice and herbs?	○ No ○ Yes				
2	How many spice and herb samples have you analysed in the past few years?					
3	Did you apply standardised method for the analysis of the 4 PAHs in the test sample?	⊘ No ⊘ Yes				
4	Which method for PAH analysis did you used					
5	Did you have deviations from the standardised method?	◯ No ◯ Yes				
6	If YES, please specify					
7	Is your method verified/validated for herb and spices matrices and which?					
8	Are you accredited for analysis of PAHs in herb and spices?	◯ No ◯ Yes				
9	What kind of calibrants did you use?	 laboratory prepared from neat substance purchased mix in solvent 				
10	What is your sample intake in gram?					
11	Did you experience problem during analysis?					
12	Did you experience problems during reporting?					
13	Is the test sample compliant with the CURRENT legislative maximum levels (MLs)?	No Yes				
14	Any remarks, comments, suggestions					

Lab Code	1. Previous experience	2. How many sample analysed	3. Standardised method	4. Method for PAH analysis			
101							
104	No	0	No				
105	No	0	No	in-house method			
106	Yes	<10	Yes	SLV-m097.f			
107	No	<10	Yes	FC102.1			
116	No	0	Yes	EN 16619:2015			
119	No	0	Yes	HPLC-FLD			
121	No	0	No	In house method (QMI 132)			
124	No	0	No	Laboratory method			
125	Yes	<50	No	03-02 Determination of PAHs in food by using HPLC/FLD or GC/IDMS-SIM			
126	No	0	No				
127	Yes	<10	Yes	GC/MS with GPC cleanup			
128	Yes	<10	Yes	Laboratory procedure: Soxhlet, GPC, SPE silica			
129							
132	Yes	<50	No	FSG410			
133							
136	No	0	No	laboratory method (PLE/GPC-HPLC/FLD)			
137	No	0	No	laboratory method			
139	No	0	Yes	HPLC/FLD			
140							
142							
144	No	<10	No	in-house method			
145	No	<10	No	In-house laboratory method			
146	No	<10	No	Laboratory method			
148	Yes	<100	No	Analysis of PAH with pressurized liquid extraction, clean up via SPE (Silica and Styrene/Divinylbenzene stationary phases), quantification with GC-MS (laboratory method)			
149	Yes	<100	Yes	SOP PALC0075 Determination of PAHs in food by GC-MS			
202	Yes	<10	No	QuEChERS extraction with acetonitrile and a C18 clean-up (900 mg MgS04 + 150 mg PSA + 150 mg C18), followed by evaporation under a stream of nitrogen and reconstitution in acetonitrile			
203	No	<10	Yes	Determination of PAHs in foodstuffs with GCMS			
209	No	<1000	No	Extraction with PLE (cyclohexane) 1st Clean-Up with GPC (Bio-beads S-X3) 2nd Clean-Up with SPE 			
211	yes	100		laboratory method			
212	Yes	<50	No	HPLC-FLD after Saponification and GPC			
213	Yes	<50	No	QMP_504_VW_402 in-house method pretreatment and ISO 22959 detection			
215	Yes	<50	Yes	in-house method using SampliQ QUECHERS AOAC kit			
217	Yes	<10	Yes	§64 LFGB L 07.00-40 (slightly modified)			
218	Yes	<50	Yes	DGF CIII-17a 1997-08			
222	Yes	<50	Yes	Laboratory method: reflux sample with KOH, extraction with hexane and purified with silica			
223	Yes	<10	No	Laboratory method			
230	Yes	<100	No				
231	Yes	<10	Yes	ONR CEN TS 16621 2014 06 01			
234	No	0	No	laboratory method			
235	Yes (Tea samples)	10	Yes	laboraty method			
238	No	0	No	The determination of benz(a)anthracene, chrysene, benzo(b&j)fluoranthene, benzo(a)pyrene and PAH4 total by GCMSMS			
241	No	0	No				
243	No	0	Yes	QUECHERS EXTRACTION - GC-MSMS (QQQ) ANALYSIS			
247	Yes	<100	Yes	Sample preparation:NPR-CEN/TS 16621, Food analysis- Determination of benzo(a)pyrene, benzo(a)anthracene, chrysene and benzo(b)fluoranthene in foodstuffs by HPLC-FD Analysis: ISO22959			
250	Yes	<100	Yes	DIN CEN/TS 16621			

Lab Code	5. Deviations from the method	6. If YES, please specify	7. Verified/validated method	8. Accreditation
101	NY		N	N
104	NO N-		No	No
105	No		110 yes herb tea	NO
107	Yes	There seemed to be a lot of fat/dirt in this sample, br />which partly was avoided by a low sample weight of 0.5 g and partly by an extra dilution (x10) before injection on the GC-MS system	No	No
116	Yes	no labelled standard used and also different diameter of GPC column. Quantification was done using standard adding method of nature PAHs to tested sample of black pepper.	No	No
119	Yes	lower sample weight for pepper 2g instead of 5g	no	No
121			No	No
124	No		NO	No
125	No		Yes, Determination of PAHs in food by using HPLC/FLD or GC/IDMS-SIM.	Yes
126	No	laboratory internal method	No	No
127	No		V.	No
128	res	Additional cean-up with MIP columns	ies	res
129	No		Ves both herbs and spices	Ves
132	10		res, both herbs and spices	103
136			only for herbs	
137	Yes	extraction: -addition of isotopic labelled internal standard -addition of cyclohexane/acetone (50/50)
-mix with ultra turrax purification: -Liq./Liq. with water -elimination of the aqueous phase - organic phase on silica SPE -eluat purified on preparative HPLC (DACC) -dry evaporation and reconstitution with cyclohexane injection: GC- MSMS with agilent select PAH 30m column </br></br></br></br></br></br 	No	No
139	Yes	1	No	No
140				
142				
144	Yes	- Use of less sample amount as normally. - Incubation	no	No
145	No	overnight in acetic acid in order to destroy the pepper oil	No	No
145	Vos	Sovieth extraction followed by CDC and then SDE on Silica	No	No
148		Somen entraction, fonowed by dr e, and then of 2 on once.	validated with dried herbs, verified with curry powder (participation in PT)	Yes
149	No		Yes. Validated with spiking stidied on a range of herbs and spices including turmeric, rosemary, chili, cinnamon, ginger, parsley, oregano, black pepper, clove, ground coriander, cardomum and ground cumin.	Yes
202	No		Curry spice powder	Yes
203	Yes	Small changes in the sample preparation part.	No	No
209			verified for curry powder, validated for a mixture of herbs	Yes
211			yes	yes
212	No		BAP - Mixture of different herbs and spices; Analysis of BAP in herbs and spices is accredited	No
215	No		no	No
217	Yes	Before the cyclohexanextract was loaded on the SPE column it was dried with Na2SO4. The residue is dissolved in methanol instet of acetonitrile for chromatographic analysis (HPLC-FLD)		Yes
218	Yes	saponification under reflux and higher temperature
extend the method for more matrices and more analytes than benzo(a)pyrene</br 	yes, validated for herbs and spices	Yes
222	No		Yes, matrix spanish pepper	No
223	No			Yes
230	No		yes	Yes
231	Yes	Removing fat ans oils with GPC	no	No
234	N-		no Var (articlated for Table	Yes
235	No		res (validated for Tea)	res
230	Voc	internal method	no	No
241	Yes	WEIGHED ONLY 1 GRAM	NO	No
247	No		Validated for food (solid products) but	Yes
250	Yes	with internal standards (benz(k)fluoranthene-d12, benzo(b)chrysene), extraction by PLE (Cyclohexan/Ethylacetat), SEC with BioBeads S-X3 (32x2.5 cm)	validated for herbs (matrix: origanum majorana) and spices (matrix: cumin)	Yes

