

JRC SCIENTIFIC AND POLICY REPORTS

IMEP-36: Determination of

total Cd, Pb, As, Hg and Sn in feed premixes

Interlaboratory Comparison Report

Ioannis Fiamegkos, Fernando Cordeiro, Piotr Robouch, Håkan Emteborg, Jean Charoud-Got, Hanne Leys, Bibi Kortsen, Beatriz de la Calle

December 2012

European Commission

Joint Research Centre Institute for Reference Materials and Measurements

Contact information

Ms. Beatriz de la Calle Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium E-mail: <u>maria.de-la-calle@ec.europa.eu</u> Tel.: +32 (0) 14 571252 Fax: +32 (0) 14 571865

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/.

JRC78160

EUR 25784 EN

ISBN 978-92-79-28282-9

ISSN 1831-9424

doi:10.2787/72181

Luxembourg: Publications Office of the European Union, 2012

© European Union, 2012

Reproduction is authorised provided the source is acknowledged.

Printed in Belgium

IMEP-36: Determination of total Cd, Pb, As, Hg and Sn in feed premixes

Interlaboratory Comparison Report

December 2012

Ioannis Fiamegkos (c) Fernando Cordeiro (c) Piotr Robouch *(c)* Håkan Emteborg (c) Jean Charoud-Got (c) Hanne Leys (c) Bibi Kortsen (d) Beatriz de la Calle (a,b,c)

(a) ILC coordinator, (b) IMEP programme coordinator,(c) technical / scientific support, (d) logistic support

Summary

The Institute for Reference Materials and Measurements (IRMM) of the Joint Research Centre, a Directorate General of the European Commission, operates the International Measurement Evaluation Programme (IMEP). IMEP organizes interlaboratory comparisons (ILCs) in support to EU policies. This report presents the results of the proficiency test (PT) which focused on the determination of total Cd, Pb, As, Hg and Sn in feed premixes according to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed.

The test material used in this exercise was commercially available feed premix which after the appropriate processing was bottled, labelled, numbered accordingly and dispatched to the participants on the 9th of July 2012. Fifty laboratories from 22 countries registered to the exercise of which 45 reported results and answered the respective questionnaire. Laboratories were asked to perform two or three independent measurements and to report the mean, the associated uncertainty, the coverage factor of the associated uncertainty and the technique used to perform the measurements. Laboratory results were rated using z- and ζ -scores (zeta-scores) in accordance with ISO 13528. The assigned values (X_{ref}) for the measurands were determined as the mean of the values reported by two expert laboratories both of them National Metrology Institutes (NMI). These laboratories were the Federal Institute for Materials Research and Testing (BAM) (Germany) and LGC Limited (UK). The stability (isochronous) and homogeneity study was conducted by ALS Scandinavia AB (Sweden). The standard deviation for proficiency assessment ($\hat{\sigma}$), also called target standard deviation, was set to 15 % of the assigned value, for the analysis investigated.

The results obtained by the participants were optimum in the case of total Cd and less satisfactory for total As and total Pb. For total Sn 16 participants reported results, from which one third scored satisfactorily. Twenty one participants reported results for total Hg although, the expert laboratories reported that the mass fraction for that measurand was below their limit of detection. Hence, no scoring was provided for total Hg.

IMEP support to EU policy

IMEP is owned by the JRC – IRMM and provides support to the European measurement infrastructure in the following ways:

IMEP **distributes metrological traceability** from the highest level down to the routine laboratories. Laboratories can benchmark their measurement result against the IMEP reference value which is established according to metrological best practice.

IMEP helps laboratories to assess their estimate of **measurement uncertainty**. Participants are invited to report the uncertainty of their measurement result. IMEP integrates the estimate into the scoring, and provides assistance for the interpretation.

IMEP supports EU policies by **organising interlaboratory comparisons** (ILC) in the frame of specific EU legislation, or on request of a specific Directorate-General. IMEP-36 provided specific support to the following stakeholders:

- To the European Co-operation for Accreditation (EA), Interamerican Accreditation Cooperation (IAAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC) in the frame of a formal collaboration on a number of metrological issues, including the organisation of interlaboratory comparisons. Mr. Paul Greenwood from the United Kingdom Accreditation Service liaised between EA and IMEP for this ILC, Mrs. Barbara Belzer for IAAC and Aparna Dawan for APLAC (Annexes 1-3) This report does not discern the EA nominees from the other participants. Their results are however summarised in a separate report to EA.
- To the European Union Reference Laboratory for Heavy Metals in Feed and Food (EU-RL-HM) in the frame of the support to the National Reference Laboratories (NRLs). The exercise was announced to the network of NRLs who were invited to distribute the information between control laboratories in their respective countries.

IMEP is accredited according to ISO 17043:2010.

Table of contents

1 Introduction
1.1 Scope5
2. Set up of the exercise
2.1 Confidentiality6
2.2 Test material - Preparation6
2.3 Distribution7
2.4 Homogeneity and stability8
3. Reference values and their uncertainties
3.1 Assigned value X _{ref} 8
3.2 Associated uncertainty u _{ref} 8
3.3 Target standard deviation $\hat{\sigma}$ 9
4 Evaluation of results9
4.1 Scores and evaluation criteria9
4.2 General observations 11
4.3 Laboratory results and scorings12
4.4 Additional information extracted from the questionnaire
5 Conclusions
6 Acknowledgements 17
7. Abbreviations
8 References
Annexes

1 Introduction

The IMEP-36 exercise was organized aiming to assess the performance of the food control laboratories on the determination of total cadmium, lead, arsenic, mercury and tin in feed premixes. This proficiency test (PT) was carried out in collaboration with the European Union Reference Laboratory for Heavy Metals (EU-RL-HM), who organised in parallel the PT IMEP-114 for its network of National Reference Laboratories (NRLs), using the same test material. The results submitted to IMEP-114 are not discussed in this report.

Both exercises were requested by the Directorate General for Health and Consumers (DG SANCO).

Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed [1], describes "premixtures" as the "mixtures of additives or mixtures of one or more additives with substances used as carriers, intended for the manufacture of feedingstuffs". The various commercially available feed premixes as well as the diversity of production ways may lead to contaminated and/or dangerous end-products, introducing undesirable substances into the food chain. The Directive and its amendments [1] set maximum levels for undesirable substances in animal feed and feed premixes (organic and inorganic). Regarding heavy metals, limits are set only for lead (200 mg kg⁻¹) and cadmium (15 mg kg⁻¹).

From the analytical point of view the scarce publications found in scientific literature about the analysis of feed premixes are dealing with the determination of anticoccidials [2-4], antibiotics [5], vitamins [6-8], phthalates [9], sulfonamides [10] and iodinated casein [11], but not with the analysis of heavy metals. The determination of essential metals (e.g. Zn, Cu, Mn and Fe) in premix samples was reported for the evaluation of enriched preparations of animal feeds [12].

IMEP-36 was organized to check the analytical capabilities of the European and International food control laboratories to determine low concentrations of total As, Cd, Pb, Hg and Sn in feed premixes.

1.1 Scope

The scope of this PT was to test the competence of the participating laboratories to determine total As, Cd, Pb, Hg and Sn in feed premixes. Measurements were to be done on a commercially available feed premix that was processed by the IRMM to reach adequate homogeneity.

The assessment of the measurement results is undertaken on the basis of requirements laid down in legislation [1], and follows the administrative procedure and

5

logistics of the International Measurement Evaluation Program (IMEP) of the IRMM of the European Commission Directorate Joint Research Centre. IMEP is accredited according to ISO 17043:2010 [13]. The designation of this PT is IMEP-36.

2. Set up of the exercise

An invitation letter for participation was sent to the EA, IAAC and APLAC coordinators (Annex 1-3) on the 1^{st} of June 2012 for distribution to nominated and interested laboratories. A web announcement (Annex 4) was made for the exercise on the IMEP webpage on the 7th of June 2012.

Laboratories could register until the 3^{rd} of July and the test items were dispatched to the participants on the 9^{th} of July 2012. The reporting deadline was the 15^{th} of September 2012.

2.1 Confidentiality

The following confidentiality statement was made to EA, IAAC and APLAC: "Confidentiality of the participants and their results towards third parties is guaranteed". In the case of EA the following was added: "However, IMEP will disclose details of the participants that have been nominated by EA to you. The EA accreditation bodies may wish to inform the nominees of this disclosure".

2.2 Test material - Preparation

The commercially available feed premix (for dairy cattle) was purchased at the local market in Geel, Belgium. The producer reported the following composition:

Genetically modified soya
Analytical Constituents : 0.22% Ca; 3.95%Total P; 8% Mg; 3.01% Na
Nutritional additives : 1000000 UI kg ⁻¹ Vitamine A; (E671) 200000 UI kg ⁻¹ Vitamine
D3; 4400 mg kg ⁻¹ Vitamine E; 2000 mg kg ⁻¹ $C_5H_{14}CINO$; 20 mg kg ⁻¹ $Ca(IO_3)_2/I_2$; 15
$ma ka^{-1} CoSO_{-} 7H_{-}O/Co_{-} 1000 ma ka^{-1} CuSO_{-} 5H_{-}O/Cu_{-} 1250 ma ka^{-1} MpO/Mp_{-} 2500$

mg kg⁻¹ ZnSO₄(H₂O)/Zn; 40 mg kg⁻¹ Na₂SeO₃/Se; 100 mg kg⁻¹ BHT.

The 25-kg bag of the feed premix was opened and 7.5 kg of this material was first crushed using a jaw-crusher Retsch (Haan, Germany). The distance between the jaws was about 1 mm in order to break the pellets into smaller pieces. Next the resulting material was milled in a 100 UPZ mill (Hosokawa Alpine, Augsburg, Germany) without a sieve insert. By subsequent sieving over a 250 μ m nylon sieve and re-milling of the coarse fractions using the 100 UPZ mill 7.05 kg was finally obtained of the fine fraction.

The resulting 7.05 kg were then carefully mixed for 30 minutes in a Dynamix CM200 3Dmixer (WAB, Basel, Switzerland) before filling. The filling of 20 g per unit into 60 ml amber glass bottles was achieved using a vibrating feeder (Fritsch, Idar-Oberstein, Germany) and a balance. After filling the glass bottle was closed with a PE-insert and a screw-cap lid. In total 210 units of this powder were filled and labelled both for IMEP-36 and IMEP-114.

Analysis of the particle size and water revealed that the top-particle size in the powder was smaller than 365 μ m. Water content was about 10 % (m/m) as measured by Karl Fischer titration (KFT). No attempt was made to dry the material further. Based on the Karl Fischer data an oven method was devised for the benefit of the participants in this inter-comparison. The oven method if correctly applied would thereby result in a mass loss corresponding to the water content as measured by KFT.

2.3 Distribution

Samples were dispatched to the participants by IRMM on the 9th of July 2012. Each participant received:

a) One bottle containing approximately 20 g of powdered feed premix

b) An accompanying letter (Annex 5).

c) A "Confirmation of Receipt" form to be sent back to IRMM after receipt of the test material (Annex 6).

d) A summary of the questionnaire the laboratory would be prompted to answer on-line after reporting the results (Annex 7).

Concrete instructions were given to all participants in the above mentioned letter accompanying the test material. The measurands and matrix were defined as "Total Cd, Pb, Hg, As and Sn in Feed Pre-mixes following Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed".

Laboratories were asked to perform two or three independent measurements and to report the mean, the associated uncertainty, the coverage factor of the associated uncertainty and the technique used to perform the measurements. The measurement results were to be corrected for (i) recovery and (ii) moisture, following the procedure described therein. Participants were asked to follow their routine procedures for the analysis and to report results in the same way (e.g. number of significant figures) as they would report to their customers. Likewise they were asked to perform the drying using the drying recipe provided and report all data as based on dry-mass.

7

The results were to be reported in a special on-line form for which each participant received an individual access code. A questionnaire was attached to this on-line form (Annex 8).

The laboratory codes were given randomly and communicated to the participants by e-mail. The assigned values were disclosed to the participants in an e-mail sent on the 15^{th} of November 2012.

2.4 Homogeneity and stability

The homogeneity and stability studies were performed by ALS Scandinavia AB (Luleå, Sweden). Homogeneity was evaluated according to ISO 13528 [14]. The material proved to be adequately homogeneous for all measurands under study (Annex 9). The contribution from homogeneity (u_{bb}) to the uncertainty of the reference value (u_{ref}) was calculated using SoftCRM [15].

