
JRC TECHNICAL REPORTS

Determination of total As, Cd, Hg, extractable Pb and inorganic As in kaolinitic clay

EURL-HM-21 Proficiency Test Report

Fernando Cordeiro, Piotr Robouch, Ioannis Fiamegkos, M.-F. Tumba-Tshilumba, Aneta Cizek-Stroh and Beatriz de la Calle

November 2015

This publication is a Technical report by the Joint Research Centre, the European Commission's in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

JRC Science Hub

https://ec.europa.eu/jrc

JRC98774

© European Union, 2015

Reproduction is authorised provided the source is acknowledged.

All images $\ensuremath{\mathbb{C}}$ European Union 2015

How to cite:

Fernando Cordeiro, Piotr Robouch, Ioannis Fiamegkos, M.-F. Tumba-Tshilumba, Aneta Cizek-Stroh and Beatriz de la Calle; Determination of total As, Cd, Hg, extractable Pb and iAs in kaolinitic clay. JRC98774

Determination of total As, Cd, Hg, extractable Pb and inorganic As in kaolinitic clay

Table of contents

Executive summary	3
Acknowledgements	4
1. Introduction	5
2. Scope and aim	
3. Set up of the exercise	6
3.1 Time frame	6
3.2 Confidentiality	6
3.3 Distribution	6
3.4 Instructions to participants	6
4. Test item	7
4.1 Preparation	7
4.2 Homogeneity and stability	
5. Assigned values and their uncertainties	7
5.1 Assigned value, X _{ref}	
5.2 Associated uncertainty, u _{ref}	8
5.3 Standard deviation of the proficiency assessment, σ	10
5.4 Scores and evaluation criteria	10
6. Evaluation of results	11
6.1 Total Arsenic	
6.2 Inorganic Arsenic	13
6.3 Total Cadmium	
6.4 Total Mercury	14
6.5 Extractable Lead	
6.6 Compliance	15
6.7 Additional observations	
7. Conclusion	
8. References	
9. Abbreviations	-
Annex 1: Invitation letter to NRLs	
Annex 2: JRC web announcement	
Annex 3: Sample accompanying letter	
Annex 4: Confirmation of receipt form	
Annex 5: Questionnaire	
Annex 6: Sample preparation	27
Annex 7: Homogeneity studies	
Annex 8: Results for total arsenic (As)	
Annex 9: Results for inorganic arsenic (iAs)	
Annex 10: Results for total cadmium (Cd)	
Annex 11: Results for total mercury (Hg)	
Annex 12: Results for extractable lead (ex-Pb)	
Annex 13: Experimental details and scoring (z-scores)	
Annex 14: Compliance assessment	48

Executive summary

The European Union Reference Laboratory for Heavy Metals in Feed and Food (EURL-HM) organised a proficiency test (EURL-HM-21) for the determination of total arsenic (As), cadmium (Cd), mercury (Hg), extractable lead (ex-Pb) and inorganic arsenic (iAs) in kaolinitic clay in support to Directive 2002/32/EC on undesirable substances in animal feed.

The present proficiency test (PT) was opened to National Reference Laboratories (NRLs) and official control laboratories (OCLs). Forty six participants from 29 countries registered to the exercise. Four participants did not report results.

The material used as test item was a kaolinitic clay feed additive which, after appropriate processing, was bottled, labelled and dispatched to the participants during the first half of May 2015. Four laboratories with demonstrated measurement capabilities in the field provided results to establish the assigned values. The standard uncertainties associated to the assigned values were calculated according to ISO Guide 35.

Laboratory results were rated using z- and ζ -scores in accordance with ISO 13528. The relative standard deviation for proficiency assessment was set to 20 % of the assigned value for total As, and to 25 % for ex-Pb and total Hg. No scoring was provided for the total Cd and inorganic As.