Lab Code	9. Type of calibrants	10. Sample intake	11. Problems during analysis
101			
104	laboratory prepared from neat substances	2g	Very difficult matrix with too many chromatographic interferences. A very extreme cleanup procedure was necessary.
105	purchased mix in solvent	2.5g	blank sample not available
106	purchased mix in solvent	usually 10 g, this time 4g because of the low sample amount we received	no
107	purchased mix in solvent	0.5 g	There seemed to be a lot of fat/dirt in this sample, which partly was avoided by a low sample weight of 0.5 g and partly by an extra dilution (x10) before injection on the GC-MS system.
116	purchased mix in solvent	1	Yes. We usually use HPLC/FLD approach but due to observe huge interferenties for BAA and CHR we had to establish GC/MS method very quick. No all parameters from EN 16619:2015 could not met due to no time for it and also no enough sample for testing.
119	purchased mix in solvent	2 g	no
121	laboratory prepared from neat substances	2	Yes
124	purchased mix in solvent	1	
125	purchased mix in solvent	2	Interference in chrysene by using HPLC/FLD, which could not be removed. In GC-MS only extreme clean-up led to purified peaks of all 4 PAHs. Benzo(a)anthracene and Benzo(b)fluoranthene showed unexpected for black pepper interference in spectrum identification in HPLC/FLD, which could be removed by a more advanced clean-up. All problems related to interference have been solved by using GC-MS and an extreme clean-up.
126	purchased mix in solvent	0.5 g	No
127	laboratory prepared from neat substances	2,5	no
128	purchased mix in solvent	2	Difficult with interpretation of chromatogram
129	nurchagod miv in columnt	1 to E g dependent on two	No
132	purchased mix in solvent	1 to 5 g dependant on type	NO
136	purchased mix in solvent	2	separation problems (BAA, CHR)
137	purchased mix in solvent	1	#NAME?
139	purchased mix in solvent		Clean up
140			
144	purchased mix in solvent	0.5	ves. Many interfering peaks, and internal standard with very high RSD
145	laboratory prepared from neat substances	15	We have got the mismatch of BAP declared concentration in 4PAH solution in acetonitrile You have sent 24/02/2016 (Date of production: 18/02/2016). We have used fresh prepared BAP solutions from 1. SUPELCO, 2. ULTRA SCIENTIFIC standards.
146	purchased mix in solvent	2.5	Matrix interferences for Chr and BaA
148	laboratory prepared from neat substances	2	recovery of internal standard for BbF in one analysis (BbF value 1) below 50%, this result not included in final value.
149	purchased mix in solvent	5	No
202	laboratory prepared from neat substances	2	distortion of chromatographic performance through coextracted materials. samples were further diluted
203	purchased mix in solvent	2,5-5	No
209	purchased mix in solvent	5	
211	labeled internal standards	1-2 g	no
212	laboratory prepared from neat substances	0,2	Interferences in the chromatograms
213	purchased mix in solvent	0.5 - 1.0	Interference from volatile oil regarding detection.
215	purchased mix in solvent	2-20 g (here: 2-2 5 g)	no
217	laboratory prepared from neat substances	2,50 g	no
222	purchased mix in solvent	5	No
223	purchased mix in solvent	5	DAA, matuiv affects in the abromate grow
230	purchased mix in solvent	2 g	Internal standard benzo(a)anthracene D12 was coeluating with any matrix peak, so we changed
231	purchased mix in solvent	-	to benzo(b)chrysene as internal standard.
234	purchaseu illix ill solvent	1	Yes, the HPLC analysis resulted to unclear peaks (BAA and CRY could not be sufficiently
235	external calibration	1,5 g	separated from fat). Not enough sample material to optimize the cleaning conditions.
238	purchased mix in solvent	2	NO
241	purchased mix in solvent	1.5 g	recoveries of labelled internal standards
243	laboratory prepared from neat substances	1 GRAM	SOLVENT CONTAMINATION
247	purchased mix in solvent	3	No
250	purchased mix in solvent	2-5 g (depending on matrix and expected content)	no

Lab Code	12. Problems during reporting	13. Sample compliant with MLs	14. Any remarks, comments, suggest				
101							
104	No	No					
105	no	No	we will like to receive more amount of sample. we usually need at least 10g and if we have to do a triplicat we need at least 30 g from you. In this case we managed as the leveld were high.				
107	Yes. IT issues due to security problems	Yes					
116	No	No	To lack of sending problematic matrixy for PT without any previous control in EURL!				
119	no	NO	We weren't able to unmark line 12				
121	NO	No	we weren table to unnark line 15				
124	No	No	The MLs apply only if the assumed food item was placed on the market later than 01.04.2016				
126	Yes, some parameters were missing or the system did not allow filling them.	No					
127	no	No					
128	No	No					
129	M	M					
132	No	NO					
136		Yes	ad compliance: only related to BAP br />do not mix herbs and spices in the questionaire br />only BAP and BBF could be analysed!				
137	No	No	No				
139	Yes	Yes	No expirience				
140							
142		XY.					
144	no	Yes					
145	No	No					
148	no	No					
149	No	No					
202	wasn't able to fill in the method for the "sum of PAH4"	No					
203	No	No					
209	No	No					
211	no	yes, the pepper is compliant with the current MLs, because the pepper is placed on the market prior to No April Yes0No6, but they exceed the MLs which are established since April Yes0No6.					
212	no	Yes					
213	No	No	EU 2015/1933				
215	no	Yes	Although there are no maximum levels set for PAH residues in spices, I would consider that the food does not comply with the food safety requirements of Regulation 178/2002, Article 14 in that it is unsafe by reason of being unfit for human consumption due to the probable cumulative toxic effects of consumption.				
217		No					
218	it is not possible to fill in the analytical method and LOQ/LOD for the SUM4PAHs	Yes					
222	No	No					
223	No	No					
230	no	No	Question 13: ML valid from 1 April 2016				
231	Not til now.	No					
234	no	Yes					
235	No	(0No.04.Yes0No6): yes - VO (EG) Yes0No5/ No933 Yes7. Oktober Yes0No5)					
238	No	Yes	A suitable blank matrix would have been helpful for evaluation of recovery.				
241	no	Yes	we are not aware of regulation setting limits for PAHs in spices				
243	XY.	Yes					
247	NO	NO	NA				
250	software as our IT does not allow downloading .exe-files for safety reasons. Sending a .zip-file or a link for a zip-file would be easier.	No					

Annex 10. Method performance LOD and LOQ as reported

Column 🖵	BAA 👻	Column 🔽	BAP 👻	Column 🔽	BBF 👻	Column 🔽	CHR 🖵	Column 🔽
	LOD	LOQ	LOD	LOQ	LOD	LOQ	LOD	LOQ
Lab code	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]
101	0.03	0.9	0.02	0.9	0.09	0.89	0.04	0.89
104	1.5	0.5	2	0.6	1.6	0.5	3	0.9
105	1	0.5	1	0.5	1	0.5	1	0.5
106	0.3	0.1	0.3	0.1	0.3	0.1	0.3	0.1
107	0.2	0.1	0.3	0.1	0.3	0.1	0.3	0.1
116	0.45	0.15	0.6	0.2	0.6	0.2	0.45	0.15
119	0.05	0.03	0.05	0.03	0.1	0.05	0.05	0.03
121	0.25	0.08	0.25	0.08	0.25	0.08	0.25	0.08
124	0.09	0.03	0.09	0.03	0.09	0.03	0.09	0.03
125	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
126	0.8	0.29	0.8	0.29	0.8	0.29	0.8	0.29
127	0.5	0.3	0.5	0.3	0.5	0.3	0.5	0.3
128	0.5	0.25	0.16	0.08	0.4	0.2	0.5	0.25
129	0.25	0.07	0.28	0.08	0.33	0.09	0.44	0.12
132	0.03	0.03	0.12	0.12	0.09	0.09	0.1	0.1
133	0.3	0.7	0.3	0.8	0.2	0.5	0.6	1.3
136			0.2	0.06	0.3	0.1		
137	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
139	0.25	0.16	0.25	0.07	0.25	0.07	0.25	0.05
140	0.01	0	0	0	0	0	0.01	0
142	1	0.2	0.5	0.1	0.5	0.1	1	0.2
144	0.2	0.1	0.65	0.35	0.4	0.2	0.2	0.1
145	0.2	0.06	0.2	0.06	0.2	0.06	0.5	0.2
146	0.06	0.02	0.09	0.03	0.09	0.03	0.06	0.02
148	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
149	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
202	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
203	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
209	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1
211	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1
212	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
213	2	0.7	0.5	0.2	0.5	0.2	2	0.7
215	1	0.1	1	0.1	1	0.1	1	0.1
217	0.7	0.2	0.7	0.2	0.7	0.2	0.7	0.2
218	0.15	0.03	0.07	0.01	0.15	0.03	0.16	0.03
222	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
223	0.5	0.2	0.5	0.2	0.5	0.2	0.5	0.2
230	0.9	0.2	0.3	0.1	0.6	0.2	0.3	0.1
231	0.5	0.25	0.5	0.25	0.5	0.25	0.5	0.25
234	11	3.8	12	4.1	0.25	3	/	3
235	0.25	0.5	0.25	0.5	0.25	0.5	0.25	0.5
238	1	0.5	1	0.5	1	0.5	1	0.5
241	0.9	0.3	0.9	0.3	0.9	0.3	0.9	0.3
243	0.1	2	0.1	2	0.1	2	0.1	2
247	0.1	0.02	0.1	0.01	0.1	0.04	0.1	0.04
230	0.00	0.21	0.11	0.41	0.11	0.50	0.05	0.51