The stability study was conducted following the isochronous approach [16, 17]. The evaluation of the stability of the test item was made using the software SoftCRM [15]. The material proved to be stable for the 10 weeks that elapsed between the dispatch of the samples and the deadline for submission of results, for total Cd, Pb, As, Hg and Sn (Annex 9).

3. Reference values and their uncertainties

3.1 Assigned value X_{ref}

The assigned values for the five measurands were determined by BAM and LGC.

BAM used a microwave-assisted digestion with a mixture of HNO₃/HCl/HF and inductively coupled plasma-mass spectrometry (ICP-MS) for the analysis. Values were reported for all measurands except for total Hg for which after analysing the test item with ICP-MS, advanced mercury analyzer (AMA-254) and cold vapour-atomic fluorescence spectrometry (CV-AFS) the laboratory reported less than 1.5 μ g kg⁻¹. LGC Ltd used Microwave-assisted digestion with a mixture of HNO₃/HCl/H₂O₂/HF and ICP-MS for the metal determination. Values were reported in all cases except for total Hg for which the laboratory reported less than 0.8 μ g kg⁻¹ based on cold vapour – inductively coupled plasma mass spectrometry (CV-ICP-MS) analysis.

3.2 Associated uncertainty u_{ref}

The associated uncertainties (u_{ref}) of the assigned values in the milled feed premix samples were calculated combining the uncertainty of the characterization (u_{char}) with the contributions for homogeneity (u_{bb}) and stability (u_{st}) :

$$\mathbf{u}_{\rm ref} = \sqrt{\mathbf{u}_{\rm char}^2 + \mathbf{u}_{\rm bb}^2 + \mathbf{u}_{\rm st}^2}$$

For all measurands except Hg, u_{char} was estimated combining the reported uncertainties by BAM (u_{BAM}) and LGC (u_{LGC}) according to the ISO Guide for the Expression of Uncertainty in Measurement (GUM) [18], as follows:

$$u_{char} = \frac{1}{2}\sqrt{u_{LGC}^2 + u_{BAM}^2}$$

3.3 Target standard deviation $\hat{\sigma}$

On the basis of previous experience for this type of analysis the standard deviations for proficiency assessment $\hat{\sigma}$ (also called target standard deviation) was set to 15 % of the respective assigned values.

An overview of all reference values (X_{ref}, u_{ref} , U_{ref} , $\hat{\sigma}$) is given in Table 1.

Table 1 - Assigned values, their associated uncertainties and target standard deviations for the measurands of this ILC (all values in mg kg⁻¹). - Mercury results are not included as the X_{ref} was found by the two expert laboratories to be "less than" their respective limit of detection.

		Total As	Total Cd	Total Pb	Total Sn
		$(X_n \pm U_n)$	$(X_n \pm U_n)$	$(X_n \pm U_n)$	$(X_n \pm U_n)$
Certifiers	BAM	1.96 ± 0.09	1.12 ± 0.06	0.613 ± 0.041	0.85 ± 0.07
	LGC	1.911 ± 0.077	1.103 ± 0.027	0.658 ± 0.036	0.733 ± 0.017
X _{ref}		1.936	1.112	0.636	0.792
U _{char}		0.030	0.016	0.014	0.018
Ubb		0.046	0.008	0.018	0.021
U _{st}		0.102	0.021	0.022	0.047
U _{ref}		0.116	0.028	0.032	0.055
U _{ref} (k=2)*		0.231	0.056	0.063	0.109
$\hat{\sigma}$ (Set 15	5%)	0.290	0.167	0.095	0.119

 X_{ref} is the reference value and $U_{ref} = k \cdot u_{ref}$ is the estimated associated expanded uncertainty; with a coverage factor k = 2 corresponding to a level of confidence of about 95 %.

4 Evaluation of results

4.1 Scores and evaluation criteria

Individual laboratory performance was expressed in terms of z- and ζ -scores in accordance with ISO 13528 [14].

$$z = \frac{X_{lab} - X_{ref}}{\hat{\sigma}}$$
 and $\zeta = \frac{X_{lab} - X_{ref}}{\sqrt{u_{ref}^2 + u_{lab}^2}}$

where:	\mathbf{x}_{lab}	is the measurement result reported by a participant
	X_{ref}	is the reference value (assigned value)
	U _{ref}	is the standard uncertainty of the reference value
	U _{lab}	is the standard uncertainty reported by a participant
	$\hat{\sigma}$	is the standard deviation for proficiency assessment

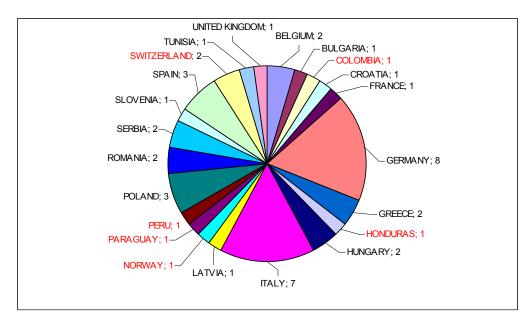
The interpretation of the z- and ζ -score is done according to ISO 17043 [13] as follows:

$ \text{score} \le 2$	satisfactory result	(green in the tables of Annexes 10 - 14)
2 < score < 3	questionable result	(orange in the tables of Annexes 10 - 14)
$ \text{score} \ge 3$	unsatisfactory result	t (red in the tables of Annexes 10 - 14)

The z-score compares the participant's deviation from the reference value with the target standard deviation for proficiency assessment ($\hat{\sigma}$) used as common quality criterion. $\hat{\sigma}$ is defined by the PT organizer as the maximum acceptable standard uncertainty.

The ζ -score states whether the laboratory's result agrees with the assigned value within the respective uncertainty. The denominator is the combined uncertainty of the assigned value and the measurement uncertainty as stated by the laboratory. The ζ -score is therefore the most relevant evaluation parameter, as it includes all parts of a measurement result, namely the expected value (assigned value), its uncertainty and the unit of the result as well as the uncertainty of the reported values. An unsatisfactory ζ -score can either be caused by an inappropriate estimation of the concentration or of its uncertainty, or both.

The standard uncertainty of the laboratory (u_{lab}) was estimated by dividing the reported expanded uncertainty by the reported coverage factor, k. When no uncertainty was reported, it was set to zero $(u_{lab} = 0)$. When k was not specified, the reported expanded uncertainty was considered as the half-width of a rectangular distribution; u_{lab} was then calculated by dividing this half-width by $\sqrt{3}$, as recommended by Eurachem and CITAC [19].


Uncertainty estimation is not trivial, therefore an additional assessment was provided to each laboratory reporting uncertainty, indicating how reasonable their uncertainty estimate is. The standard uncertainty from the laboratory (u_{lab}) is most likely to fall in a range between a minimum uncertainty (u_{min}), and a maximum allowed (u_{max}). u_{min} is set to the standard uncertainty of the reference value. It is unlikely that a laboratory carrying out the analysis on a routine basis would measure the measurand

with a smaller uncertainty than the expert laboratories chosen to establish the assigned value. u_{max} is set to the target standard deviation ($\hat{\sigma}$) accepted for the PT. If u_{lab} is smaller than u_{min} , the laboratory may have underestimated its uncertainty. Such a statement has to be taken with care as each laboratory reported only measurement uncertainty, whereas the uncertainty of the reference value also includes contributions of homogeneity and stability. If those are large, measurement uncertainties smaller than u_{min} are possible and plausible. If $u_{lab} > u_{max}$, the laboratory may have overestimated the uncertainty. An evaluation of this statement can be made when looking at the difference of the reported value and the assigned value: if the difference is small and the uncertainty is large, then overestimation is likely. If, however, the deviation is large but is covered by the uncertainty, then the uncertainty is properly assessed but large. It should be pointed out that u_{max} is only a normative criterion if set down by legislation.

4.2 General observations

From the 50 laboratories (22 countries) that have registered, 45 submitted their results and answered the associated questionnaire (figure 1).

Those reporting "less than" and "0" values were not included in the evaluation (Table 2). However, reported "less than" values were compared with the corresponding $X_{ref} - U_{ref}$ values. If the reported limit value is lower than the corresponding $X_{ref} - U_{ref}$, this statement is considered incorrect, since the laboratory should have detected the respective element. In this exercise laboratory L12 reported incorrectly "less than" 0.2 mg kg⁻¹ for total Lead (X_{ref} - $U_{ref} = 0.57$ mg kg⁻¹) and L02 "less than" 0.05 mg kg⁻¹ for total Tin (X_{ref} - $U_{ref} = 0.68$ mg kg⁻¹).

Figure 1: Country distribution in IMEP-36 based on number of participants(45) having submitted results. Non-EU countries are indicated in red.

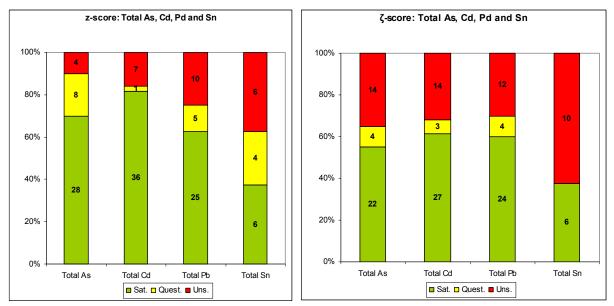

	Total As	Total Cd	Total Pb	Total Sn	Total Hg
Number of participants reported evaluable results	40	44	40	16	21
"less than"	1	-	4	5	14

 Table 2 - Number of reported results, "less than" values.

4.3 Laboratory results and scorings

The results as reported by the participants for total As, Cd, Pb, Hg and Sn are listed in Annexes 10 to 14, together with the z- and ζ -scores. The Kernel distribution plots, obtained using a software tool developed by AMC [20] are also presented in the respective figures therein.

The overall performance of the participants regarding the z- and ζ -scores, is summarised in Figure 2.

Figure 2: Number and percentages of laboratories with satisfactory, questionable and unsatisfactory scores. (The numbers on the bars correspond to the exact number of laboratories in a certain scoring category).

The values provided by the two expert laboratories for total As, Cd, Pb and Sn were in good agreement between each other. The reference values (X_{ref}) were calculated as the average of the two reported by the expert laboratories according to the ISO 13528. The assigned and reported values for total Cd and total Pb in the samples were well under the limits set by the legislation. For total As and total Sn, where no limit are set by the legislation, the values provided by the certifiers are well above the detection limits of the commonly used methods of analysis.

The results provided by the participants demonstrate that the feed premix used as test item proved to be a challenging matrix. The moisture content reported by the participants was of the order of 9.6 \pm 1,9 %, ALS reported 11.0 \pm 0.2 % (n=30). The overall performance for the results reported for total Cd (44 participants) was adequate since satisfactory z-scores were obtained by 80 % of the participants (ζ -scores: 60 %). For total As (40 participants) satisfactory z-scores were obtained by more than 65 % of the participants (ζ -scores: 58 %). In the case of total Pb, (40 laboratories reported results) satisfactory z- and ζ -scores were achieved by more than 60 %. For all the measurands the majority of the questionable and unsatisfactory results were due to underestimation of the mass fraction.

Some laboratories might have used mild digestion methods which did not allow a quantitative determination of the total mass fraction. In the last update of the Directive 2002/32/CEC the footnote on partial extraction with 5 % HNO₃ acid at boiling temperature has been deleted. Laboratories must be aware that in some types of feed matrices, such as those containing kaolinitic clay, the total mass fraction might be significantly different from that obtained with mild digestion procedures.

For total Sn the performance of the participating laboratories was not satisfactory. One third of the participants reported evaluable results, and 5 reported "less than". From the 16 laboratories that delivered a value for total Sn only 6 scored satisfactorily, one overestimated the result and the rest (10) underestimated it, as can also be seen in the Kernel density plot (Annex 13). It should also be noted that from the 10 laboratories reporting questionable and/or unsatisfactory results, 7 were using reference materials for the validation of the method applied and/or for the calibration of the instrument. In addition, there seems to be a correlation between the Sn concentration and the digestion procedure used. As indicated in the literature, the efficiency of Sn extraction by this kind of matrices increases when microwave acid digestion is used, also the addition of HF improves the recovery [21]. In the IMEP-36 exercise 3 out of 5 laboratories that scored satisfactorily have used microwave acid extraction (one with the addition of HF), while for the remaining two no clear information was given. Nevertheless, the low number of reported values for this measurand does not allow any deeper analysis of the influencing factors and hence no conclusive remarks can be extracted.