Most of the laboratories performed satisfactorily (with $|z| \le 2$) for the determination of Hg (94 %), As (82 %) and ex-Pb (71 %, after rejection of the laboratories reporting total lead mass fraction instead of extractable lead), and reported realistic measurement uncertainties.

Acknowledgements

The authors wish to thank colleagues from the Institute for Reference Materials and Measurements (IRMM) for their valuable contributions they made during the preparation and testing of the PT material.

The laboratories listed below are kindly acknowledged for their participation in this exercise.

Organisation	Country
AGES GmbH	AUSTRIA
CODA-CERVA	BELGIUM
Central Laboratory for Chemical Testing and Control	BULGARIA
Croatian Veterinary Institute	CROATIA
Department of Agriculture	CYPRUS
State Veterinary Institute Olomouc	CZECH REPUBLIC
CISTA	CZECH REPUBLIC
Veterinary and Food Administration	DENMARK
Agricultural Research Centre	ESTONIA
Finnish Food Safety Authority Evira	FINLAND
Laboratoire SCL de Bordeaux	FRANCE
Federal Office for Consumer Protection and Food Safety (BVL)	GERMANY
Regional Center of Plant Protection and Quality Control of Magnissia	GREECE
General Chemical State Laboratory	GREECE
National Food Chain Office Food and Feed Safety Directorate	HUNGARY
National Food Chain Safety Office	HUNGARY
Health Service Executive	IRELAND
Public Analyt's Laboratory Dublin	IRELAND
The State Laboratory	IRELAND
Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta	ITALY
Institute of Food Safety, Animal Health and Environment	LATVIA
National Food and Veterinary Risk Assessment Institute	LITHUANIA
Environmental Health Directorate	MALTA
RIKILT	NETHERLANDS
NIFES	NORWAY
National Veterinary Research Institute in Pulawy	POLAND
Instituto Nacional de Investigação Agrária e Veterinária, I.P	PORTUGAL
Hygiene and Veterinary Public Health Institute	ROMANIA
Sanitary Veterinary and Food Safety Laboratory Bucharest	ROMANIA
Veterinary and food institute in Košice	SLOVAKIA
National Laboratory for Health, Environment and Food - Maribor	SLOVENIA
National Veterinary Institute	SLOVENIA
Jozef Stefan Institute	SLOVENIA
MAGRAMA	SPAIN
National Veterinary Institute	SWEDEN
Fera	UNITED KINGDOM
Glasgow Scientific Services	UNITED KINGDOM
City of Edinburgh Council	UNITED KINGDOM
Staffordshire County Council	UNITED KINGDOM
Kent County Council	UNITED KINGDOM

1. Introduction

The European Union Reference Laboratory for Heavy Metals in Feed and Food (EURL-HM) organised the proficiency test (PT) EURL-HM-21 to assess the performance of National Reference Laboratories (NRLs) and official control laboratories (OCLs) in the determination of total arsenic (As), cadmium (Cd), mercury (Hg), extractable lead (ex-Pb) and inorganic arsenic (iAs) mass fractions in kaolinitic clay. This PT was organised as agreed with the Directorate General Health and Food Safety (DG SANTE) in the annual work program of the EURL-HM.

Kaolinitic clay (KC) is an aluminium silicate mineral, displaying the layered structure of phillosilicates (parallel sheets of silicates). Among various applications, KC is a "technological feed additive" used as a "binder" or "anti-caking agent" originally authorised by Commission Directive 85/429/EEC [1], as listed in the "European Union Register of Feed Additives" [2].

According to Commission Regulation (EU) No 1275/2013 [3] "[...] Recently, a significant difference has been identified by the European Union Reference Laboratory for heavy metals in feed and food (EURL-HM) between the analytical results obtained by the application of different extraction methods currently used for the determination of lead in kaolinitic clay and feed containing kaolinitic clay [4]). [...] The maximum levels of heavy metals in feed relate 'to an analytical determination of lead, whereby extraction is performed in nitric acid (5 % w/w) for 30 minutes at boiling temperature'. It is therefore appropriate to provide for the use of that method of extraction for the determination of lead in kaolinitic clay [...]", as prescribed in the European Standard EN 15510:2007 [5]. This Regulation adds that equivalent extraction procedures may be used provided that demonstration of equal efficiency is sound.