ANNEX 11: Data reported by participants

The data reported by the participants are compiled in the following tables. The results of replicate analyses together with the expanded measurement uncertainty (k=2) reported for the value for proficiency assessment are depicted in the graphs. Red lines indicate the thresholds for satisfactory z-scores. "Mean values" and "Rel. reproducibility s.d." represent the robust mean values and the robust relative standard deviations of the participants data, calculated according to the ISO 13528 algorithm. Very slight differences in the mean values on both graphs below are possible, as on the Kernel density plot the mean values are calculated based on the "final values" reported by the participants while on the distribution of the individual results graphs, they are calculated based on the three replicate results.

Distribution of individual results of replicate determinations reported for the benz[*a*]anthracene (BAA) content of the smoked black pepper test sample

blue rombus: individual results of replicate determinations, blue box: reported expanded measurement uncertainty (k=2), blue horizontal line in blue box: average of replicate determinations, green line: assigned value, green area around assigned value: expanded uncertainty of the assigned value (k=2), red lines: lower and upper limit of satisfactory z-score range; green band: confidence interval of the assigned value

Kernel density plot of the reported values for proficiency assessment for the benz[a]anthracene (BAA) content of the smoked black pepper test sample Red dots and line - HPLC results; blue dots and lines - GC-mass spectrometry results

Results, as reported by the participants and scoring, for the content of benz[a]anthracene (BAA) of the smoked black pepper test sample. Due to a software problem, the reported significant zeros after the comas are missing

Lab	Measurand	Value 1	Value 2	Value 3	Final value	U lab	k	Analytical method	u lab	Z-Score	Zeta score	Classific
code	name	40.04	42.20	45.42	45.25	21.2	2	UDIC	10.0	1.0	1.0	ation
101	BAA	48.04	42.28	45.43	45.25	21.2	2	HPLC	10.6	1.6	1.0	C
104	BAA	22.4	15.8	17.8	18./	6.31	2		3.10	- <u>2.3</u>	-4.7	a
105	DAA	32.2	31.8	32.1	32	0.39	2		3.2	-0.3	-0.7	d
100	DAA	52.50	33.25	32.40	52.70	4.91	2		2.40	-0.2	-0.5	d
107	DAA	54.7	53.55	6455	54.7	2	2		7	3.0 2.2	14.5	0
110	DAA	27.20	52.55	04.55	27.20	7 1 2	2		2 5 6	3.2	3.I 1.0	ι Γ
119	DAA DAA	27.38	224	221	27.38	121 12	2	HPLC	5.50	-1.0	-1.8	d
121	DAA DAA	310	334	321	322 22 E	7 5	2		2 75	42.0	4.8	
124		22.4	24.1	33.5 22 E	22.5	6.71	2		2.75	-0.1	-0.2	d
125	DAA	33.4	34.1	33.5	20	0.71	2		3.35	-0.1	-0.1	d
120	DAA DAA	29	2/	30	29	2.20	2		2.78	-0.8	-1.8	d
127	DAA	30.04	34.88	20.88	30.8	20	2		13	-0.5	-0.3	ι Γ
120	DAA	20.1	20	22.3	24.8	4.5	2		2.25	-1.4	-3.8	d
129	DAA	39.00	38.38	37.21	38.42	12.0	2		0.3	0.0	0.7	d
132	DAA	37.49	37.77	38.07	37.49		2		3	0.5	1.0	ι -
133	BAA	40	30	42	39	5.95	Z	GC-IVIS(IVIS)	2.97	0.7	1.5	a
130	DAA	22.64	25.16	22 50	22.0	6.76	2	CC MS(MS)	2.20	0.1	0.1	-
137	DAA	55.04 < 0.16	35.10	32.58	55.8	0.70	2		5.58	-0.1	-0.1	d
139	BAA	< 0.16	< 0.16	< 0.16	42	0.4	2		4.2	1 1	1.0	-
140	DAA	41.2	42.7	42	42	0.4 F 21	2		4.2	1.1	1.8	ι Γ
142	BAA	22.9	19.6	20.7	21.1	5.31	2		2.05	-1.9	-4.0	a
144	BAA	17.06	20.36	17.01	25.1	4.43	2		2.21	-2.5	-7.0	a
145	BAA	34.8	34.2	30.3	35.1	7	2		3.5	0.1	0.2	a
140	DAA	28.01	29.49	31.44	29.05	2.93	2		2.90	-0.7	-1.5	ι Γ
148	DAA	32.74	32.50	31.29	32.2	10.9	2		5.45	-0.3	-0.4	d
149	DAA	33.0	33.9	33.0	33./	0	2		4 1 F	-0.1	-0.1	d
202	DAA	22.2	34.0	34.0	34.1	3	2		1.5	0.0	-0.1	d
203	BAA	32.2	31.9	31.7	31.9	15.95	2		1.97	-0.3	-0.3	L
209	BAA	40.64	37.42	36.49	38.18	3.67	2	GC-MS(MS)	1.83	0.6	1.9	а
211	BAA	35.9	34.1	34.7	34.9	/	2	GC-MS(MS)	3.5	0.1	0.2	а
212	BAA	19.04	19.59	20.07	19.6	6.91	2	HPLC	3.46	-2.1	-4.1	а
213	BAA	79	81	66	/5.3	14.79	2	HPLC	7.4	6.0	5.5	C
215	BAA	970	1310	45.05	1140	0	2	HPLC	0	161.4	1073.6	b
217	BAA	16.74	15.6	15.85	16.06	5.82	2	HPLC	2.91	-2./	-5.9	а
218	BAA	8.74	7.45	9.57	8.59	2.13	2	HPLC	1.07	-3./	-17.3	а
222	BAA	47.4			47.4	8.1	2	GC-MS(MS)	4.05	1.9	3.2	а
223	BAA	14.1	13.5	13.8	13.8	2.76	2	GC-MS(MS)	1.38	-3.0	-11.9	а
230	BAA	30.01	31.49	30.49	30.7	6.11	2	HPLC	3.05	-0.5	-1.1	С
231	BAA	34.68	32.48	28.97	32.04	6.41	1	HPLC	6.41	-0.3	-0.3	а
234	BAA	52.63	54.89	31.19	46.2	23.08	1	GC-MS(MS)	23.08	1.7	0.5	С
235	BAA	18.8	20.6	19.4	19.5	7.8	2	HPLC	3.9	-2.1	-3.6	C
238	BAA	37	37	36	37	9.69	2	GC-MS(MS)	4.84	0.4	0.6	а
241	BAA	51	46		48	13.86	2.16	GC-MS(MS)	6.41	2.0	2.1	а
243	BAA	7.5	7.2	7.2	7.3	2.1	2	GC-MS(MS)	1.05	-3.9	-18.3	а
247	BAA	74.2	72.2	78.4	74.9	39.7	2	HPLC	19.85	5.9	2.0	с
250	BAA	37.4	35.8	31	34.7	8.69	2	HPLC	4.35	0.1	0.1	а

Satisfactory, Questionable, Unsatisfactory a: $u_{ref} \le u_{lab} \le u_{max} (\sigma_p);$