As mentioned, the expert laboratories were not able to provide results for total Hg in the test item. Nevertheless, a significant number of participants (21) reported values for total Hg ranging from 0.7 μ g kg⁻¹ to 0.4 mg kg⁻¹. Ten participants did not report a value while 14 reported "less than". A first remark is that half of the reported values for total Hg are lower than almost all the LoDs reported by the participants that stated a "less than" value. Also very low uncertainty values were reported by these laboratories. One could assume that those very low values correspond even to the blank values given by the electronic noise of the instrument and to their associated standard deviation.

13

Secondly, the higher values reported for total Hg, in most cases, were acquired by analysing the sample by ICP-MS. Interestingly, a participating laboratory in the parallel exercise IMEP-114 communicated the following [private communication]:

"We analyzed the Hg content in the Imep 114, using the new bottles you send us. In line with the reported value for the PT last time, we found concentrations < lod (analyzed using a mercure aparatus CVAFS).

On the ICPMS we found the following:

Based on mass 200 and 202 we had an interference of Wolfram oxide. This interference increased the Hg concentration. If we use mass 201 for the calibration of Hg, we do not have interference of W oxide, and <LOD was found in the imep 114 sample. This results show you the error due to the interference even when the collision cell (reactor cell of ICPMS) was used to remove those interferences."

One last remark is that the number of satisfactory ζ -scores is lower than that of the z-scores. Thus, laboratories should put effort in making a rational estimation of the uncertainty associated to their measurements.

4.4 Additional information extracted from the questionnaire

Additional information was gathered from the questionnaire filled in by the participants (Annex 6).

Twenty one participants performed the analysis following an official method. The information provided by the laboratories about their methods of analysis is summarised in Annex 15. With the exception of total Hg, the influence of the techniques used did not correlate to any of the reported results.

Thirty three laboratories reported the use of reference materials for the purpose of method validation and/or calibration and these materials are presented in Table 3. Attention must be paid to the CRMs used since they must match the matrix of the test samples as much as possible. Although there are no feed premix reference materials and the participants used a variety of RMs for the purpose of this PT no safe conclusions can be drawn out about their usefulness regarding the specific analysis.

Fifteen laboratories corrected their results for recovery, 23 did not and 7 didn't reply. Sixteen laboratories reported the recovery used to correct their results. The recoveries reported were in the range 70-107 %. Laboratories that reported recoveries lower than 80 % must be aware that such recoveries indicate that the method is significantly biased and that corrective actions should be engaged [22].

14

	> 0		77 (-	7
LCode	Does your laboratory use a reference material for this type of analysis?	If yes, which one(s)	Is the material used for the validation of procedures?	Is the material used for calibration of instruments?
L03	yes	Feed material from Ministery of Agriculture	no	no
L05	yes	Pig feed BCR-709, Soya bean NCS ZC73011, Milk powder NCS ZC73015	yes	yes
L07	yes	CRM from BIPEA and FAPAS	yes	no
L08	yes	BCR - 191 Brown bread	yes	no
L09	yes	Phosphate procured from CEN validation studies, Bipea samples type premixes we use as internal reference material	yes	no
L11	yes	FAPAS	yes	no
L13	yes	BCR 185R (bovine liver)	yes	no
L15	yes	BgVV tomate puree as QS standard for Sn and collaborative tested feed materials from studies of VDLUFA, ALVA, IAG	no	no
L16	yes	ILC sample material	yes	no
L17	yes	CRM BCR-032 (Moroccan phosphate rock)	yes	no
L18	yes	CRM's IRMM, NIST, IAEA	yes	no
L20	yes	interlaboratory comparisons excess	no	no
L21	yes	mineral feed test material from a former LGC interlaboratory comparison	yes	no
L22	yes	MERCK standard solution		yes
L23	yes	CERTIFICATED STANDARD SOLUTIONS	yes	yes
L26	yes	Samples from ring tests	yes	yes
L27	yes	Oyster Tissue, Tort-2, Bovine Liver	yes	no
L28	yes	sample of interlaboratory comparison	no	no
L29	yes	Fapas and CREAA	yes	no
L30	yes	INTERLABORATORY THEM APPROVED	yes	yes
L31	yes	inorganic ventures, 71A, 71B, Hg of 10 ppm	,	,
L35	yes	DORM-3 (NRC), NIST	yes	yes
L36	yes	This one obteined from intercomparation exercices	yes	yes
L37	yes	BCR skim milk powder	no	no
L38	yes		yes	no
L39	yes	INCT-MPH-2, NCS ZC 80002b(wheat flour), NCS ZC73009(GSB-2 wheat), NCS ZC73010 mealie	yes	no
L40	yes	NCS ZC 73013 (spinage)	yes	no
L42	yes	IAEAV 185R DORM TORT 150	yes	no
L45	yes		yes	yes
L46	yes	FAPAS	yes	no
L47	yes	the rest of PT material in the last year	no	no
L47	yes	IRMM	yes	yes
L40 L49		Material from interlaboratory comparisons	í í	
レサブ	yes		yes	no

Table 3 - List of reference materials used by the participants in IMEP-36 for method validation and/or calibration purposes.

In italics information about the matrix of used CRM are given when applicable

All participants but 4 (L08, L30, L44 and L48) corrected their results for the moisture content, determined using the protocol described in the accompanying letter (Annex 5).

Various approaches were used to scrutinise the measurement uncertainty (Table 4). Eighteen laboratories usually report uncertainty to their customers while 21 do not.

Table 4 - Approaches used by the participants in IMEP-36 to estimate the uncertainty of their measurements.

Approach followed for uncertainty calculation	Number of labs.
Uncertainty budget calculated according to ISO-GUM	9
Known uncertainty of the standard method	5
Uncertainty of the method as determined by in-house validation	22
Measurement of replicates (i.e. precision)	9
Estimation based on judgement	3
Use of intercomparison data	8
Other	5

Regarding the experience of the laboratories with this kind of analysis 35 participants answered that they carry out this type of analysis on a regular basis while 4 do not.

Thirty eight participants stated that they have a quality system in place based on ISO 17025. In 5 cases the quality system is also based on ISO 9000. Thirty two participants are accredited for the methods of analysis used in this exercise, although one laboratory indicated that they are not accredited for Sn analysis and 2 other reported that they do not analyse Sn routinely. Most of the laboratories (36) regularly take part in PTs.

5 Conclusions

From the results obtained for the IMEP-36 exercise, the participating laboratories reported satisfactorily for total Cd. Total As and Pb proved to be difficult measurands since less satisfactory results were obtained with an obvious trend to underestimation of the assigned values. This could be attributed to inadequate digestion/extraction procedures. Only one third of the participants reported results for total Sn from which only 33 % obtained satisfactory score. The digestion method is evidently influencing the Sn recovery from the matrix. Twenty one participants reported results for total Hg although the expert laboratories stated that the mass fraction for that measurand was below the limit of detection of the method used. Interference by tungsten oxide could be the explanation for those high results.

Once again the need for an extra effort was identified in the evaluation of uncertainties associated to the results, since the number of questionable and unsatisfactory ζ -scores is systematically higher than those of z-scores for all analytes. The measurement uncertainty is of paramount importance in cases of litigation and so its sound calculation is fundamental for control laboratories.

6 Acknowledgements

C. Contreras and P. Connely from the Standards for Innovation and Sustainable Development (SID) Unit of the IRMM are acknowledged for their support in the isochronous study and in optimizing the method to measure the moisture content, respectively. F. Ulberth is also acknowledged for revising the manuscript.

The laboratories participating in this exercise, listed below are kindly acknowledged.

Organisation	Country
FAVV - FLVVG	BELGIUM
SCK-CEN	BELGIUM
SGS Bulgaria Ltd	BULGARIA
IVONNE BERNIER LABORATORIO LTDA	COLOMBIA
EUROINSPEKT CROATIAKONTROLA d.o.o.	CROATIA
CONSEIL GENERAL DE VENDEE	FRANCE
Bavarian health and food safety authority	GERMANY
Niedersächsisches Landesamt für Verbraucherschutz und	GERMANY
Lebensmittelsicherheit	GERMANT
Institut fuer Hygiene und Umwelt	GERMANY
LTZ Augustenberg	GERMANY
University of Hohenheim	GERMANY
BLS Analytik GmbH & Co. KG	GERMANY
Berghof Analytik + Umweltengineering GmbH & Co.KG	GERMANY
Landeslabor Berlin-Brandenburg	GERMANY
FOOD ALLERGENS LABORATORY	GREECE
AGROLAB SA	GREECE
Laboratorio Nacional de Análisis de Residuos, LANAR-OIRSA	HONDURAS
Food Analytica Ltd.	HUNGARY
Central Agricultural Office	HUNGARY
SILLIKER ITALIA SPA	ITALY
BIOCHEMIELAB SRL	ITALY
Istituto Zooprofilattico Sperimentale - Puglia e Basilicata	ITALY
NEOTRON SPA	ITALY
Istituto Caporale Teramo	ITALY
Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana	ITALY
IZS SARDEGNA	ITALY
Ltd LATSERT	LATVIA
National Institute of Nutrition and Seafood Research	NORWAY
Díaz Gill Medicina Laboratorial S.A.	PARAGUAY
Instituto Tecnológico pesquero del Perú	PERU
Wojewódzki Inspektorat Weterynarii w Białymstoku	POLAND
Zakład Higieny Weterynaryjnej	POLAND
Wojewodzki Inspektorat Weterynarii	POLAND
DSVSA DOLJ	ROMANIA
DSVSA-LSVSA Calarasi	ROMANIA

Organisation	Country
SP LABORATORIJA A.D.	SERBIA
INSTITUTE OF MEAT HYGIENE AND TECHNOLOGY	SERBIA
KMETIJSKI INSTITUT SLOVENIJE	SLOVENIA
LABORATORI AGROALIMENTARI - DAAM (Generalitat de Catalunya)	SPAIN
LABORATORIO AGRARIO REGIONAL. JUNTA DE CASTILLA Y LEÓN.	SPAIN
Consejeria de Ganaderia, Pesca y Desarrollo Rural	SPAIN
Agroscope ALP	SWITZERLAND
COOP Zentrallabor	SWITZERLAND
LCAE LABORATOIRE CENTRAL D'ANALYSES ET D'ESSAIS	TUNISIA
Eurofins food testing UK limited	UNITED
	KINGDOM

7. Abbreviations

AMC	Analytical Methods Committee of the Royal Society of Chemistry
BIPM	Bureau International des Poids et Mesures
CITAC	Co-operation for International Traceability in Analytical Chemistry
CONTAM	Panel on Contaminants in the Food Chain
DG SANCO	Directorate General for Health and Consumer Protection
EA	European Co-operation for Accreditation
EFSA	European Food Safety Authority
ETAAS	Electrothermal atomic absorption spectrometry
EU	European Union
EURACHEM	A focus for Analytical Chemistry in Europe
EU-RL-HM	European Union Reference Laboratory for Heavy Metals in Feed and Food
GUM	Guide for the Expression of Uncertainty in Measurement
GF-AAS	Graphite furnace atomic absorption spectrometry
ID-ICP-MS	Isotope dilution - inductively coupled plasma - mass spectrometry
ILC	Interlaboratory Comparison
IMEP	International Measurement Evaluation Programme
IRMM	Institute for Reference Materials and Measurements
JRC	Joint Research Centre
LoD	Limit of detection
NRL	National Reference Laboratory
PE	Polyethylene
PT	Proficiency Test
PTWI	Provisional Tolerable Weekly Intake
RM	Reference material

8 References

[1] Commission Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed & Commission Regulation (EU) No 744/2012 of 16 August 2012 amending Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed.

[2] Thalmann A., Wagner K., Tomassen M., Driessen J., De Jong J. (2004) "Liquid chromatographic method to determine narasin in feedingstuffs and premixtures: Development, validation, and interlaboratory study", Journal of AOAC International, 87 (6): 1278-1286.

[3] De Jong J., Stoisser B., Wagner K., Tomassen M., Driessen J., Hofmann P., Putzka H.-A. (2004) "Determination of maduramicin in feedingstuffs and premixtures by liquid chromatography: Development, validation, and interlaboratory study." Journal of AOAC International, 87 (5): 1033-1041.