Furthermore, Directive 2002/32/EC of the European Parliament and of the Council [6] set maximum levels (MLs) for undesirable substances (such as As, Cd, Hg and Pb) in animal feed. Regarding iAs, this Directive states that the competent authorities may request the additional determination of iAs when total As levels higher than 2 mg kg⁻¹ are found; this applies specifically to feedingstuffs for fish.

This report evaluates and summarises the performance of NRLs and OCLs in the determination of total arsenic, cadmium and mercury, extractable lead and inorganic arsenic in kaolinitic clay determined in the frame of the PT exercise. Additionally, it evaluates the ability of laboratories in assessing the compliance of this test item against the maximum levels set in legislation.

2. Scope and aim

As stated in Regulation (EC) 882/2004 [7] one of the core duties of the EURLs is to organise interlaboratory comparisons for the benefit of the NRLs.

The present PT aims to assess the performance of NRLs and OCLs in the determination of total As, Cd, Hg, iAs and extractable Pb mass fractions in kaolinitic clay. In addition, participants were requested to evaluate the conformity of the analysed feed additive according to the maximum levels (MLs) set in legislation.

The assessment of measurement results follows the administrative and logistic procedures of the EC-JRC-IRMM for the organisation of PTs, which is accredited according to ISO/IEC 17043:2010 [8].

The name of this proficiency test round is EURL-HM-21.

3. Set up of the exercise

3.1 Time frame

The organisation of the EURL-HM-21 exercise was agreed upon by the NRL network at the 8th EURL-HM Workshop held in Brussels on September 24, 2013. Invitation letters were sent to the NRLs on February 26, 2015 (Annex 1) and a web announcement (Annex 2) for the exercise was made on the same day on the JRC webpage [9]. The registration deadline was set to April 10, 2015. The reporting deadline was set to July 24, 2015. Dispatch was followed by the PT coordinator using the messenger's parcel tracking system on the internet.

3.2 Confidentiality

According to the IRMM procedure for the organisation of PTs the confidentiality of participants is guaranteed. However, the following confidentiality statement was made to NRLs: "In case you plan to pay for the participation of official control laboratories belonging to your national network, please inform them that their identity will be disclosed to you" (Annex 1).

3.3 Distribution

The test item was dispatched to participants on June 8, 2015. Each participant received:

- One glass bottle containing approximately 15 g of test item;
- A "Sample accompanying letter" (Annex 3); and
- A "Confirmation of receipt form" to be sent back to IRMM after receipt of the test item (Annex 4).

3.4 Instructions to participants

Detailed instructions were given to participants in the "Sample accompanying letter" mentioned above. Measurands were defined as "Total As, Cd, Hg, ex-Pb and iAs mass fractions in kaolinitic clay".

Participants were asked to perform two or three independent measurements, to correct their measurements for recovery and to report their calculated mean (x_{iab}) , the associated expanded measurement uncertainty (U_{iab}) together with the corresponding coverage factor and the technique used. Unlike other PTs where results are reports related to dry mass, participants were expected to comply with the legal requirements set by the feed legislation and report results referring to 12 % moisture content. When participants reported results referring to dry mass these results were systematically corrected to 12 % moisture content to allow a consistent comparison.

Participants received an individual code to access the on-line reporting interface, to report their measurement results and to complete the related questionnaire. A dedicated questionnaire was used to gather additional information related to measurements and laboratories (Annex 5).

Participants were informed that the procedure used for the analysis should resemble as closely as possible the one they use in their routine analysis.