Distribution of individual results of replicate determinations reported for the benzo[*a*] pyrene (BAP) content of the smoked black pepper test sample

blue triangles: individual results of replicate determinations, blue box: reported expanded measurement uncertainty (k=2), blue horizontal line in blue box: average of replicate determinations, green dotted line: assigned value, green area around assigned value: expanded uncertainty of the assigned value (k=2), red lines: lower and upper limit of satisfactory z-score range;

Kernel density plot of the reported values for proficiency assessment for the benzo[a]pyrene (BAP) content of the smoked black pepper test sample Red dots and line - HPLC results; blue dots and lines - GC-mass spectrometry results

Results, as reported by the participants, for the content of benzo[a]pyrene (BAP) of the smoked black pepper test sample. Due to a software problem, the reported significant zeros after the comas are missing

101	BAP	19.77		18.26		19.47		19.17	13.60	2.00	HPLC	6.80	1.66	0.70	С
104	BAP	13.20		10.40		11.30		11.60	2.09	2.00	HPLC	1.05	-0.97	-2.35	а
105	BAP	12.20		12.10		12.30		12.20	2.50	2.00	GC-MS(MS)	1.25	-0.76	-1.60	а
106	BAP	13.45		13.73		13.06		13.41	1.34	2.00	GC-HRMS	0.67	-0.34	-1.13	а
107	BAP	11.80						11.80	1.00	2.00	GC-MS(MS)	0.50	-0.90	-3.43	b
116	BAP	15.75		17.99		17.49		17.08	4.30	2.00	GC-MS(MS)	2.15	0.93	1.20	а
119	BAP	14.04						14.04	4.77	2.00	HPLC	2.38	-0.13	-0.15	а
121	BAP	17.20		17.10	1	18.10		17.50	7.71	2.00	HPLC	3.86	1.08	0.80	с
124	BAP	13.20		13.40		13.20		13.30	2.51	2.00	GC-MS(MS)	1.25	-0.38	-0.80	а
125	BAP	13.20		13.40		11.90		12.80	2.59	2.00	GC-MS(MS)	1.30	-0.56	-1.13	а
126	BAP	14.00		13.00		15.00		14.00	2.60	2.00	GC-MS(MS)	1.30	-0.14	-0.28	а
127	BAP	15.51		17.00		16.38		16.30	9.20	2.00	GC-MS(MS)	4.60	0.66	0.41	с
128	BAP	12.10		12.10		12.00		12.10	1.50	2.00	HPLC	0.75	-0.80	-2.44	а
129	ВАР	13.57		14.08		13.52		13.73	3.51	2.00	GC-MS(MS)	1.76	-0.23	-0.36	а
132	BAP	14.13		14.37		14.03		14.13	2.40	2.00	GC-MS(MS)	1.20	-0.09	-0.20	а
133	BAP	15.00		13.00		17.00		15.00	2.00	2.00	GC-MS(MS)	1.00	0.21	0.52	а
136	BAP	13.21		14.16		12.95		13.40	4.02	2.00	HPLC	2.01	-0.35	-0.48	а
137	BAP	12.96		13.19		13.24		13.13	2.63	2.00	GC-MS(MS)	1.31	-0.44	-0.89	а
139	BAP	3.97		4.22		3.46		3.88	18.98	2.00	HPLC	9.49	-3.65	-1.11	с
140	BAP	15.70		16.40		16.20		16.10	3.22	2.00	GC-HRMS	1.61	0.59	1.00	а
142	BAP	11.60		10.50		11.80		11.30	2.80	2.00	HPLC	1.40	-1.08	-2.05	а
144	BAP	13.18		13.83	-	12 25	-	13.20	3 73	2.00	GC-MS(MS)	1.87	-0.42	-0.62	
145	BAP	13.00	-	12.80	-	13.80	-	13.20	2.60	2.00	HPLC	1.30	-0.42	-0.85	a
146	BAP	14.25		15.41	1	16.43	-	15.36	3.07	2.00	GC-MS(MS)	1.54	0.33	0.59	 a
1/8	ΒΔΡ	13.24		12.26	-	13 50	-	13.00	3.10	2.00	GC-MS(MS)	1 55	-0.49	-0.85	2
1/9	ΒΔΡ	14 70		13.90	-	14 50	-	14.40	3.10	2.00	GC-MS(MS)	1.55	0.00	0.00	2
202	ΒΔΡ	11 10		12 30	-	13 30	-	12 20	8.98	2.00	GC-MS(MS)	4.49	-0.76	-0.49	<u>د</u>
203	BAP	12.60		14 50	1	13.40	-	13 50	6.75	2.00	GC-HRMS	3 38	-0.31	-0.26	
209	BAP	16.27		14.50		14.29		15.02	1.83	2.00	GC-MS(MS)	0.91	0.22	0.58	a
211	BAP	14.30		13.60	<u> </u>	13.90	1	13.90	2.79	2.00	GC-MS(MS)	1.40	-0.17	-0.33	а
212	BAP	15.92		15.82		16.17		16.00	5.61	2.00	HPLC	2.81	0.56	0.56	а
213	BAP	14.30		14.80		16.50		15.20	3.45	2.00	HPLC	1.72	0.28	0.44	а
215	BAP	26,950		26,890				26,920	0.00	2.00	HPLC	0.00	9,342.22	47,202.81	b
217	ВАР	11.80		11.83		11.76		11.80	3.15	2.00	HPLC	1.58	-0.90	-1.55	а
218	BAP	7.25		7.26		7.49		7.33	1.76	2.00	HPLC	0.88	-2.45	-6.75	а
222	BAP	35.20						35.20	5.60	2.00	GC-MS(MS)	2.80	7.22	7.28	а
223	BAP	21.60		22.40		21.90		22.00	4.41	2.00	GC-MS(MS)	2.20	2.64	3.34	а
230	ВАР	13.52		13.58		13.41		13.50	2.70	2.00	HPLC	1.35	-0.31	-0.61	а
231	BAP	15.90		14.96		13.29		14.72	2.66	1.00	HPLC	2.66	0.11	0.12	а
234	ВАР	55.99		34.82				45.40	22.70	1.00	GC-MS(MS)	22.70	10.76	1.37	с
235	ВАР	14.30		14.40		14.60		14.40	5.76	2.00	HPLC	2.88	0.00	0.00	с
238	BAP	12.00		16.00		14.00		14.00	2.80	2.00	GC-MS(MS)	1.40	-0.14	-0.26	а
241	BAP	34.00		24.00				29.00	7.00	2.18	GC-MS(MS)	3.21	5.07	4.48	с
243	BAP	< 2.00	NB	< 2.00	NB	< 2.00	NB			2.00	GC-MS(MS)		-5.00	-999.00	
247	BAP	14.90		15.80		14.70		15.10	6.04	2.00	HPLC	3.02	0.24	0.23	с
250	BAP	14.30		14.10		13.60		14.00	3.50	2.00	HPLC	1.75	-0.14	-0.22	а

Satisfactory, Questionable, Unsatisfactory $a: u_{ref} \le u_{lab} \le u_{max} (\sigma_p);$

Distribution of individual results of replicate determinations reported for the benzo[b]fluoranthene (BBF) content of the smoked black pepper test sample

blue triangles: individual results of replicate determinations, blue box: reported expanded measurement uncertainty (k=2), blue horizontal line in blue box: average of replicate determinations, green dotted line: assigned value, green area around assigned value: expanded uncertainty of the assigned value (k=2), red lines: lower and upper limit of satisfactory z-score range;

Kernel density plot of the reported values for proficiency assessment for the benzo[b]fluoranthene (BBF) content of the smoked black pepper test sample *Red dots and line - HPLC results; blue dots and lines - GC-mass spectrometry results*

Results, as reported by the participants, for the content of benzo[b]-fluoranthene (BBF) of the smoked black pepper test sample. Due to a software problem, the reported significant zeros after the comas are missing