[4] Tavcar-Kalcher G., Pavsic-Vrtac K., Vengust A. (2009) "Validation of the procedure for the determination of maduramicin in concentrates, premixes, and feeds by liquid chromatography", Food Additives and Contaminants, 26 (1): 63–67

[5] Baere S.D., de Backer P. (2007) "Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection", Analytica Chimica Acta, 586: 319-325.

[6] Rubaj J., Korol W., Bielecka G., Kwiatek K. (2008) "Determination of thiamine in premixture and compound feed by liquid chromatography method", Bulletin of the Veterinary Institute in Pulawy, 52 (3): 435-440.

[7] Rudenko A. O., Kartsova L. A. (2010) "Determination of Water_Soluble Vitamin B and Vitamin C in Combined Feed, Premixes, and Biologically Active Supplements by Reversed Phase HPLC", Journal of Analytical Chemistry 65(1): 71–76.

[8] Holler U., Wachter F., Wehrli C., Fizet C. (2006) "Quantification of biotin in feed, food, tablets, and premixes using HPLC–MS/MS", Journal of Chromatography B, 831: 8–16

[9] Jarosova A., Harazim J., Kratka L., Kolencıkova D. (2010) "Screening of phthalic acid esters in raw materials, premixes and feed additives", Environmental Chemistry Letters 8:387–391

[10] Liu R., He P., Li Z., and Li R. (2011) "Simultaneous Determination of 16 Sulfonamides in Animal Feeds by UHPLC-MS-MS" Journal of Chromatographic Science, 49: 640-646

[11] Wang Z., Zhang L., He P., Li M., Yang W. (2009) "HPLC-MS analysis of iodotyrosins produced by sample hydrolysis: A simple method for monitoring iodinated casein if feed premixes" Journal of Chromatography B, 877: 4175-4179.

[12] Vacchina V., Oguey S. Ionescu C. Bravo D., Lobinski R. (2010) "Characterization of metal glycinate complexes by electrospray Q-TOF-MS/MS and their determination by capillary electrophoresis–ICP-MS: application to premix samples" Analytical and Bioanalytical Chemistry 398:435–449

[13] ISO 17043:2010 – "Conformity assessment – General requirements for proficiency testing", issued by ISO-Geneva (CH), International Organization for Standardization.

[14] ISO 13528:2005 - "Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons", issued by ISO-Geneva (CH), International Organization for Standardization.

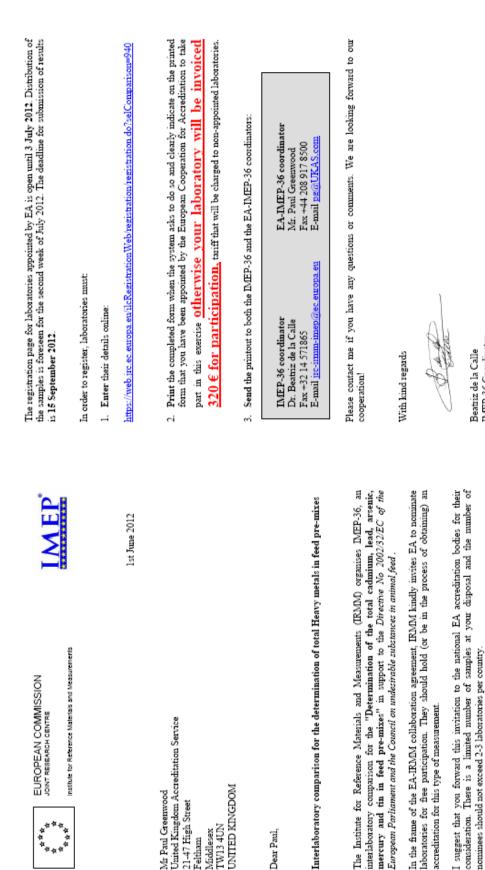
[15] <u>http://www.eie.gr/iopc/softcrm/index.html</u>, (Accessed at date of publication of this report).

[16] Lamberty A., Schimmel H., Pauwels J. (1998) "*The study of the stability of reference materials by isochronous measurements*", Fresenius' Journal of Analytical Chemistry 360(3-4): 359-361.

[17] Linsinger T. P. J., Pauwels J., Lamberty A., Schimmel H. G., Van Der Veen A. M. H., Siekmann L. (2001) *"Estimating the uncertainty of stability for matrix CRMs"*, Analytical and Bioanalytical Chemistry 370(2-3): 183-188.

[18] "Evaluation of measurement data - Guide to the Expression of Uncertainty in *Measurement*" (GUM 1995 with minor corrections) (2008). Joint Committee for Guides in Metrology (JCGM/WG 1 - BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML).

[19] Eurachem/CITAC (2000) "*Quantifying Uncertainty in Analytical Measurement*", <u>http://www.eurachem.org</u>.


[20] AMC/RSC (2006), "*Representing data distributions with Kernel density estimates*", Issued by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry (RSC), AMC Technical Brief.

[21] Balamara Krishna M.V., Chandrasekaran K. Venkateswarlu G., Karunasagar D. (2012) "A cost-effective and rapid microwave-assisted acid extraction method for the multi-elemental analysis of sediments by ICP-AES and ICP-MS" Analytical Mehods 4: 3290-3299.

[22] Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.

Annexes

Annex 1 : Invitation to EA to nominate laboratories	23
Annex 2 : Invitation to IAAC to nominate laboratories	24
Annex 3 : Invitation to APLAC to nominate laboratories	25
Annex 4 : Annoucement on IRMM - IMEP website	26
Annex 5 : Sample accompanying letter	27
Annex 6 : 'Confirmation of receipt' form	28
Annex 7 : Summary questionnaire sent with samples	29
Annex 8 : Online Questionnaire	30
Annex 9 : Homogeneity and stability studies	32
Annex 9.1 : Homogeneity study for total Arsenic	32
Annex 9.2 : Stability study for total Arsenic	32
Annex 9.3 : Homogeneity study for total Cadmium	33
Annex 9.4 : Stability study for total Cadmium	33
Annex 9.5 : Homogeneity study for total Lead	34
Annex 9.6 : Stability study for total Lead	34
Annex 9.7 : Homogeneity study for total Tin	35
Annex 9.8 : Stability study for total Tin	35
Annex 10 : Results for Total Arsenic	36
Annex 11 : Results for Total Cadmium	38
Annex 12 : Results for Total Lead	40
Annex 13: Results for Total Tin	42
Annex 14: Results for Total Mercry	44
Annex 15: Experimental details (Annex 8, Question 5)	46

United Kingdom Accreditation Service

Mr Paul Greenwood 21-47 High Street

**** *****

UNITED KINGDOM

Dear Paul.

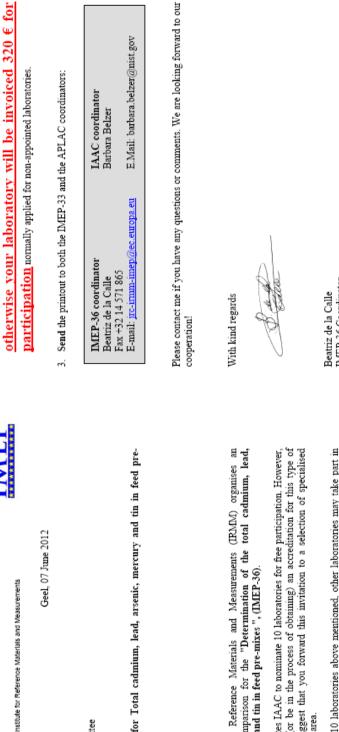
rw13 4 UN Middlesex

eltham.

Annex 1: Invitation to EA to nominate laboratories

IMEP-36: Total Cd, Pb, As, Hg and Sn in Feed Premixes

Referenceg 111, B-2440 Geel - Belgium, Telephone: (32-14) 571 211. http://imm.jrc.ec.europa.eu Telephone: direct line (32-14) 571 682. Fax: (32-14) 571 685.


ы

IMEP-36 Coordinator

Confidentiality of the participants and their results towards third parties is guaranteed. However, IMEP will disclose details of the participants that have been nominated by EA to you. The EA accreditation bodies may wish to inform the nominees of this disclosure.

accreditation for this type of measurement.

E-mail: jrc-imm-imep@ec.europa.eu

Beatriz de la Calle IMEP-36 Coordinator

Annex 2: Invitation to IAAC to nominate laboratories

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

**** ****

Print the completed form when the system asks to do so and clearly indicate on the printed form that they have been appointed by APLAC to take part in this exercise

d

To: Babara Belzer IAAC Lab Committee

Intercomparison for Total cadmium, lead, arsenic, mercury and tin in feed premixes

Dear Mrs. Belzer,

The Institute for Reference Materials and Measurements (IRMM) organises an interlaboratory comparison for the "Determination of the total cadmium, lead, arsenic, mercury and tin in feed pre-mixes ", (IMEP-36) IRMM kindly invites IAAC to nominate 10 laboratories for free participation. However, they should hold (or be in the process of obtaining) an accreditation for this type of measurement. I suggest that you forward this invitation to a selection of specialised laboratories in this area.

24

In addition to the 10 laboratories above mentioned, other laboratories may take part IMEP-36 paying a registration fee of 320 €.

Confidentiality of the participants and their results towards third parties is guaranteed.

Registration of participants is open until 3 July 2012. Distribution of the samples is foreseen for the second week of July 2012, and the deadline for submission of results is 15 September 2012.

In order to register, laboratories must

Enter their details online:

https://web.jrc.ec.europa.eu/ilcRegistrationWeb/registration/registration.do?selCompans om=940

Retisesweg 111, 5-2440 Geel - Belglum. Telephone: (32-14) 571 211. http://imm.jrc.ec.europa.eu Telephone: direct line (32-14) 571 715. Fax: (32-14) 571 865.

64

E-mall: Jro-Imm-Imep@ec.europa.eu

Intercomparison for Total cadmium, lead, arsenic, mercury and tin in feed premixes

Dear Apama,

The Institute for Reference Materials and Measurements (IRMM) organises an interlaboratory comparison for the "Determination of the total cadmium, lead, arsenic, mercury and tin in feed pre-mixes ", (IMEP-36). IRMM kindly invites APLAC to nominate 10 laboratories for free participation. However, they should hold (or be in the process of obtaining) an accreditation for this type of measurement. I suggest that you forward this invitation to a selection of specialised laboratories in this area. In addition to the 10 laboratories above mentioned, other laboratories may take part in IMEP-36 paying a registration fee of 320 $\varepsilon.$

Confidentiality of the participants and their results towards third parties is guaranteed

Registration of participants is open until 3 July 2012. Distribution of the samples is foreseen for the second week of July 2012, and the deadline for submission of results is 15 September 2012.

In order to register, laboratories must:

Enter their details online

https://web.jrc.ec.europa.eu/ilcRegistrationWeb/registration/registration_do?selComparis on=940

Retieseweg 111, 5-2440 Geel - Beiglum. Telephone: (32-14) 571 211, http://mm.jrc.ec.europa.eu Telephone: direct line (32-14) 571 715, Fax: (32-14) 571 865.

2

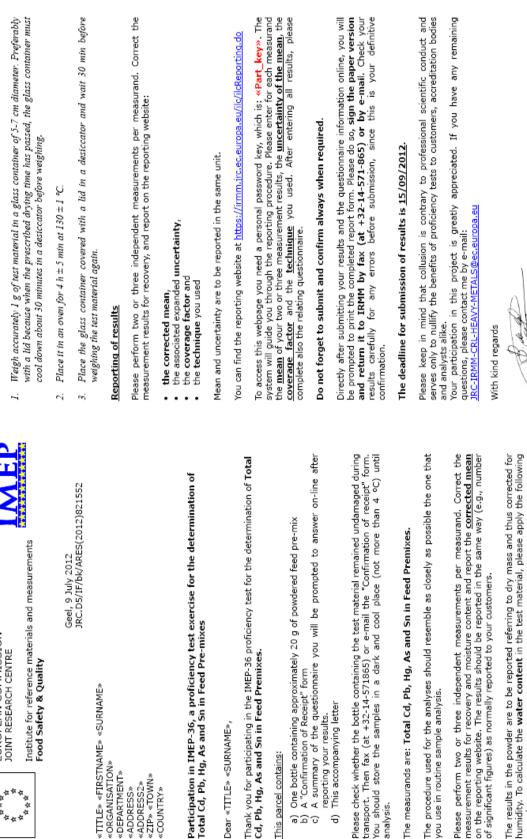
E-mall: Jro-Imm-Imep@ec.europa.eu

Print the completed form when the system asks to do so and clearly indicate on the printed form that they have been appointed by APLAC to take part in this exercise Ę ŵ

APLAC coordinator	Apama Dhawan	E.Mail: aparna@nabl-india.org
IMEP-36 coordinator	Beatriz de la Calle Fax +32 14 571 865	E-mail: jrc-imm-imep@ec.europa.eu

Please contact me if you have any questions or comments. We are looking forward to our cooperation!