The laboratory codes were given randomly and communicated to the participants by e-mail.

4. Test item

4.1 Preparation

The test item used was a commercially available feed additive (kaolinitic clay) kindly provided by AGS Mineraux (France) and Goonvean (United Kingdom). Ca. 7 kg of kaolinitic clay were sent to the IRMM. Once received, the material was stored at + 4 °C until processing. The material was homogenised and portions of 15 g were filled into 125 ml acid-washed amber glass bottles. The bottles were manually filled using acid washed plastic spoons under an air extraction point. The bottles were closed with acid washed inserts and screw caps.

Each vial was identified/labelled with a unique number and with the name of the PT round, following the IRMM procedures.

4.2 Homogeneity and stability

Measurements for the homogeneity and stability studies were performed by Centro de Salud Pública de Alicante (CSPA, Alicante, Spain). Inductively coupled plasma mass spectrometry (ICP-MS), after microwave digestion (0.20 g of feed additive in a mixture of 65 % HNO₃ /37 % HCl) was used to determine the total As and Cd mass fractions. Extractable Pb mass fractions was determined applying the sample extraction procedure described in Annex 6.

An elemental mercury analyser (EMA) was used to quantify the total Hg mass fraction, using approximately 200 mg of feed additive per analysis.

The statistical treatment of data was performed by the EURL-HM.

Homogeneity was evaluated according to ISO 13528:2005 [10]. The test item proved to be adequately homogeneous for the total As, Hg and ex-Pb. However the test item was found to be not adequately homogeneous for total Cd.

The PT organisers considered that the stability of heavy metals in mineral material (such as kaolinitic clay) is granted and not to be demonstrated. However, the stability study confirmed that the material was stable and the uncertainty contribution due to stability was set to zero ($u_{st} = 0$) for all analytes.

The contribution from homogeneity (u_{bb}) to the standard measurement uncertainty of the assigned value (u_{ref}) was calculated using SoftCRM [11]. The analytical results reported by the expert laboratory and the statistical evaluation of the homogeneity study are presented in Table 1 and in Annex 7.

5. Assigned values and their uncertainties

5.1 Assigned value, X_{ref}

The assigned values for the five measurands (total As, Cd, Hg, ex-Pb and iAs in kaolinitic clay) were determined by four laboratories, selected on the basis of their demonstrated measurement capabilities (later referred as expert laboratories):

- ALS Scandinavia AB (Luleå, Sweden);
- SCK-CEN Studiecentrum voor Kernenergie (Mol, Belgium);
- UBA Environmental Agency Austria (Vienna, Austria);
- CSPA Centro de Salud Pública de Alicante (Alicante, Spain)

Expert laboratories were asked to use the method of analysis of their choice and no further requirements were imposed regarding methodology. They were requested to analyse three independent replicates per bottle (two bottles were distributed for each expert laboratory), on two different days (one bottle per day).

Expert laboratories were also required to report their results together with the associated expanded measurement uncertainty and with a clear and detailed description on how their measurement uncertainty was evaluated. Expert laboratories were not requested to report values for all measurands.