Lab code	Measu- rand	Value 1	S 1	Value 2	S 2	Value 3	S 3	X lab	U lab	k	Analytical method	u lab	Z-Score	Zeta score	Classific ation
101	BBF	36.16		23.06		25.2		24.8	17.45	2	HPLC	8.72	2.2	0.9	с
104	BBF	12.7		9.1		10.4		10.7	2.19	2	HPLC	1.1	-1.9	-5.1	а
105	BBF	15.8		15.7		15.7		15.7	3.09	2	GC-MS(MS)	1.55	-0.4	-0.9	а
106	BBF	16.71		17.28		16.61		16.87	2.53	2	GC-HRMS	1.27	-0.1	-0.2	а
107	BBF	12.9						12.9	1	2	GC-MS(MS)	0.5	-1.2	-5.2	b
116	BBF	19.25		21.56		21.21		20.68	5.2	2	GC-MS(MS)	2.6	1.0	1.3	а
119	BBF	12.63						12.63	3.79	2	HPLC	1.9	-1.3	-2.3	а
121	BBF	294		284		286		288	110	2	HPLC	55	78.7	4.9	С
124	BBF	17.7		18.3		16.5		17.5	2.9	2	GC-MS(MS)	1.45	0.1	0.2	а
125	BBF	16.6		16.5		15.9		16.3	3.29	2	GC-MS(MS)	1.65	-0.3	-0.5	а
126	BBF	18		17		18		18	3.57	2	GC-MS(MS)	1.78	0.2	0.4	а
127	BBF	15.69		17.32		17.18		16.73	10.8	2	GC-MS(MS)	5.4	-0.1	-0.1	С
128	BBF	15.8		15.4		15.4		15.5	2.2	2	HPLC	1.1	-0.5	-1.3	а
129	BBF	16.54		16.01		16.71		16.42	6.55	2	GC-MS(MS)	3.28	-0.2	-0.2	а
132	BBF	18.59		18.76		18.91		18.59	3.16	2	GC-MS(MS)	1.58	0.4	0.8	а
133	BBF	23		27		28		26	4	2	GC-MS(MS)	2	2.6	4.2	а
136	BBF	14.97		13.89		13.11		14	4.2	2	HPLC	2.1	-0.9	-1.4	а
137	BBF	16.6		16.65		16.63		16.63	3.32	2	GC-MS(MS)	1.66	-0.2	-0.3	а
139	BBF	3.65		3.81		3.7		3.72	12	2	HPLC	6	-3.9	-2.2	с
140	BBF	19.9		20.4		20.6		20.3	4.06	2	GC-HRMS	2.03	0.9	1.5	а
142	BBF	14.4		15.6		15.5		15.2	3.81	2	HPLC	1.9	-0.6	-1.0	а
144	BBF	7.06		8.65		6.41		7.1	2.12	2	GC-MS(MS)	1.06	-2.9	-8.1	а
145	BBF	18.8		20.4		19.6		19.6	3.9	2	HPLC	1.95	0.7	1.2	а
146	BBF	17.81		16.45		18.36		17.54	3.51	2	GC-MS(MS)	1.75	0.1	0.2	а
148	BBF	24.36		15.7		15.74		15.7	2.62	2	GC-MS(MS)	1.31	-0.4	-1.0	а
149	BBF	19.1		19.1		19.2		19.1	5.29	2	GC-MS(MS)	2.65	0.6	0.7	а
202	BBF	15.4		17.4		16.3		16.4	6.01	2	GC-MS(MS)	3.01	-0.2	-0.2	а
203	BBF	18.1		17.7		17.7		17.8	8.9	2	GC-HRMS	4.45	0.2	0.1	С
209	BBF	18.34		17		16.59		17.31	1.55	2	GC-MS(MS)	0.78	0.0	0.1	а
211	BBF	17.5		16.8		17.1		17.1	3.39	2	GC-MS(MS)	1.7	0.0	0.0	а
212	BBF	16.06		16.89		16.86		16.6	5.8	2	HPLC	2.9	-0.2	-0.2	а
213	BBF	20		24		23		22.3	5.99	2	HPLC	3	1.5	1.7	а
215	BBF	2610		2580				2595	0	2	HPLC	0	749.4	4027.9	b
217	BBF	13.78		14.22		14.89		14.3	3.52	2	HPLC	1.76	-0.8	-1.5	а
218	BBF	11.33		10.2		12.56		11.36	2.37	2	HPLC	1.18	-1.7	-4.3	а
222	BBF	53.4						53.4	8	2	GC-MS(MS)	4	10.5	8.9	С
223	BBF	2.64		2.53		2.6		2.59	0.52	2	GC-MS(MS)	0.26	-4.2	-21.1	b
230	BBF	20.67		21.64		21.03		21.1	4.2	2	HPLC	2.1	1.1	1.8	а
231	BBF	16.96		16.03		14.09		15.69	2.82	1	HPLC	2.82	-0.4	-0.5	а
234	BBF	152		93.96		73.47		107	53.76	1	GC-MS(MS)	53.76	26.1	1.7	С
235	BBF	37.7		32.5		31.8		34	13.6	2	HPLC	6.8	4.9	2.5	С
238	BBF	26		28		26		27	5.47	2	GC-MS(MS)	2.73	2.9	3.5	а
241	BBF	53		75				64	17	2.2	GC-MS(MS)	7.73	13.6	6.0	с
243	BBF	< 2.00	NB	< 2.00	NB	< 2.00	NB			2	GC-MS(MS)		-5.0		
247	BBF	15.2		14.4		15.3		15	7.05	2	HPLC	3.52	-0.6	-0.6	с
250	BBF	15.7		16.3		15.7		15.9	4	2	HPLC	2	-0.4	-0.6	а

Satisfactory, Questionable, Unsatisfactory $a : U_{ref} \le U_{lab} \le U_{max} (\sigma_p);$ $b : U_{lab} < U_{ref};$

c: $u_{lab} > u_{max} (\sigma_p)$

Distribution of individual results of replicate determinations reported for the chrysene (CHR) content of the smoked black pepper test sample

blue triangles: individual results of replicate determinations, blue box: reported expanded measurement uncertainty (k=2), blue horizontal line in blue box: average of replicate determinations, green dotted line: assigned value, green area around assigned value: expanded uncertainty of the assigned value (k=2), red lines: lower and upper limit of satisfactory z-score range;

Kernel density plot of the reported values for proficiency assessment for the chrysene (CHR) content of the smoked black pepper test sample *Red dots and line - HPLC results; blue dots and lines - GC-mass spectrometry results*

Results, as reported by the participants, for the content of chrysene (CHR) of the smoked black pepper test sample. Due to a software problem, the reported significant zeros after the comas are missing