With kind regards


Beatriz de la Calle IMEP-36 Coordinator

Annex 3: Invitation to APLAC to nominate laboratories

IMEP-36: Total Cd, Pb, As, Hg and Sn in Feed Premixes

Annex 4: Announcement on IRMM - IMEP website

C IMEP-36: Total Cd, Pb	o, As, Hg, and Sn in Feed pre-mixes	Windows Internet Explorer			- 7 🛛
🕒 🗢 🖉 http://irm	m.jrc.ec.europa.eu/interlaboratory_compariso	ns/Pages/IMEP-36TotalCd,Pb,As,Hg,andSninFeedpr	e-mixes.aspx	🖌 🚱 🗶 D Live Search	P -
File Edit View Favorite	s Tools Help				
Favorites 6 IMEP-36	: Total Cd, Pb, As, Hg, and Sn in Feed pre-mi.	•		🟠 • 🖾 - 🖾 🖶 •	Page - Safety - Tools - 🔞 -
European Commission		EARCH CENTRE ference Materials and Measu	rements (IRMM)		
EUROPA > European Co	mmission > JRC > IRMM > Interlabo	ratory comparisons		Search IRMM Internet	× P
	Font Size: A A A				s corner Site map Contact
Main Menu	Home IMEP NUSIMEP REI	MEP			News archive
About IRMM					Environmental
Activities	IMEP-36: Total Cd, Pb, As, H	Hg, and Sn in Feed pre-mixes			analysis Nuclear research
Reference materials EU Reference		the analysis of total cadminum, lead, an re only appointed National Reference La		nixes. This interlaboratory comparison	 Reference materials and measurements Food,
Laboratories	IMEP-36 exercise is open to all la	poratories.			biotechnology and health
Interlaboratory comparisons	The cost of this interlaboratory co	mparison is EUR 320 per registration			
Job opportunities	Please register using the followin				catalogue
Events					
Training Calls	https://web.jrc.ec.europa.eu/ilcRe	egistrationWeb/registration/registration	.do?selComparison=940		Construction of the section
Publications					TrainMiC Training in Menology in Charactery
	Test materials and analytes	5			
	The test material to be analysed Pb, As, Hg and Sn in feed pre-mix	is feed pre-mix contained in a glass bot	tle. Each participant will receive on	e bottle. The measurands are total Cd,	
	D General outline of the exerc	cise			EURL
		form 1-3 independent analyses using th tor k. Detailed instructions will be sent t		port the mean, its expanded	
	uncertainty, and the coverage rat	tor x. Detailed instructions will be sent t	ugeoner wich die sample.		EUFRAT
	D Schedule				
	Registration	Sample dispatch	Reporting of results	Report to participants	
	Deadline 03/07/2012	Second week of July 2012	Deadline 15/09/2012	End of November 2012	
			- Forth and Country of	Latest update 7 June, 2012	2
Done		News Links Press corr	ner site map Contact	Q Local intranet	🖌 - 🖲 100% -
etart O lab	ay - Microsoft Out		ES IMED 26 anno	Fri D	

Annex 5: Sample accompanying letter

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

**** **** ****

cTITLE» «FIRSTNAME» «SURNAME»

«ORGANISATION» <DEPARTMENT»</pre> «ADDRESS2» «ZIP» «TOWN»

«ADDRESS»

COUNTRY»

The measurands are: Total Cd, Pb, Hg, As and Sn in Feed Premixes.

analysis.

The procedure used for the analyses should resemble as closely as possible the one that you use in routine sample analysis.

measurement results for recovery and moisture content and report the corrected mean on the reporting website. The results should be reported in the same way (e.g., number Please perform two or three independent measurements per measurand. Correct the of significant figures) as normally reported to your customers. The results in the powder are to be reported referring to dry mass and thus corrected for humidity. To calculate the water content in the test material, please apply the following procedure:

Retieseweg 111. B-2440 Geel - Belgium. Telephone: (32-14) 671 211. http://imm.jrc.ec.europa.eu Telephone: direct line (32-14) 671 262. Fax: (32-14) 671 866.

E-mail: jro-imm-crl-heavy-metals@ec.europa.eu

IMEP-36 Co-ordinator Dr. M.B. de la Calle

Enclosures: a) One bottle containing 20 g of sample, b) A "Confirmation of Receipt" form, c) A summary of the questionnaire and e) This accompanying letter

6 (j ៊ ÷

A "Confirmation of Receipt" form

This accompanying letter reporting your results.

Cd, Pb, Hg, As and Sn in Feed Premixes.

This parcel contains

Dear «TITLE» «SURNAME»,

Annex 6: 'Confirmation of receipt' form

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

Institute for reference materials and measurements Food Safety & Quality

> Geel, 9 July 2012 JRC.D5/IF/bk/ARES(2012)/821552

«TITLE» «FIRSTNAME» «SURNAME» «ORGANISATION» «DEPARTMENT» «ADDRESS» «ADDRESS2» «ZIP» «TOWN» «COUNTRY»

IMEP-36 Total Cd, Pb, Hg, As and Sn in Feed Premixes

Confirmation of receipt of the samples

Please return this form at your earliest convenience. This confirms that the sample package arrived. In case the package is damaged, please state this on the form and contact us immediately.

ANY REMARKS

.....

Date of package arrival

Signature

<u>Please return this form to:</u> Dr. M.B. de la Calle

IMEP-36 Coordinator EC-JRC-IRMM Retieseweg 111 B-2440 GEEL, Belgium

Fax :+32-14-571865 e-mail : <u>JRC-IRMM-CRL-HEAVY-METALS@ec.europa.eu</u>

Annex 7: Summary questionnaire sent with sample

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

Institute for reference materials and measurements Food Safety & Quality

Annex to JRC.D5/IF/bk/ARES(2012)/821552

FOR INFORMATION ONLY - SUMMARY QUESTIONNAIRE IMEP-36

- · Have you corrected your results for recovery?
- · If yes, Which are the correction factors for Total Cd, Pb, Hg, As and Sn
- What is the basis of your uncertainty estimate?
- Do you usually provide an uncertainty statement to your customers for this type of analysis?
- Did you correct for the moisture content of the sample?
- Did you analyse the sample according to an official method?
- Does your laboratory carry out this type of analysis (as regards the anlytes, matrix and methods) on a regular basis?
- Does your laboratory have a quality system in place?
- Is your laboratory accredited for this type of analysis?
- Does your laboratory take part in interlaboratory comparisons for this type of analysis on a regular basis?
- Does your laboratory use a reference material for this type of analysis?
- How have you heard about this exercise?
- Do you have any comments?

Please - complete the questionnaire online, when submitting your results !

Annex 8: Online Questionnaire

Ques	tionnaire questions							- 2 2 2 2
	1. Have you corrected you 0 no [A:179] 0 yes [A:124]	ur results for recovery?	? [Q:10	35533: RADIOJ				
	1.1. If no, why? [Q:1055	534: TEXT]			7			
	1.2. If yes, [*] if parent A Which are the correction Please enter the recovery Questions/Response table	n factors for: factors that you have u:			Total As	Total Hg	Total Sn	
	Recovery %							
	 What is the basis of you 1. uncertainty budget c: 2. known uncertainty of 3. uncertainty of the me 4. measurement of replic 5. estimation based on j 6. use of intercompariso 7. other [A:244] 	alculated according to iso the standard method [A: athod as determined in-ho cates (i.e. precision) [A: 2 udgement [A:964]	o-gum : <i>239]</i> ouse v	[A:238]	9)? [Q:105506: CHECKBOX]			
	2.1. If other, please spe	cify [Q:105507: TEXT]						
	3. Do you usually provide	an uncertainty statem	ent ta	your customers for this t	ype of analysis? [Q:10550	3: RADIO]		
	 no [A:179] yes [A:288] 							
	 4. Did you correct for the 1 no [A:179] yes [A:124] 	moisture content of the	e sam	ple? [Q:105509: RADIO]				
	4.1. If yes, what is the	moisture content (in % o	of the :	sample mass)? [Q:105510: 7	<i>ext]</i>			
	4.2. If no, what was the	e reason not to do this? /	^r Q:105	511: TEXT]	7			
	5. Did you analyse the sar	mple according to an of	fficial	method? [0:105512: RADIC	7			
	○ no [A:179] ○ yes [A:124]							
	5.1. If yes, which: [Q:10	05513: TEXT]			7			
	5.2. If no, please describ	be (in max. 150 characte	ers for	each reply) your [Q:105514	GROUP]			
	5.2.1. sample pre-tre	atment [Q:105515: 7EX]	7]					
	5.2.2. digestion step	[Q:105516: TEXT]			1			
	5.2.3. extraction / se	paration step [Q:105517	: TEX	τ]	-			
	5.2.4. instrument cali	bration step [Q:105518;	TEXT	7	_			

	6. Does your laboratory carry out this type of analysis (as regards the anlytes, matrix and methods) on a regular basis? [Q:105519: RADIO]
	 no [A:179] yes [A:124]
	6.1. If Yes, please estimate the number of samples (As, Cd, Pb, Hg, Cu measurements together): [Q:105520: RADIO]
	 a) 0-50 samples per year [A:245] b) 50-250 samples per year [A:246] c) 250-1000 samples per year [A:249] d) more than 1000 samples per year [A:248]
	7. Does your laboratory have a quality system in place? [Q:105521: RADIO]
	 no [A:179] yes [A:124]
	7.1. If yes, which: [Q:105522: CHECKBOX]
	 a) ISO 17025 [A:350] b) ISO 9000 series [A:351] c) Other [A:352]
	7.1.1. If other, please specify [Q:105523: TEXT]
	8. Is your laboratory accredited for this type of analysis? [Q:105524: RADIO]
	O no [A:179]
	○ yes [A:124]
	8.1. If yes, by which accreditation body * if parent A:124 checked [Q:105638: TEXT]
	9. Does your laboratory take part in interlaboratory comparisons for this type of analysis on a regular basis [Q:105525: RADIO]
	○ no [A:179] ○ yes [A:124]
	9.1. If yes, which one(s) [Q:105526: TEXT]
	10. Does your laboratory use a reference material for this type of analysis? [Q:105527: RADIO]
	O no [A:179]
	○ yes [A:124]
	10.1. If yes, which one(s) [Q:105528: TEXT]
	10.2. Is the material used for the validation of procedures? [Q:105529: RADIO]
ind.	() no [A:179]
	○ yes [A:124]
	10.3. Is the material used for calibration of instruments? [Q:105530: RADIO]
	 no [A:179] yes [A:124]
	11. How have you heard about this exercise? [Q:105532: TEXT]
	12. Do you have any comments? Please let us know: [Q:105531: TEXT]
7777.5	

Annex 9: Homogeneity and stability studies

	Total As (mg Kg ⁻¹)				
Bottle ID	Replicate 1	Replicate 2			
55	1.97	2.01			
66	2.12	2.07			
42	1.93	2.04			
77	2.10	1.97			
121	2.07	2.09			
114	2.05	1.96			
98	2.01	1.91			
109	1.98	1.98			
114	1.93	1.95			
41	1.88	1.93			
Mean of 20 results	2.	00			
$\hat{\sigma}$	15% (0.290)			
Homoge	neity test according to ISO 13!	528 [14]			
0,3 $\hat{\sigma}$	0.0)87			
s _x	0.059				
Sw	0.052				
Ss	0.046				
s _s ≤ 0,3σ ?	Yes				
Test result	Pas	sed			

9.1 Homogeneity study for total Arsenic

9.2 Stability study for total Arsenic

<u>Stability Study – Total As</u> TEMPERATURE = 18°C							
Meas.Unit:	mg kg⁻¹						
	Time in Weeks						
samples	0	3	5	8			
1	1.86	1.86	1.86	1.86			
2	2.02	2.02	2.02	2.02			