- ALS Scandinavia used inductively coupled plasma sector field mass spectrometry (ICP-SFMS) after digestion with HNO₃, HCl and HF in sealed Teflon containers in microwave oven, for the analysis of the total As, Cd and Hg. Ion chromatography with post column hydride generation and detection by ICP coupled with mass spectrometry detector (IC-ICP-MS) was used for the determination of iAs. ALS followed the protocol provided by IRMM for the quantification of ex-Pb (Annex 7).
- SCK-CEN applied the k₀-standardized neutron activation analysis (k₀-NAA) for the determination of total As, Cd and Hg. Three test samples of about 400 mg were taken from each bottle and transferred in standard high-density polyethylene vials and weighed. Samples were irradiated for seven hours in the BR1 reactor under a thermal flux of 3 10¹¹ n s⁻¹ cm² together with four IRMM-530 (Al-0.1 % Au alloy) neutron flux monitors, and several reference materials for validation (SMELS II; SMELS III; BCR 176 fly ash; and BCR 278 mussel tissue). Two spectra per sample were then collected (after 3 and 14 days) on a k_0 -calibrated HPGe detector. No additional sample treatment was applied.
- Umweltbundesamt GmbH (UBA) used graphite furnace atomic absorption spectrometry (GF-AAS) for the analysis of total As and Cd, while cold-vapour atomic absorption spectrometry (CV-AAS) was used to determine the total Hg. Microwave-assisted high-pressure digestion was used with HNO₃, HCl and HF for digestion. Complexation with H_3BO_4 according to ÖNORM EN 13656 was used.
- CSPA used ICP-MS after digestion with an acid mixture of 65 % HNO₃ /37 % HCl, for the determination of the total As and Cd. EMA was used for the total Hg which consists of a single purpose atomic absorption spectrophotometer for Hg determination. For the extractable Pb determination the extraction protocol provided by IRMM was followed, after which, ICP-MS was used as technique.

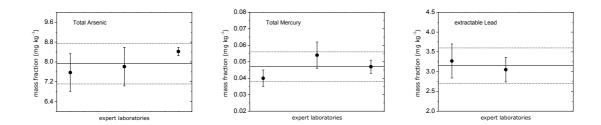
For this PT, the mean of the retained means reported by the expert laboratories were used to derive the assigned values (X_{ref}) according to ISO Guide 35:2006 [12] (Figure 1).

No reference values were assigned for Cd and iAs, as discussed later.

5.2 Associated uncertainty, u_{ref}

The associated standard measurement uncertainties (u_{ref}) of the assigned values were calculated following the law of propagation of uncertainty, combining the standard measurement uncertainty of the characterization (u_{char}) with the standard uncertainty contribution from homogeneity (u_{bb}) in compliance with ISO Guide 35 [12]:

$$u_{ref} = \sqrt{u_{char}^2 + u_{bb}^2}$$
 Eq. 1


For the total As, Hg and ex-Pb, expert laboratories reported values with overlapping expanded measurement uncertainties (Table 1, Figure 1), hence u_{char} was calculated according to ISO 13528:2005 [10]:

$$u_{char} = \frac{1.25}{p} \sqrt{\sum_{1}^{p} u_i^2}$$

Eq. 2

where: p is the number of expert laboratories used to assign the reference value; and u_i is the standard measurement uncertainty reported by the expert laboratories.

Table 1 presents the average measurement values reported by the expert laboratories and their associated expanded measurement uncertainties; the assigned values (X_{ref}, u_{ref} and U_{ref} (k=2)); the standard measurement uncertainty contributions (u_{char} and u_{bb}); and the standard deviation for PT assessment (σ). All values were corrected to 12 % moisture content in order to comply with the feed legislation [6].

Figure 1: Assigned values for EURL-HM-21. Circles represent the reported values by the retained expert laboratories ($\pm 2u_i$); the solid line represents the assigned value (X_{ref}) while the dashed lines represent the expanded assigned uncertainty interval ($X_{ref} \pm U_{ref}$).

	As	Hg	ex-Pb	Cd	iAs
Expert 1	5.12 ± 0.50 ª	0.040 ± 0.005	3.27 ± 0.43	0.106 ± 0.015	
Expert 2	7.57 ± 0.76	0.054 ± 0.008	3.05 ± 0.31	0.136 ± 0.013	0.91 ± 0.091
Expert 3	7.81 ± 0.78	0.047 ± 0.004		0.041 ± 0.007	
Expert 4	8.42 ± 0.17	< 0.5		< 0.9	
X _{ref}	7.93	0.047	3.15		
U _{char}	0.23	0.002	0.17		
u _{bb}	0.34	0.001	0.15		
u _{ref}	0.41	0.002	0.22		
U _{ref}	0.82	0.004	0.45		
σ	1.59	0.012	0.79	no scoring	no scoring
σ (%)	20%	25%	25%		
0.3σ	0.48	0.003	0.24		
u _{ref} < 0.3 σ ?	yes	yes	yes		