Lab	Measu	Value 1	S 1	Value 2	S 2	Value 3	S 3	X lab	U lab	k	Analytical	u lab	Z-Score	Zeta score	Classific
101	CHR	54.24		18 19		52.03		51.6	177	2		8 85	1 5	1 3	ation
101	CHR	21.8	-	12.8		15 7	-	16.8	2.81	2	HPLC	1 4	-2 9	-12.6	a
105	CHR	33.9	-	33.7		33.9	-	33.8	6.79	2	GC-MS(MS)	3.4	-0.8	-1.7	a
106	CHR	35.58	-	36.39		35.68	-	35.9	4.49	2	GC-HRMS	2.24	-0.5	-1.6	a
107	CHR	67		5 61.5 5		55100		67	4	2	GC-MS(MS)	2	3.4	11.7	a
116	CHR	73.35	-	86.66		104.51		88.2	26	2	GC-MS(MS)	13	6.1	3.7	c
119	CHR	44.13	-					44.1	9.71	2	HPLC	4.86	0.5	0.9	а
121	CHR	820		849		810		826	269.89	2	HPLC	134.95	98.6	5.8	С
124	CHR	37.3		37.6		36.4		37.1	10.2	2	GC-MS(MS)	5.1	-0.3	-0.5	а
125	CHR	41.3		42.1		40.3		41.2	8.19	2	GC-MS(MS)	4.1	0.2	0.3	а
126	CHR	35		35		38		36	7	2	GC-MS(MS)	3.5	-0.5	-1.0	а
127	CHR	42.98		39.5		39.6		39.6	9.34	2	GC-MS(MS)	4.67	0.0	0.0	а
128	CHR	29.7		28.7		25.4		27.9	5.59	2	HPLC	2.8	-1.5	-3.9	а
129	CHR	39.02		40.91		38.12		39.4	8.32	2	GC-MS(MS)	4.16	-0.1	-0.1	а
132	CHR	41.41		42.14		41.69		41.4	6.63	2	GC-MS(MS)	3.31	0.2	0.4	а
133	CHR	70		73		72		72	13.06	2	GC-MS(MS)	6.53	4.0	4.8	а
136	CHR									2					
137	CHR	39.39		38.55		38.69		38.9	7.78	2	GC-MS(MS)	3.89	-0.1	-0.2	а
139	CHR	25.77		27.85		26.94		26.9	12	2	HPLC	6	-1.6	-2.1	а
140	CHR	48.2		53.2		52.5		51.3	10.26	2	GC-HRMS	5.13	1.4	2.2	а
142	CHR	25.3		19.2		24.8		23.1	5.8	2	HPLC	2.9	-2.1	-5.4	а
144	CHR	33.81		36.53		34.33		33.8	8.14	2	GC-MS(MS)	4.07	-0.8	-1.4	а
145	CHR	20		20.3		20.7		20.4	4.11	2	HPLC	2.06	-2.4	-8.2	а
146	CHR	44.92		47.01		48.19		46.7	9.34	2	GC-MS(MS)	4.67	0.9	1.4	а
148	CHR	44.86		43.36		43.77		44	13	2	GC-MS(MS)	6.5	0.5	0.6	а
149	CHR	41.8		40.8		41.5		41.4	7.81	2	GC-MS(MS)	3.9	0.2	0.4	а
202	CHR	38.9		38.6		38.5		38.7	1	2	GC-MS(MS)	0.5	-0.1	-0.9	b
203	CHR	53.2		54		52.6		53.3	26.65	2	GC-HRMS	13.32	1.7	1.0	С
209	CHR	47.29		43.61		42.28		44.4	4.38	2	GC-MS(MS)	2.19	0.6	1.8	а
211	CHR	38.3		37.4		38		37.9	7.6	2	GC-MS(MS)	3.8	-0.2	-0.5	а
212	CHR	21.12		21.08		21.85		21.4	7.52	2	HPLC	3.76	-2.3	-4.7	а
213	CHR	85		67		69		73.7	14.01	2	HPLC	7	4.2	4.8	а
215	CHR	17380		17160				17270	0	2	HPLC	0	2161.9	14726.6	b
217	CHR	24.26		22.69		20.13		22.4	8.29	2	HPLC	4.14	-2.2	-4.1	а
218	CHR	8.73		8.88		9.04		8.9	1.72	2	HPLC	0.86	-3.9	-21.3	b
222	CHR	48.1						48.1	8.2	2	GC-MS(MS)	4.1	1.0	1.9	а
223	CHR	4.71		4.74		4.7		4.7	0.94	2	GC-MS(MS)	0.47	-4.4	-27.9	b
230	CHR	41.82		43.99		43.9		43.2	8.59	2	HPLC	4.3	0.4	0.8	а
231	CHR	34.16		32.12		29.06		31.8	5.81	1	HPLC	5.81	-1.0	-1.4	а
234	CHR	76.2		86.4		73.1		78.6	39.32	1	GC-MS(MS)	39.32	4.9	1.0	с
235	CHR	39.1		33.8		36.5		36.5	14.6	2	HPLC	7.3	-0.4	-0.5	а
238	CHR	55		58		56		56	13.92	2	GC-MS(MS)	6.96	2.0	2.3	а
241	CHR	52		63				57	16.85	2.2	GC-MS(MS)	7.66	2.2	2.2	а
243	CHR	33.2						33.2	9.9	2	GC-MS(MS)	4.95	-0.8	-1.3	а
247	CHR	74.9		74.1		79		76	43.32	2	HPLC	21.66	4.5	1.7	С
250	CHR	39.2		39.9		37.6		38.9	9.7	2	HPLC	4.85	-0.1	-0.2	а

Satisfactory, Questionable, Unsatisfactory $a : u_{ref} \le u_{lab} \le u_{max} (\sigma_p);$ **b** : $u_{lab} < u_{ref};$

c: $u_{lab} > u_{max} \ (\sigma_p)$

Distribution of individual results of replicate determinations reported for the sum of the four markers PAHs (SUM4PAH) content of the smoked black pepper test sample

blue triangles: individual results of replicate determinations, blue box: reported expanded measurement uncertainty (k=2), blue horizontal line in blue box: average of replicate determinations, green dotted line: assigned value, green area around assigned value: expanded uncertainty of the assigned value (k=2), red lines: lower and upper limit of satisfactory z-score range;

Kernel density plot of the reported values for proficiency assessment for the SUM4PAH content of the smoked black pepper test sample

Red dots and line - HPLC results; blue dots and lines - GC-mass spectrometry results

Results, as reported by the participants, for the sum of the four markers PAHs (SUM4PAH) of the smoked black pepper test sample. Due to a software problem, the reported significant zeros after the comas are missing