REGRESSION LI	NE PARAMI	ETERS	
Slope =	0.003		
SE Slope =	0.011		
Intercept =	1.895		
SE Intercept =	0.054		
Correlation Coeffic	cient =0.014	ŀ	
:No	-	significantly <> 0 significantly <> 0	. ,

CALCULATION OF U_{lts} for given X_{shelf}

Given $X_{shelf} = 10$ Weeks

 $u_{lts} = 0.102 \text{ mg kg}^{-1}$ $u_{lts}[\%] = 5.3\%$

	Total Cd (mg Kg ⁻¹)				
Bottle ID	Replicate 1	Replicate 2			
55	1.12	1.14			
66	1.10	1.13			
42	1.11	1.13			
77	1.11	1.11			
121	1.09	1.12			
114	1.11	1.09			
98	1.12	1.12			
109	1.11	1.09			
114	1.11	1.13			
41	1.08	1.12			
Mean of 20 results	1.11				
$\hat{\sigma}$	15% (0.167)				
Homoge	eneity test according to ISO 13528 [14]				
0,3 $\hat{\sigma}$	0.050				
s _x	0.010				
Sw	0.016				
Ss	$MS_{Bb} < MS_{Wb}$				
s₅ ≤ 0,3σ ?	Yes				
Test result	Pas	sed			

9.3 Homogeneity study for total Cadmium

9.4 Stability study for total Cadmium

<u>Stability Study – Total Cd</u> TEMPERATURE = 18°C							
Meas.Unit:	mg kg⁻¹						
	Time in Weeks						
samples	0	3	5	8			
1	1.10	1.10	1.13	1.08			
2	1.13	1.09	1.11	1.11			

REGRESSION LIN	E PARAM	ETERS	
Slope =	-0.002		
SE Slope =	0.002		
Intercept =	1,.113		
SE Intercept =	0.011		
Correlation Coeffici	ent =0.081	L	
Slope of the linear :No	regression	significantly <> 0	(95%)
Slope of the linear :No	regression	significantly <> 0	(99%)
.110			

CALCULATION	OF	U _{lts} 1	for	given	X _{shelf}

Given $X_{shelf} = 10$ Weeks

 $u_{lts} = 0.021 \text{ mg kg}^{-1}$ $u_{lts}[\%] = 1.9 \%$

9.5 Homogeneity study for total Lead

	Total lead (mg kg ⁻¹)			
Bottle ID	Replicate 1	Replicate 2		
55	0.65	0.68		
66	0.65	0.69		
42	0.66	0.68		
77	0.64	0.66		
121	0.64	0.65		
72	0.63	0.64		
98	0.68	0.69		
109	0.65	0.66		
33	0.61	0.63		
41	0.64	0.65		
Mean of 20 results	0.0	65		
$\hat{\sigma}$	15% (0.095)		
Homoge	neity test according to ISO 135	528 [14]		
0.3 $\hat{\sigma}$	0.0	29		
S _x	0.020			
S _w	0.013			
Ss	0.018			
$S_s \le 0.3 \hat{\sigma}$?	Yes			
Test result	Pas	sed		

9.6 Stability study for total Lead

<u>Stability Study – Total Pb</u> TEMPERATURE = 18°C						
Meas.Unit:	mg kg⁻¹					
	Time in Weeks					
samples	0	3	5	8		
1	0.617	0.642	0.606	0.625		
2	0.638	0.653	0.655	0.648		

REGRESSION LINE PARAMETERS					
Slope =	0.001				
SE Slope =	0.002				
Intercept =	0.633				
SE Intercept =	0.011				
Correlation Coefficient =0.010					
Slope of the linear :No	regression	significantly <> 0	(95%)		
	regression	significantly $<> 0$	(99%)		
:No					

CALCULATION OF U_{lts} for given X_{shelf}

Given $X_{shelf} = 10$ Weeks

 $u_{lts} = 0.022 \text{ mg kg}^{-1}$ $u_{lts}[\%] = 3.4\%$

9.7 Homogeneity study for total Tin

	Total Tin (mg kg ⁻¹)				
Bottle ID	Replicate 1	Replicate 2			
55	0.73	0.77			
66	0.77	0.77			
42	0.72	0.81			
77	0.71	0.78			
121	0.77	0.74			
72	0.76	0.77			
98	0.72	0.74			
109	0.72	0.60			
33	0.70	0.69			
41	0.74	0.73			
Mean of 20 results	0.1	74			
$\hat{\sigma}$	15% (0.119)			
Homoge	neity test according to ISO 135	528 [14]			
0.3 $\hat{\sigma}$	0.0	36			
S _x	0.035				
S _w	0.039				
Ss	0.021				
$S_s \le 0.3 \hat{\sigma}$?	Yes				
Test result	Pas	sed			

9.8 Stability study for total Tin

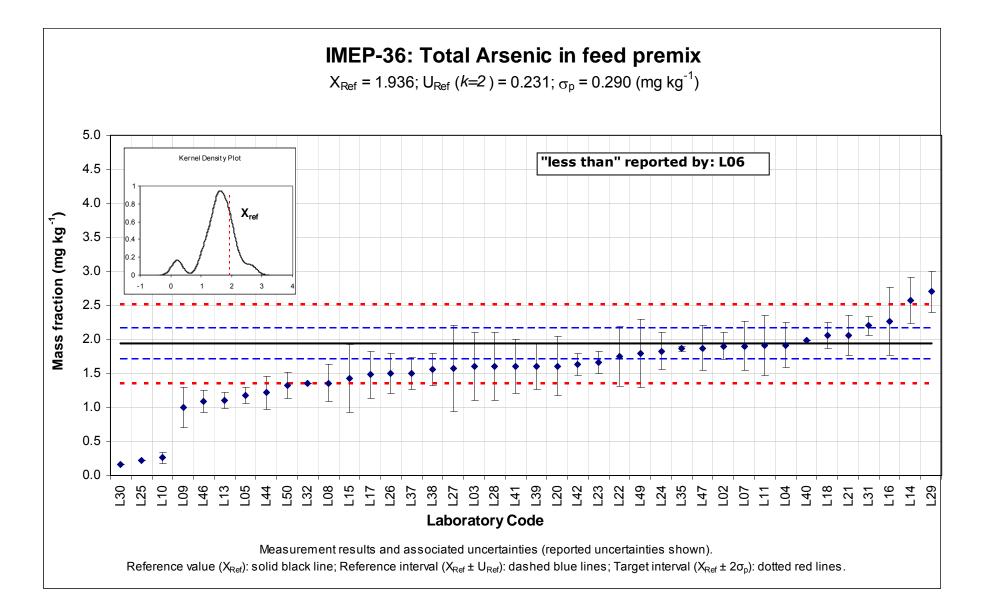
<u>Stability Study – Total Sn</u> TEMPERATURE = 18°C							
Meas.Unit:	mg kg⁻¹						
	Time in Weeks						
samples	0	3	5	8			
1	0.688	0.688	0.688	0.688			
2	0.648	0.648	0.648	0.648			

REGRESSION LIN	NE PARAMI	ETERS			
Slope =	0.006				
SE Slope =	0.004				
Intercept =	0.656				
SE Intercept =	0.022				
Correlation Coefficient =0.251					
Slope of the linear regression significantly $<> 0$ (95%) :No					
Slope of the linear	regression	significantly $<> 0$	(99%)		
:No					

CALCULATION OF U_{lts} for given X_{shelf}

Given $X_{shelf} = 10$ Weeks

 $u_{lts} = 0,047 \text{ mg kg}^{-1}$ $u_{lts}[\%] = 7.0 \%$


Annex 10: Results for Total Arsenic

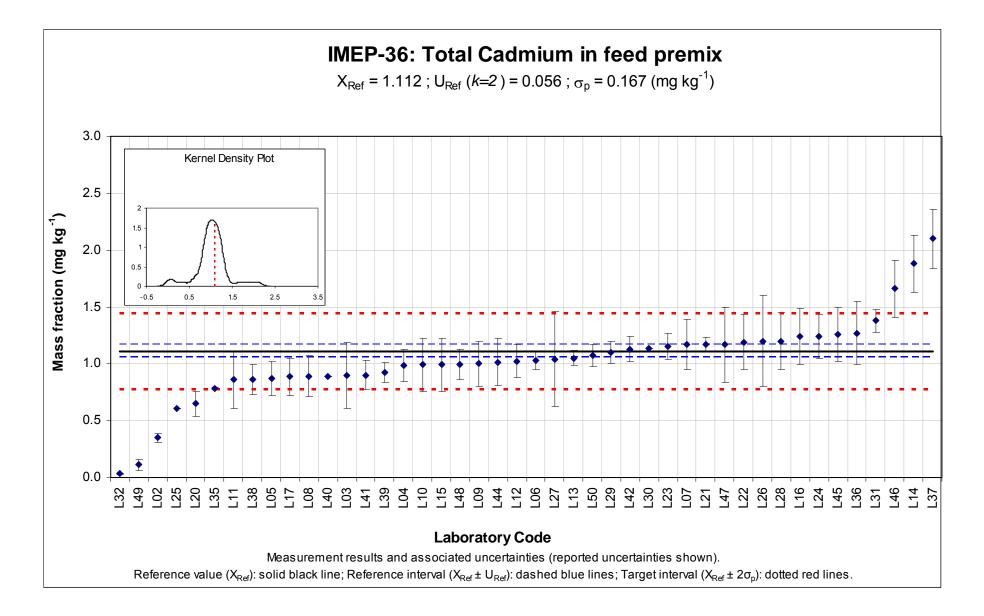
Assigned range: $X_{ref} = 1,936$, U (k = 2) = 0.231, $\sigma_p = 0.29$ (all values in mg kg⁻¹)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	c
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	cert. ^c
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	b
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	b
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	а
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	а
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	С
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	а
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	b
L28 1.6 0.5 2 HG-AAS 0.250 -1.16 -1.22 L29 2.7 0.3 2 ICP-AES 0.150 2.63 4.04 L30 0.169 0 √3 HG-AAS 0.000 -6.08 -15.26	С
L29 2.7 0.3 2 ICP-AES 0.150 2.63 4.04 L30 0.169 0 √3 HG-AAS 0.000 -6.08 -15.26	С
L30 0.169 0 $\sqrt{3}$ HG-AAS 0.000 -6.08 -15.26	а
	а
	b
L31 2.201 0.14 2 ICP-MS 0.070 0.91 1.96	b
L32 1.3531 0.0001 2 HG-AAS 0.000 -2.01 -5.03	b
L35 1.865 0.0388 2 HG-AAS 0.019 -0.24 -0.60	b
L37 1.5 0.23 2 ETAAS 0.115 -1.50 -2.67	b
L38 1.56 0.24 2 HG-AAS 0.120 -1.29 -2.25	а
L39 1.604 0.334 2 HG-AAS 0.167 -1.14 -1.63	а
L40 1.986 0 √3 ICP-MS 0.000 0.17 0.44	b
L41 1.6 0.4 2 ETAAS 0.200 -1.16 -1.45	а
L42 1.630 0.163 2 ICP-MS 0.082 -1.05 -2.16	b
L44 1.217 0.243 2 ICP-MS 0.122 -2.47 -4.28	а
L46 1.09 0.16 √3 HG-AAS 0.092 -2.91 -5.71	b
L47 1.87 0.33 2 HG-AAS 0.165 -0.23 -0.32	а
	а
	b

^a $\sqrt{3}$ is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with $k=\sqrt{3}$.