^a Rejected result (see Section 6.1)

5.3 Standard deviation for proficiency assessment, σ

The relative standard deviation for proficiency assessment (σ , in %) was set considering the performance of participants in previous PT rounds with similar measurands [9] and taking into account the complexity of the test item investigated. Therefore, σ was set to 20 % of the assigned value for total As, and to 25 % for ex-Pb and Hg (Table 1).

5.4 Scores and evaluation criteria

Individual laboratory performance was expressed in terms of z- and ζ -scores in accordance with ISO 13528:2005 [10]:

$$z = \frac{X_{lab} - X_{ref}}{\sigma}$$
Eq. 3
$$\zeta = \frac{X_{lab} - X_{ref}}{\sigma}$$
Eq. 4

$$=\frac{ub}{\sqrt{u_{ref}^2+u_{lab}^2}}$$

where: x_{lab} is the measurement result reported by a participant;

u_{lab} is the standard measurement uncertainty reported by a participant;

- X_{ref} is the assigned value;
- u_{ref} is the standard measurement uncertainty of the assigned value;
- σ is the standard deviation for proficiency assessment.

The interpretation of the z- and ζ -scores is done according to ISO 17043:2010 [8]:

$ score \le 2$	satisfactory performance	(green in Annexes 8 - 13);
2 < score < 3	questionable performance	(yellow in Annexes 8 - 13);
$ \text{score} \ge 3$	unsatisfactory performance	(red in Annexes 8 - 13).

The z-score compares the participant's deviation from the assigned value with the standard deviation for proficiency assessment (σ) used as common quality criterion.

The ζ -score states whether the laboratory's result agrees with the assigned value within the respective uncertainty. The denominator is the combined uncertainty of the assigned value (u_{ref}) and the measurement uncertainty as stated by the laboratory (u_{lab}). The ζ -score includes all parts of a measurement result, namely the expected value (assigned value), its measurement uncertainty in the unit of the result as well as the uncertainty of the reported values. An unsatisfactory ζ -score can either be caused by the presence of a significant bias (inaccurate measurement) or by a not realistic estimation of its measurement uncertainty (seriously under-estimated), or both.

The standard measurement uncertainty of the laboratory (u_{lab}) was obtained by dividing the reported expanded measurement uncertainty by the reported coverage factor, k. When no uncertainty was reported, it was set to zero $(u_{lab} = 0)$.

Uncertainty estimation is not trivial, therefore an additional assessment was provided to each laboratory reporting measurement uncertainty, indicating how reasonable their measurement uncertainty evaluation was.

The standard measurement uncertainty from the laboratory (u_{lab}) is most likely to fall in a range between a minimum uncertainty (u_{min}) , and a maximum allowed $(u_{max}) - case$ "a": $u_{min} \le u_{lab} \le u_{max}$. u_{min} is set to the standard measurement uncertainty of the assigned value $(u_{min} = u_{ref})$. It is unlikely that a laboratory carrying out the analysis on a routine basis would measure the measurand with a smaller measurement uncertainty than the expert laboratories chosen to establish the assigned value. u_{max} is set to the standard deviation accepted for the PT assessment $(u_{max} = \sigma)$. Consequently, Case "a" becomes: $u_{ref} \le u_{lab} \le \sigma$. If u_{lab} is smaller than u_{min} (case "b": $u_{lab} < u_{ref}$) the laboratory may have underestimated its measurement uncertainty. Such a statement has to be taken with care as each laboratory reported only its measurement uncertainty, whereas the uncertainty associated with the assigned value also includes the contribution for homogeneity of the test item. If that is large, measurement uncertainties smaller than u_{min} are possible and plausible.