101 140.81 10.2 2 HPLC 5.1 3.1 6.3 a 104 57.8 7.5 2 HPLC 3.75 -4.2 -11 a 105 93.7 10.19 2 5.09 -1 -2.1 a 106 98.92 7.24 2 GC-HRMS 3.62 -0.6 -1.6 a 107 146 5 2 2.5 3.5 12.1 a 116 182.1 96 2 GC-MS(MS) 48 6.7 1.6 c 121 1436 315 2 HPLC 157.5 116.5 8.4 c 124 101.4 20.41 2 GC-MS(MS) 10.2 -0.4 -0.4 a 125 104.1 11.4 2 GC-MS(MS) 4.95 -0.8 -1.6 a 127 104.52 8.68 2 GC-MS(MS) 5.02 0.5 1.1 a 132 111.62 10.52 2 GC-MS(MS) 5.02 <t< th=""><th>Lab code</th><th>X lab</th><th>U lab</th><th>k</th><th>Analytical method</th><th>u lab</th><th>Z-Score</th><th>Zeta score</th><th>Classification</th></t<>	Lab code	X lab	U lab	k	Analytical method	u lab	Z-Score	Zeta score	Classification
104 57.5 2 HPLC 37.5 -4.2 -11 a 105 93.7 10.19 2 5.09 -1 -2.1 a 106 98.92 7.24 2 GC-HRMS 3.62 -0.6 -1.6 a 107 146 5 2 2.5 3.5 12.1 a 116 182.1 96 2 GC-MS(MS) 48 6.7 1.6 c 119 98.18 13.49 2 6.75 -0.7 -1 a 121 1436 315 2 HPLC 157.5 116.5 8.4 c 124 101.4 20.41 2 GC-MS(MS) 10.2 -0.4 -0.4 a 125 104.1 11.4 2 GC-MS(MS) 4.95 -0.8 -1.6 a 127 104.52 8.68 2 GC-MS(MS) 4.34 -0.1 -0.2 a 132 111.62 10.05 2 GC-MS(MS) 5.02 0.5 1.1	101	140.81	10.2	2	HPI C	51	31	6.3	а
105 93.7 10.19 2 5.09 -1 -2.1 a 106 98.92 7.24 2 GC-HRMS 3.62 -0.6 -1.6 a 107 146 5 2 2.5 3.5 12.1 a 116 182.1 96 2 GC-MS(MS) 48 6.7 1.6 c 119 98.18 13.49 2 6.75 -0.7 -1 a 121 1436 315 2 HPLC 157.5 116.5 8.4 c 124 101.4 20.41 2 GC-MS(MS) 5.7 -0.1 -0.2 a 125 104.1 11.4 2 GC-MS(MS) 4.34 -0.1 -0.2 a 126 97 9.9 2 GC-MS(MS) 8.41 0.2 0.3 a 132 111.42 GC-MS(MS) 5.02 0.5 1.1 a 133 152 15 2 GC-MS(MS) 7.5 4.1 5.9 a <	101	57.8	7.5	2	HPLC	3 75	-4.2	-11	a
105 10.1 12 2 106 107 116 12.1 0 106 98.92 7.24 2 GC-HRMS 3.62 -0.6 -1.6 a 116 182.1 96 2 GC-MS(MS) 48 6.7 1.6 c 119 98.18 13.49 2 6.75 -0.7 -1 a 121 1436 315 2 HPLC 157.5 116.5 8.4 c 124 101.4 20.41 2 GC-MS(MS) 5.7 -0.1 -0.2 a 125 104.1 11.4 2 GC-MS(MS) 5.7 -0.1 -0.2 a 126 97 9.9 2 GC-MS(MS) 4.34 -0.1 -0.2 a 127 104.52 8.68 2 GC-MS(MS) 8.41 0.2 0.3 a 133 152 15 2 GC-MS(MS) 5.02 0.5 1.1 a 133 152 15 2 GC-MS(MS) <td< td=""><td>104</td><td>93.7</td><td>10 19</td><td>2</td><td></td><td>5.09</td><td>ے.ہ 1۔</td><td>-21</td><td>۵ ۵</td></td<>	104	93.7	10 19	2		5.09	ے. ہ 1۔	-21	۵ ۵
100 101	105	08 02	7.24	2		3.03	-0.6	-2.1	a 2
107 140 3 2 2.3 3.3 12.1 a 116 182.1 96 2 GC-MS(MS) 48 6.7 1.6 c 119 98.18 13.49 2 Image: Constant of the stant of	100	30.32	1.24	2		3.02	-0.0	-1.0	a
116 16.2.1 36.2 2 3.149 2 6.75 -0.7 -1 a 119 98.18 13.49 2 6.75 -0.7 -1 a 121 1436 315 2 HPLC 157.5 116.5 8.4 c 124 101.4 20.41 2 GC-MS(MS) 10.2 0.4 -0.4 a 125 104.1 11.4 2 GC-MS(MS) 4.95 -0.8 -1.6 a 126 97 9.9 2 GC-MS(MS) 4.34 -0.1 -0.2 a 128 80.3 17.69 2 HPLC 8.85 -2.2 -2.8 a 139 107.91 16.83 2 GC-MS(MS) 5.02 0.5 1.1 a 133 152 15 2 GC-MS(MS) 10.24 -0.3 -0.3 a 137 102.43 20.48 2 GC-MS(MS) 10.24 -0.3 -0.3 a 140 130 26 2	107	140	06	2		2.5	5.5	12.1	a
11999.1813.4920.73 -0.7 -1 a12114363152HPLC157.5116.58.4c124101.420.412GC-MS(MS)10.2 -0.4 -0.4 a125104.111.42GC-MS(MS)5.7 -0.1 -0.2 a126979.92GC-MS(MS) 4.95 -0.8 -1.6 a127104.528.682GC-MS(MS) 4.34 -0.1 -0.2 a12880.317.692HPLC 8.85 -2.2 -2.8 a129107.9116.832GC-MS(MS) 5.02 0.5 1.1a132111.6210.052GC-MS(MS) 5.02 0.5 1.1a133152152GC-MS(MS) 7.5 4.1 5.9 a136 $$	110	102.1	90	2		40	0.7	1.0	C
12114363152 $PHCC$ 157.5110.56.4c124101.420.412GC-MS(MS)10.2-0.4-0.4a125104.111.42GC-MS(MS)5.7-0.1-0.2a126979.92GC-MS(MS)4.95-0.8-1.6a127104.528.682GC-MS(MS)4.34-0.1-0.2a12880.317.692HPLC8.85-2.2-2.8a129107.9116.832GC-MS(MS)5.020.51.1a133152152GC-MS(MS)5.020.51.1a136Image: Common state s	119	98.18	13.49	2		0.75	-0.7	-1	a
124101.420.412310.2-0.4-0.4a125104.111.42GC-MS(MS)5.7-0.1-0.2a126979.92GC-MS(MS)4.95-0.8-1.6a127104.528.682GC-MS(MS)4.34-0.1-0.2a12880.317.692HPLC8.85-2.2-2.8a129107.9116.832GC-MS(MS)8.410.20.3a132111.6210.052GC-MS(MS)5.020.51.1a133152152GC-MS(MS)5.020.51.1a136 $$	121	1436	315	2		157.5	116.5	8.4	C
125104.111.42GC-MS(MS)5.7-0.1-0.2a126979.92GC-MS(MS)4.95-0.8-1.6a127104.528.682GC-MS(MS)4.34-0.1-0.2a12880.317.692HPLC8.85-2.2-2.8a129107.9116.832GC-MS(MS)8.410.20.3a132111.6210.052GC-MS(MS)5.020.51.1a133152152GC-MS(MS)7.54.15.9a136	124	101.4	20.41	2		10.2	-0.4	-0.4	a
126 97 9.9 2 GC-MS(MS) 4.95 -0.8 -1.6 a 127 104.52 8.68 2 GC-MS(MS) 4.34 -0.1 -0.2 a 128 80.3 17.69 2 HPLC 8.85 -2.2 -2.8 a 129 107.91 16.83 2 GC-MS(MS) 8.41 0.2 0.3 a 132 111.62 10.05 2 GC-MS(MS) 5.02 0.5 1.1 a 133 152 15 2 GC-MS(MS) 7.5 4.1 5.9 a 136	125	104.1	11.4	2	GC-IVIS(IVIS)	5.7	-0.1	-0.2	а
127 104.52 8.68 2 $GC-MS(MS)$ 4.34 -0.1 -0.2 a 128 80.3 17.69 2 HPLC 8.85 -2.2 -2.8 a 129 107.91 16.83 2 $GC-MS(MS)$ 8.41 0.2 0.3 a 132 111.62 10.05 2 $GC-MS(MS)$ 5.02 0.5 1.1 a 133 152 15 2 $GC-MS(MS)$ 7.5 4.1 5.9 a 136 a a a a a a a a 137 102.43 20.48 2 $GC-MS(MS)$ 10.24 -0.3 -0.3 a 136 a a a a a a a a 137 102.43 20.48 2 $GC-MS(MS)$ 10.24 -0.3 -0.3 a 139 34.46 20 2 HPLC 10 -6.2 -6.9 a 140 130 26 $GC-MS(MS)$ 7.59 -3 -4.4 a 144 71.1 15.19 2 $GC-MS(MS)$ 7.59 -3 -4.4 a 144 71.1 15.19 2 $GC-MS(MS)$ 10.93 0.3 0.3 a 144 109.26 21.85 2 $GC-MS(MS)$ 10.93 0.3 0.3 a 144 104.9 30 2 $GC-MS(MS)$ 10.93 0.3 0.4 <td>126</td> <td>97</td> <td>9.9</td> <td>2</td> <td>GC-MS(MS)</td> <td>4.95</td> <td>-0.8</td> <td>-1.6</td> <td>а</td>	126	97	9.9	2	GC-MS(MS)	4.95	-0.8	-1.6	а
128 80.3 17.69 2 HPLC 8.85 -2.2 -2.8 a 129 107.91 16.83 2 GC-MS(MS) 8.41 0.2 0.3 a 132 111.62 10.05 2 GC-MS(MS) 5.02 0.5 1.1 a 133 152 15 2 GC-MS(MS) 7.5 4.1 5.9 a 136 Image: Comparison of the com	127	104.52	8.68	2	GC-MS(MS)	4.34	-0.1	-0.2	а
129 107.91 16.83 2 GC-MS(MS) 8.41 0.2 0.3 a 132 111.62 10.05 2 GC-MS(MS) 5.02 0.5 1.1 a 133 152 15 2 GC-MS(MS) 7.5 4.1 5.9 a 136 Image: Comparison of the comparison of th	128	80.3	17.69	2	HPLC	8.85	-2.2	-2.8	а
132 111.62 10.05 2 GC-MS(MS) 5.02 0.5 1.1 a 133 152 15 2 GC-MS(MS) 7.5 4.1 5.9 a 136 102.43 20.48 2 GC-MS(MS) 10.24 -0.3 -0.3 a 137 102.43 20.48 2 GC-MS(MS) 10.24 -0.3 -0.3 a 139 34.46 20 2 HPLC 10 -6.2 -6.9 a 140 130 26 2 GC-MS(MS) 13 2.1 1.8 c 142 70.7 18.22 2 9.11 -3.1 -3.7 a 144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) <td>129</td> <td>107.91</td> <td>16.83</td> <td>2</td> <td>GC-MS(MS)</td> <td>8.41</td> <td>0.2</td> <td>0.3</td> <td>а</td>	129	107.91	16.83	2	GC-MS(MS)	8.41	0.2	0.3	а