^b Satisfactory, Questionable, Unsatisfactory ^c \mathbf{a} : $u_{min} \le u_{lab} \le u_{max}$; \mathbf{b} : $u_{lab} < u_{min}$; and \mathbf{c} : $u_{lab} > u_{max}$

Annex 11: Results for Total Cadmium


Assigned range: X_{ref} = 1,112, U (k = 2) = 0.056, σ_p = 0.167 (all values in mg kg⁻¹)

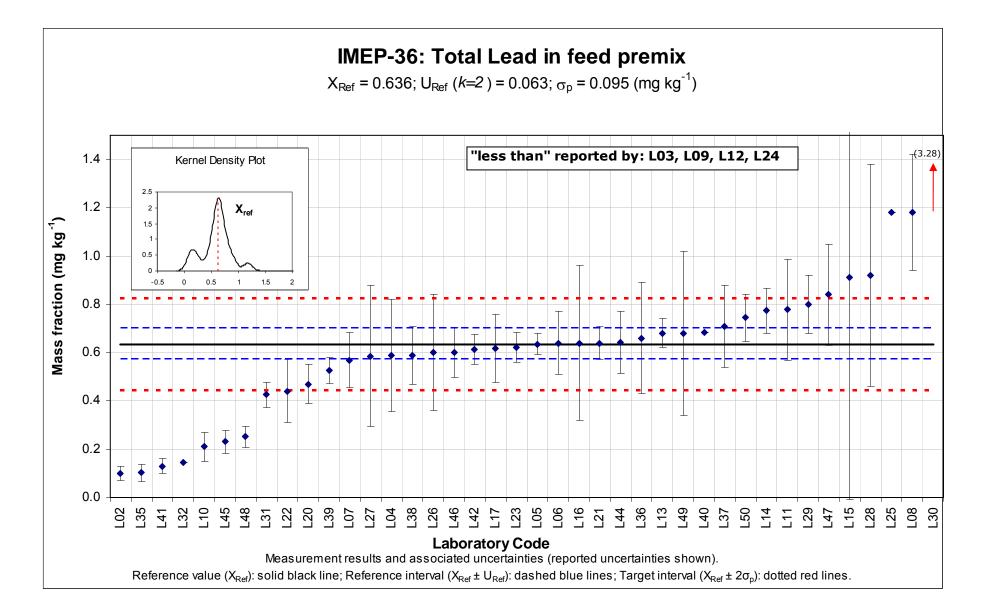
Lah Cada		:	/ 0 (1(_)		•	z-score ^b	z oonob	
Lab Code	X _{lab}	±		technique	u _{lab}		ζ-score ^b	uncert. ^c
L02	0.35	0.04	2	ICP-AES	0.020	-4.57	-22.21	b
L03	0.9	0.29	2	ICP-AES	0.145	-1.27	-1.43	а
L04	0.983	0.141	2	ICP-MS	0.071	-0.77	-1.70	а
L05	0.869	0.148	2	ICP-MS	0.074	-1.45	-3.07	а
L06	1.03	0.08	2	ETAAS	0.040	-0.49	-1.67	а
L07	1.17	0.222	2	ICP-MS	0.111	0.35	0.51	а
L08	0.89	0.18	2	ICP-AES	0.090	-1.33	-2.35	а
L09	1.0	0.2	2	ICP-AES	0.100	-0.67	-1.07	а
L10	0.99	0.23	2	AAS	0.115	-0.73	-1.03	а
L11	0.858	0.249	2	ICP-MS	0.125	-1.52	-1.99	а
L12	1.024	0.143	1	ETAAS	0.143	-0.52	-0.60	а
L13	1.05	0.063	2	ETAAS	0.032	-0.37	-1.46	а
L14	1.88	0.25	2	ICP-MS	0.125	4.61	6.00	а
L15	0.99	0.23	1	ETAAS	0.230	-0.73	-0.52	С
L16	1.24	0.25	2	ICP-MS	0.125	0.77	1.00	а
L17	0.885	0.163	2	FAAS	0.082	-1.36	-2.63	а
L20	0.65	0.11	2	ETAAS	0.055	-2.77	-7.49	а
L21	1.17	0.06	2.35	ICP-MS	0.026	0.35	1.55	b
L22	1.190	0.24	2	ETAAS	0.120	0.47	0.64	а
L23	1.15	0.115	2	ICP-MS	0.058	0.23	0.60	а
L24	1.24	0.19	2	ICP-AES	0.095	0.77	1.30	а
L25	0.61	0	2	GF-AAS	0.000	-3.01	-18.01	b
L26	1.2	0.4	1	ICP-MS	0.400	0.53	0.22	С
L27	1.04	0.417	2		0.209	-0.43	-0.34	С
L28	1.2	0.25	2	ICP-MS	0.125	0.53	0.69	а
L29	1.1	0.1	2	ICP-MS	0.050	-0.07	-0.20	а
L30	1.132	0	√3	AAS	0.000	0.12	0.74	b
L31	1.377	0.1	2	ICP-MS	0.050	1.59	4.64	а
L32	0.031	0.001	2	GF-AAS	0.001	-6.48	-38.79	b
L35	0.7834	0.0064	2	FAAS	0.0032	-1.97	-11.70	b
L36	1.27	0.28	√3	AAS	0.162	0.95	0.97	а
L37	2.1	0.26	2	ETAAS	0.130	5.93	7.44	а
L38	0.864	0.13	2	AAS	0.065	-1.48	-3.50	а
L39	0.925	0.089	2	FAAS	0.045	-1.12	-3.55	а
L40	0.89	0	√3	ETAAS	0.000	-1.33	-7.95	b
L41	0.9	0.13	2	ETAAS	0.065	-1.27	-2.99	а
L42	1.13	0.113	2	ICP-MS	0.057	0.11	0.29	а
L44	1.016	0.203	2	ICP-MS	0.102	-0.57	-0.91	а
L45	1.260	0.24	2	ETAAS	0.120	0.89	1.21	а
L46	1.66	0.25	√3	AAS	0.144	3.29	3.73	а
L47	1.17	0.33	2	ETAAS	0.165	0.35	0.35	а
L48	0.995	0.134	2	AAS	0.067	-0.70	-1.61	а
L49	0.111	0.05	2	ETAAS	0.025	-6.00	-26.73	b
L50	1.075	0.095	2	ETAAS	0.048	-0.22	-0.66	а

^a $\sqrt{3}$ is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with $k=\sqrt{3}$.

^b Satisfactory, Questionable, Unsatisfactory

 c \boldsymbol{a} : u_{min} \leq u_{lab} \leq $u_{max};$ \boldsymbol{b} : u_{lab} < $u_{min};$ and \boldsymbol{c} : u_{lab} > u_{ma}

Annex 12: Results for Total Lead


Assigned range: $X_{ref} = 0.636$, U (k = 2) = 0.063, $\sigma_p = 0.095$ (all values in mg kg⁻¹)

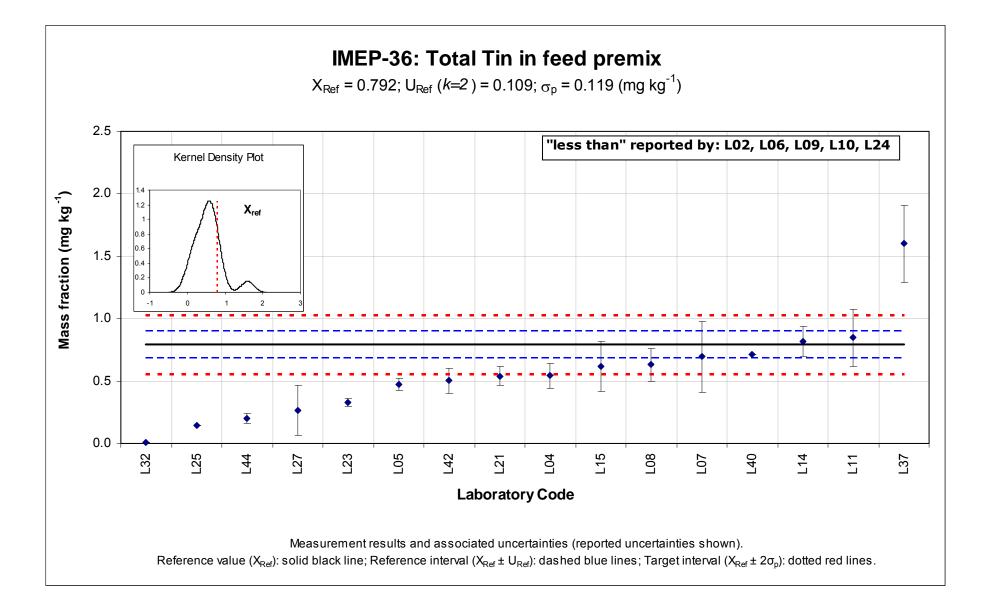
-	.	. ,	()	,	P			<i>,</i>
Lab Code	X _{lab}	±	k ^a	technique	u _{lab}	z-score ^b	ζ-score ^b	uncert. ^c
L02	0.10	0.03	2	ICP-AES	0.015	-5.62	-15.34	b
L03	<1			ICP-AES				
L04	0.589	0.231	2	ICP-MS	0.1155	-0.49	-0.39	С
L05	0.636	0.045	2	ICP-MS	0.0225	0.01	0.01	b
L06	0.64	0.13	2	ETAAS	0.065	0.05	0.06	а
L07	0.57	0.114	2	ICP-MS	0.057	-0.70	-1.02	а
L08	1.18	0.24	2	ICP-AES	0.12	5.71	4.39	С
L09	< 2			ETAAS				
L10	0.21	0.06	2	AAS	0.03	-4.46	-9.78	b
L11	0.777	0.210	2	ICP-MS	0.105	1.48	1.29	С
L12	< 0.2			ETAAS				
L13	0.68	0.06	2	ETAAS	0.03	0.47	1.02	b
L14	0.773	0.093	2	ICP-MS	0.0465	1.44	2.45	а
L15	0.91	0.46	1	ETAAS	0.46	2.88	0.60	С
L16	0.64	0.32	2	ICP-MS	0.16	0.05	0.03	С
L17	0.618	0.142	2	FAAS	0.071	-0.18	-0.23	а
L20	0.47	0.08	2	ETAAS	0.04	-1.74	-3.25	а
L21	0.64	0.08	2.35	ICP-MS	0.034043	0.05	0.10	а
L22	0.44	0.13	2	ETAAS	0.065	-2.05	-2.71	а
L23	0.62	0.062	2	ICP-MS	0.031	-0.16	-0.35	b
L24	< 0.67			ICP-AES				
L25	1.179	0	2	GF-AAS	0	5.70	17.24	b
L26	0.600	0.12	1	ICP-MS	0.12	-0.37	-0.29	с
L27	0.586	0.293	2		0.1465	-0.52	-0.33	С
L28	0.92	0.46	2	ICP-MS	0.23	2.98	1.23	С
L29	0.8	0.12	2	ICP-MS	0.06	1.73	2.43	а
L30	3.28	0	√3	AAS	0	27.74	83.88	b
L31	0.425	0.05	2	ICP-MS	0.025	-2.21	-5.23	b
L32	0.145	0.001	2	GF-AAS	0.0005	-5.15	-15.56	b
L35	0.1024	0.035	2	FAAS ?	0.0175	-5.59	-14.78	b
L36	0.66	0.2	√3	AAS	0.11547	0.26	0.20	с
L37	0.71	0.17	2	ETAAS	0.085	0.78	0.82	а
L38	0.59	0.12	2	AAS	0.06	-0.48	-0.67	а
L39	0.527	0.054	2	ETAAS	0.027	-1.14	-2.61	b
L40	0.683	0	√3	ETAAS	0	0.50	1.51	b
L41	0.13	0.03	2	ETAAS	0.015	-5.30	-14.48	b
L42	0.613	0.061	2	ICP-MS	0.0305	-0.24	-0.51	b
L44	0.642	0.128	2	ICP-MS	0.064	0.07	0.09	а
L45	0.230	0.046	2	ETAAS	0.023	-4.25	-10.39	b
L46	0.6	0.09	√3	AAS	0.051962	-0.37	-0.58	а
L47	0.84	0.21	2.00	ETAAS	0.105	2.15	1.87	С
L48	0.252	0.043	2	AAS	0.0215	-4.02	-10.05	b
L49	0.681	0.34	2	ETAAS	0.17	0.48	0.26	С
L50	0.745	0.097	2	ETAAS	0.0485	1.15	1.89	а

^a $\sqrt{3}$ is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with $k = \sqrt{3}$.