If u_{lab} is larger than u_{max} (case "c": $u_{lab} > \sigma$) the laboratory may have overestimated its measurement uncertainty. An evaluation of this statement can be made when looking at the difference between the reported value and the assigned value: if the difference is smaller than U_{ref} then overestimation is likely. If the difference is larger but x_{lab} agrees with X_{ref} within their respective expanded measurement uncertainties, then the measurement uncertainty is properly assessed resulting in a satisfactory performance expressed as a ζ -score, though the corresponding performance, expressed as a z-score, may be questionable or unsatisfactory.

It should be pointed out that u_{max} is a normative criterion when set by legislation.

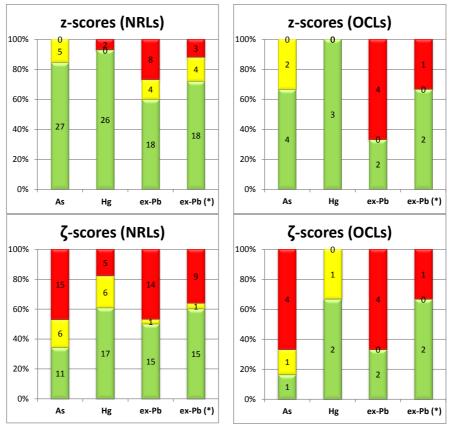
More detailed information about measurement uncertainty evaluation can be found in some international standard and other guidance documents [13-17].

6. Evaluation of results

Kaolinitic clay is a layer structured mineral (inorganic) material that can trap/bind ions, metals and mycotoxins. The total extraction of an element (i.e. As, Cd, Hg, Pb) from such matrix would require the use of strong acid mixtures to break the bonds trapping/fixing cations to the clay. Several strong acid mixtures (including HNO_3 , HCI and/or H_2SO_4) were used successfully in this exercise. The supplementary addition of HF was proven to be effective by the expert laboratories and participating laboratories.

For the determination of extractable lead the use of 5 % HNO₃ (weaker acid) is prescribed by Commission Regulation (EU) No 1275/2013 [3].

The sample preparation protocol, described in EN 16278 [18] for the determination of inorganic arsenic prescribes the use of HNO_3 and H_2O_2 . The effectiveness of this acid mixture is discussed below.


Several challenges are therefore identified for this PT:

- the determination of total arsenic, cadmium and mercury;
- the determination of inorganic arsenic;
- the determination of extractable lead; and
- the compliance assessment of the test item used as feed additive as such, or included in feedingstuffs, according to the relevant EU legislation.

Annexes 8 to 12 present for each measurand the table of results as reported by the participants and systematically corrected to 12 % moisture content to allow a consistent comparison in compliance with European legislation [6]. NRLs and OCLs are denoted as Nxx and Lxx, respectively. The corresponding Kernel density plots are also included, obtained using the software available from the Statistical Subcommittee of the Analytical Methods Committee of the UK Royal Society of Chemistry [19]. All the experimental details collected via the questionnaire are summarised in Annex 13.

From the 46 laboratories having registered to this PT 4 did not report results, of which one NRL. The NRL from Luxemburg did not register to this PT. Some participants reported truncated ("less than") values: 5 for total Cd, 6 for total Hg, and one for iAs. All of them (except one) are realistic, because these values where above the lower limit of the assigned range (X_{ref} - U_{ref}).

Figure 2 presents the z- and ζ -score distribution for NRLs and OCLs.

Figure 2: Overview of the z and ζ -scores obtained by NRLs and OCLs for the different measurands. The data shown for ex-Pb (*) are obtained excluding the "outlying" values (see Section 6.5). Satisfactory, questionable and unsatisfactory performances - expressed as z- and ζ -scores - are indicated in green, yellow and red, respectively.