133 152 15 2 GC-MS(MS) 7.5 4.1 5.9 a 136 137 102.43 20.48 2 GC-MS(MS) 10.24 -0.3 -0.3 a 137 102.43 20.48 2 GC-MS(MS) 10.24 -0.3 -0.3 a 139 34.46 20 2 HPLC 10 -6.2 -6.9 a 140 130 26 2 GC-HRMS 13 2.1 1.8 c 142 70.7 18.22 2 9.11 -3.1 -3.7 a 144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 <t< td=""><td>132</td><td>111.62</td><td>10.05</td><td>2</td><td>GC-MS(MS)</td><td>5.02</td><td>0.5</td><td>1.1</td><td>а</td></t<>	132	111.62	10.05	2	GC-MS(MS)	5.02	0.5	1.1	а
136 102.43 20.48 2 GC-MS(MS) 10.24 -0.3 -0.3 a 139 34.46 20 2 HPLC 10 -6.2 -6.9 a 140 130 26 2 GC-HRMS 13 2.1 1.8 c 142 70.7 18.22 2 9.11 -3.1 -3.7 a 144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 15 -0.1 0 c 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0.8	133	152	15	2	GC-MS(MS)	7.5	4.1	5.9	а
137 102.43 20.48 2 GC-MS(MS) 10.24 -0.3 -0.3 a 139 34.46 20 2 HPLC 10 -6.2 -6.9 a 140 130 26 2 GC-HRMS 13 2.1 1.8 c 142 70.7 18.22 2 9.11 -3.1 -3.7 a 144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0	136								
139 34.46 20 2 HPLC 10 -6.2 -6.9 a 140 130 26 2 GC-HRMS 13 2.1 1.8 c 142 70.7 18.22 2 9.11 -3.1 -3.7 a 144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 S.59 -0.2 -0.3	137	102.43	20.48	2	GC-MS(MS)	10.24	-0.3	-0.3	а
140 130 26 2 GC-HRMS 13 2.1 1.8 c 142 70.7 18.22 2 9.11 -3.1 -3.7 a 144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 S.59 -0.2 -0.3 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 </td <td>139</td> <td>34.46</td> <td>20</td> <td>2</td> <td>HPLC</td> <td>10</td> <td>-6.2</td> <td>-6.9</td> <td>а</td>	139	34.46	20	2	HPLC	10	-6.2	-6.9	а
142 70.7 18.22 2 9.11 -3.1 -3.7 a 144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 GC-MS(MS) 5.71 0.8 1.5 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 <td< td=""><td>140</td><td>130</td><td>26</td><td>2</td><td>GC-HRMS</td><td>13</td><td>2.1</td><td>1.8</td><td>С</td></td<>	140	130	26	2	GC-HRMS	13	2.1	1.8	С
144 71.1 15.19 2 GC-MS(MS) 7.59 -3 -4.4 a 145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 GC-MS(MS) 5.71 0.8 1.5 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC	142	70.7	18.22	2		9.11	-3.1	-3.7	а
145 88.2 17.59 2 HPLC 8.8 -1.5 -1.9 a 146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 64 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 GC-MS(MS) 5.71 0.8 1.5 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3<	144	71.1	15.19	2	GC-MS(MS)	7.59	-3	-4.4	а
146 109.26 21.85 2 GC-MS(MS) 10.93 0.3 0.3 a 148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-MS(MS) 5.71 0.8 1.5 a 209 114.91 11.41 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 GC-MS(MS) 5.71 0.8 1.5 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0	145	88.2	17.59	2	HPLC	8.8	-1.5	-1.9	а
148 104.9 30 2 GC-MS(MS) 15 -0.1 0 c 149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-HRMS 29.13 1 0.4 c 209 114.91 11.41 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 5.59 -0.2 -0.3 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b	146	109.26	21.85	2	GC-MS(MS)	10.93	0.3	0.3	а
149 108.6 12.8 2 GC-MS(MS) 6.4 0.3 0.4 a 202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-HRMS 29.13 1 0.4 c 209 114.91 11.41 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 5.59 -0.2 -0.3 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 550 3.6 6.8 5	148	104.9	30	2	GC-MS(MS)	15	-0.1	0	С
202 101.4 2 2 1 -0.4 -1.7 b 203 116.5 58.25 2 GC-HRMS 29.13 1 0.4 c 209 114.91 11.41 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 5.59 -0.2 -0.3 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 5.50 3.6 6.8 5	149	108.6	12.8	2	GC-MS(MS)	6.4	0.3	0.4	а
203 116.5 58.25 2 GC-HRMS 29.13 1 0.4 c 209 114.91 11.41 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 5.59 -0.2 -0.3 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 5.50 3.6 6.8 5	202	101.4	2	2		1	-0.4	-1.7	b
209 114.91 11.41 2 GC-MS(MS) 5.71 0.8 1.5 a 211 103.8 11.19 2 5.59 -0.2 -0.3 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 5.50 3.6 6.8 5	203	116.5	58.25	2	GC-HRMS	29.13	1	0.4	С
211 103.8 11.19 2 5.59 -0.2 -0.3 a 212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 5.50 3.6 6.8 5.50	209	114.91	11.41	2	GC-MS(MS)	5.71	0.8	1.5	а
212 73.5 25.7 2 HPLC 12.85 -2.8 -2.5 c 213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 5.50 3.6 6.8 c	211	103.8	11.19	2		5.59	-0.2	-0.3	а
213 186.5 27.99 2 HPLC 14 7.1 5.7 c 215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 5.50 3.6 6.8 c	212	73.5	25.7	2	HPLC	12.85	-2.8	-2.5	С
215 47925 0 2 0 4187.3 21443.7 b 217 64.52 11.18 2 HPLC 5.50 3.6 6.8 2	213	186.5	27.99	2	HPLC	14	7.1	5.7	С
	215	47925	0	2		0	4187.3	21443.7	b
1211 04.32 11.10 211FLO 3.39 -3.0 -0.0 d	217	64.52	11.18	2	HPLC	5.59	-3.6	-6.8	а
218 36.17 6.65 2 3.33 -6.1 -17.3 a	218	36.17	6.65	2		3.33	-6.1	-17.3	а
222 184.1 24 2 GC-MS(MS) 12 6.9 6.4 c	222	184.1	24	2	GC-MS(MS)	12	6.9	6.4	С
223 43.1 2 -5.5 -28	223	43.1		2			-5.5	-28	
230 108.5 21.68 2 10.84 0.3 0.3 a	230	108.5	21.68	2		10.84	0.3	0.3	a
231 94.23 18.85 1 HPLC 18.85 -1 -0.6 c	231	94.23	18.85	1	HPLC	18.85	-1	-0.6	C
234 277 83.42 1 83.42 15 2.1 c	234	277	83.42	1	-	83.42	15	2.1	c
235 104.6 41.84 2 HPLC 20.92 -0.1 0 c	235	104.6	41.84	2	HPLC	20.92	-0.1	0	c
238 133 61.2 2 GC-MS(MS) 30.6 2.4 0.9 c	238	133	61.2	2	GC-MS(MS)	30.6	2.4	0.9	C.
241 199 55 2 27.5 8.2 3.4 C	241	199	55	2		27.5	8.2	3.4	C.
	243	40 5	11 7	2		5 85	-5.7	-10.4	a
247 181 85 07 2 HPI C 42 53 66 18 C	247	181	85.07	2	HPI C	42 53	6.6	1.8	с С
250 103.5 25.89 2 12.95 -0.2 -0.2 C	250	103 5	25.89	2		12.95	-0.2	-0.2	C C

Satisfactory, Questionable, Unsatisfactory $a : u_{ref} \le u_{lab} \le u_{max} (\sigma_p);$ $b : u_{lab} < u_{ref};$

 $c: u_{lab} > u_{max} (\sigma_p)$

Europe Direct is a service to help you find answers to your questions about the European Union Free phone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu

How to obtain EU publications

Our publications are available from EU Bookshop (<u>http://bookshop.europa.eu</u>), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

JRC Mission

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policies with independent evidence throughout the whole policy cycle.

EU Science Hub ec.europa.eu/jrc

- 9 @EU_ScienceHub
- **f** EU Science Hub Joint Research Centre
- in Joint Research Centre
- EU Science Hub

Doi: 10.2787/408598 ISBN 978-92-79-62166-6