^b Satisfactory, Questionable, Unsatisfactory

^c **a** : $u_{min} \le u_{lab} \le u_{max}$; **b** : $u_{lab} < u_{min}$; and **c** : $u_{lab} > u_{max}$

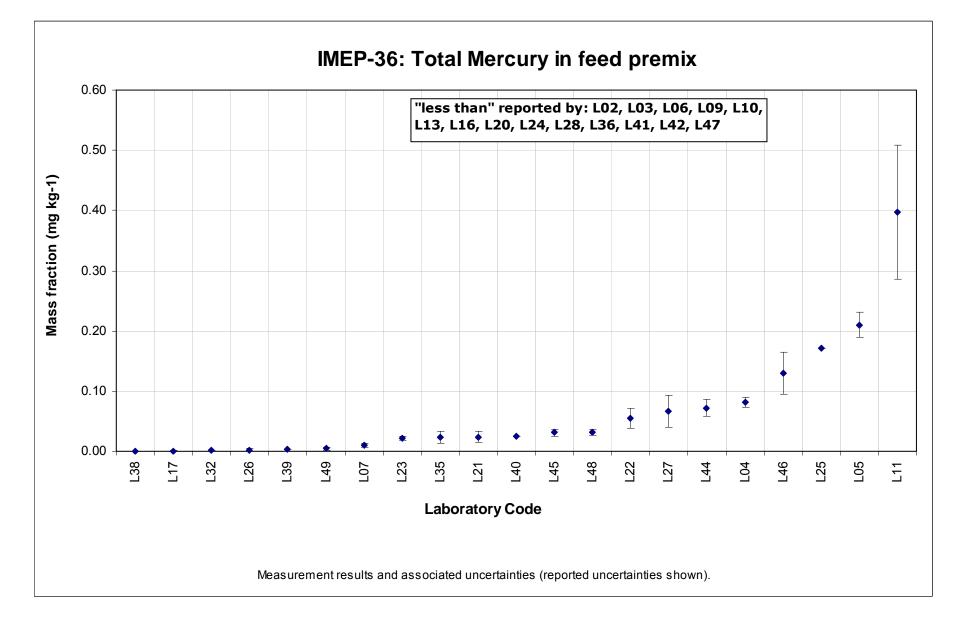
Annex 13: Results for Total Tin


Assigned range: $X_{ref} = 0.792$, U (k = 2) = 0.109, $\sigma_p = 0.119$ (all values	in mg k	<g⁻¹)< th=""></g⁻¹)<>
---	---------	-----------------------

Lab Code	X _{lab}	±	k ^a	technique	U _{lab}	z-score ^b	ζ-score ^b	uncert. ^c
L02	< 0.05			ICP-AES				
L04	0.542	0.103	2	ICP-MS	0.052	-2.10	-3.33	b
L05	0.474	0.047	2	ICP-MS	0.024	-2.67	-5.35	b
L06	< 5			ICP-AES				
L07	0.70	0.285	2	ICP-MS	0.143	-0.81	-0.63	С
L08	0.63	0.13	2	ICP-AES	0.065	-1.36	-1.90	а
L09	< 2.5			ICP-AES				
L10	< 1			ICP-AES				
L11	0.848	0.229	2	ICP-MS	0.115	0.48	0.45	а
L14	0.82	0.12	2	ICP-MS	0.060	0.24	0.35	а
L15	0.615	0.10	1	ICP-MS	0.100	-1.49	-1.55	а
L21	0.54	0.09	2.35	ICP-MS	0.038	-2.12	-3.77	b
L23	0.331	0.033	2	ICP-MS	0.017	-3.88	-8.08	b
L24	< 1.68			ICP-AES				
L25	0.144	0	2	GF-AAS		-5.45	-11.87	b
L27	0.263	0.201	2		0.101	-4.45	-4.62	а
L32	0.007	0.001	2	GF-AAS	0.001	-6.61	-14.38	b
L37	1.6	0.31	2	ETAAS	0.155	6.81	4.92	С
L40	0.713	0		ICP-MS	0.000	-0.66	-1.44	b
L42	0.501	0.1	2	ICP-MS	0.050	-2.45	-3.93	b
L44	0.202	0.04	2	ICP-MS	0.020	-4.97	-10.15	b

^a $\sqrt{3}$ is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with $k=\sqrt{3}$.

^b Satisfactory, Questionable, Unsatisfactory


^c **a** : $u_{min} \le u_{lab} \le u_{max}$; **b** : $u_{lab} < u_{min}$; and **c** : $u_{lab} > u_{max}$

Annex 14: Results for Total Mercury

Lab Code	X _{lab}	±	k	technique	U _{lab}
L02	< 0.05			ICP-AES	
L03	< 0.01			AAS	
L04	0.081	0.008	2	ICP-MS	0.004
L05	0.21	0.021	2	ICP-MS	0.0105
L06	< 0.1			CV-AAS	
L07	0.01	0.004	2	ICP-MS	0.002
L09	< 0.01			AMA 254	
L10	< 0.05			CV-AAS	
L11	0.397	0.111	2	ICP-MS	0.0555
L13	< 0.025			CV-AAS	
L16	< 0.01			CV-AAS	
L17	0.0008	0.0002	2	AMA 254	0.0001
L20	< 0.05			AMA 254	
L21	0.024	0.01	2.35	CV-AAS	0.004255
L22	0.055	0.017	2	CV-AAS	0.0085
L23	0.022	0.003	2	ICP-MS	0.0015
L24	< 0.56			ICP-AES	
L25	0.171	0.000	2	HG-AAS	0.000
L26	0.002	0.0012	1	AFS	0.0012
L27	0.066	0.0264	2		0.0132
L28	< 0.02			CV-AAS	
L32	0.001	0.0005	2	HG-AAS	0.00025
L35	0.0227	0.01	2	AFS ?	0.005
L36	< 0.05			HG-AAS	
L38	0.0007	0.0001	2	AAS	0.00005
L39	0.00342	0.00034	2	CV-AAS	0.0002
L40	0.025	0.000		ICP-MS	0.000
L41	< 0.03			CV-AAS	
L42	< 0.055			ICP-MS	
L44	0.072	0.014	2	ICP-MS	0.007
L45	0.031	0.006	2	HG-AAS	0.003
L46	0.13	0.03	√3	HG-AAS	0.017
L47	< 0.02			CV-AFS	
L48	0.032	0.005	2	CV-AAS	0.003
L49	0.0043	0.002	2	HG-AAS	0.001

^a $\sqrt{3}$ is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with $k=\sqrt{3}$.

Annex 15: Experimental details (Annex 8, Question 5)

Lab code	Did you analyse the sample according to an official method?	sample pre-treatment	digestion step	extraction / separation step
L03	No	addition of nitric acid and H_2O_2	microwave from 80°C to 220°C during 22 minuts, and 15 minuts at 220°C	no
L04	No	none	microwave acid digestion	none
L05	based on SRPS CEN/TS 15621:2009; method is validated because we are using for determination ICP/MS			
L06	no		microwave digestion(HNO $_3$ /H $_2O_2$)	
L07	no	no	Microwave with HNO_3 and H_2O_2	na
L08	ISO 15510:2007			
L09	Cd and Pb: EN15510:2007	Hg, Sn, As: milling, sieve 0.5 mm	Sn: HNO ₃ as Cd and Pb; Hg: no digestion step; As: reflux digestion using H_2SO_4 , HNO ₃ and H_2O_2	not applicable
L11	no		microwave digestion with nitric acid and hydrochloric acid, EPA method 3051A 2007	after microwave digestion we carry out a filtration with syrnge filter 0.45um
L13	no	NITRIC ACID AND HYDROGEN PEROXIDE	MICROWAVE 180°C	
L14	no	No pre-treatment	8 ml of HNO ₃ , 2 ml of H_2O_2 , 0.1 ml of HF in pressure vessels (microwaves)	not applicable
L15	As: EN 16206:2010 - Cd and Pb: EN 15550:2007 - Hg: EN 16277:2011 - Sn: inhouse-methode comparable to § 64LFGB- methods			
L16	VDLUFA III 17.9.1, VDLUFA III 10.8.1, DIN EN 16277			
L17	no	sample weighed and dried in 150°C	dry minaralization	dissolved in acids

IMEP-36: Total Cd, Pb, As, Hg and Sn in Feed Premixes

L18	no	Samples were transfered into standard High Density Polyethylene vials. After irradiation no other sample treatment nor transfer of the samples into non irradiated vials was preformed	N.A.	N.A.
L20	no			
L21	DINN EN 13805, DIN EN 13806, DIN EN 15763			
L22	yes			
L23	no	-1.0%	PRESSURE MICROWAVE DIGESTION FOR AS CD HG PB	ACQUAREGIA ONLY FOR SN
L26	VDLUFA MB VII 2.2.2.5			
L27	NMKL procedure nr 186;2007			
L28	VDLUFA Method Book VII 2.2.2.9 (Hg), 2.2.2.19 (As), 2.2.2.5 (Pb, Cd)			
L29	no	по	mineralization by microwave	no
L30	AOAC	he sample is calcined in a furnace for 16 hours	following day and steamers are removed by carbon rsiduos 8 hours, the sample was adicifica with nitric acid and leads back to the muffle	the residue dissolved in hydrochloric acid and filtered and volume with the same acid
L31	no	0.25 grams of sample	7 mL of nitric acid and 1 ml of peroxide hydrogen and dilution 1/10 prior injection with ICP/MS	
L35	no	Let the sample take the room temperature, homogeneize it into the frask and weight	for As and Hg wet digestion and for Pb and Cd digestion in furnace	
L36	no		HNO_3 and H_2O_2	
L37	ASU §64 LFGB			

L38	no	Pb i Cd - the samples are ashed at 450 C, As - samples with Mg(NO3)2 are ashed at 550 C.	As - samples are dissolved in 4,5 mol HCl. Thereafter that solutions of KJ and ascorbic acid are added, Pb and Cd- samples are dissolved in 1% HNO3	
L39	FAAS, CVAAS, HGAAS, ETAAS			
L40	DIN EN ISO 17294-2;DIN EN 15763; DIN EN 5961; DIN 38406 E6			
L41	no	none.	0.5 g of sample + 8 ml HNO3 conc. + 2 ml H2O2. Digestion assisted by microwaves.	Final volume : 25 ml. For Cd determination, a further 8x dilution was indispensable.
L42	NF EN 13805 NF EN15763 NF EN 15765			
L44	EPA 6020			
L45	SR En 14084	smooth test according to EN 13804		
L46	Hungarian Feed Codex			
L47	MSZ EN 15550:2008 for Pb and Cd, MTK_2004_III_27 for As and Hg (Codex Pabularis Hungaricus 3. issue)			
L48	SR EN ISO 6869/2002			
L49	As DIN EN 16206, Hg DIN EN 16277, Cd u. Pb DIN EN 15550			
L50	no	grinding	microwave digestion; 0,25g sample, 5 ml HNO3 + 1 ml H2O2	dilution to 10 ml

European Commission

EUR 25784 - Joint Research Centre - Institute for Reference Material and Measurements

Title: IMEP-36: Determination of total Cd, Pb, As, Hg and Sn in feed premixes

Author(s): Ioannis Fiamegkos, Fernando Cordeiro, Piotr Robouch, Håkan Emteborg, Jean Charoud-Got, Hanne Leys, Bibi Kortsen, Beatriz de la Calle

Luxembourg: Publications Office of the European Union

2012 - 48 pp. - 21.0 x 29.7 cm

EUR - Scientific and Technical Research series - ISSN 1831-9424

ISBN 978-92-79-28282-9

doi:10.2787/72181

Abstract

This report presents the results of the proficiency test IMEP-36 which focused on the determination of total Cd, Pb, As, Hg and Sn in feed premixes according to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed. Fifty laboratories from 22 countries registered to the exercise of which 45 reported results and answered the respective questionnaire.

Laboratories were asked to perform two or three independent measurements and to report the mean, the associated uncertainty, the coverage factor of the associated uncertainty and the technique used to perform the measurements. Laboratory results were rated using z- and ζ -scores (zeta-scores) in accordance with ISO 13528. The assigned values (X_{ref}) for the measurands were determined as the mean of the values reported by two expert laboratories both of them National Metrology Institutes (NMI).

The results obtained by the participants were optimum in the case of total Cd and less satisfactory for total As and total Pb. For total Sn 16 participants reported results, from which one third scored satisfactorily. Twenty one participants reported results for total Hg although, the expert laboratories reported that the mass fraction for that measurand was below their limit of detection. Hence, no scoring was provided for total Hg.

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new standards, methods and tools, and sharing and transferring its know-how to the Member States and international community.

Key policy areas include: environment and climate change; energy and transport; agriculture and food security; health and consumer protection; information society and digital agenda; safety and security including nuclear; all supported through a cross-cutting and multi-disciplinary approach.