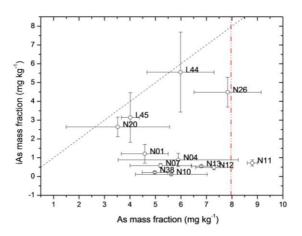
The evaluation of the results reported by the participants is thoroughly discussed hereafter.

6.1 Total arsenic

The homogeneity of the test material was proven to be adequate for total As (Annex 6). One of the expert laboratories applied k_0 -NAA, a method of choice for the determination of arsenic in soil type matrices. This result was further confirmed by two other expert laboratories having applied ICP-MS, after closed microwave digestion with a strong acid mixture including HF. However, "Expert 1" did not use HF in the acid mixture for digestion and reported a significantly lower total arsenic value. This may be attributed to an incomplete extraction of total arsenic, and the PT organiser did not include this result in the calculation of the assigned value. The following assigned range was derived: 7.93 \pm 0.82 (k=2) mg kg⁻¹; where the standard uncertainty of the assigned value (0.41 mg kg⁻¹) was smaller than 0.3 σ (0.48 mg kg⁻¹, Table 1).

A total of 38 results were reported and the Kernel density plot indicates the presence of two partially overlaying normal distributions (Annex 8). The majority of the laboratories and "Expert 1" belong to the first mode (ca. 5.6 mg kg⁻¹), while laboratory N35 (using k₀-NAA) and laboratories N12, N31 L24 and N27 (having used strong acid mixtures including HF) confirm the second mode at 7.8 mg kg⁻¹, and therefore the assigned value.

Most of the participants used inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS) or graphite furnace AAS (GF-AAS). No significant trend could be observed related with the analytical technique.


Due to the challenging extraction of analytes from the clay matrix investigated, the PT organisers set σ to 20 % of the assigned value, a value significantly higher than the one predicted by the Horwitz equation. The resulting acceptable range (X_{ref} ± 2 σ) encompasses the whole observed bimodal distribution. Therefore 82 % of the laboratories (31/38) obtained a satisfactory performance, expressed as z-score ($|z| \le 2$, Figure 2). The remaining results were under-estimated (-2.69 < z < -2.03), probably due to the use of milder acid mixtures for digestion (HNO₃ or HNO₃/H₂O₂ at low concentrations, below 10 % v/v).

However, despite the fact that the majority of laboratories reported realistic uncertainties (of the order of 10 to 15 %) a large fraction of the population got an unsatisfactory performance expressed as ζ -score ($|\zeta| \ge 3$, Figure 2). This is attributed to the difference between the two modes of ca. 33 %, which is significantly larger than the standard measurements uncertainty reported. Taking into consideration the difficult matrix analysed, laboratories are advised to revise their sample treatment (digestion, acid mixture) and correct for their bias, instead of reviewing their measurement uncertainty evaluation.

6.2 Inorganic arsenic

While the homogeneous distribution of iAs in the test item was assumed to be similar to the one of total As, only the "Expert 2" laboratory reported a value for iAs $(0.91 \pm 0.09 \text{ mg kg}^{-1})$ applying ICP-MS after microwave digestion with H₃PO₄ (Table 1). This value is significantly lower than the value reported by "Expert 2" for total As $(7.57 \pm 0.76 \text{ mg kg}^{-1})$, which seems unrealistic for a mineral/clay matrix, where iAs is expected to be the major arsenic constituent. Hence, no assigned value was attributed by the PT organiser for this measurand and no scoring of results was performed.

Thirteen laboratories reported highly scattered results for iAs, ranging from 0.13 to 6.3 mg kg⁻¹ (Annex 9) – well below the value assigned for total As. Figure 2 presents the 12 results reported for As and iAs. Three of the laboratories (N26, N04 and N12) reported satisfactory total arsenic results ($|\zeta| \le 1.6$), close to the vertical line. Three other laboratories (L44, L45 and N20) used the HCl/HNO₃ (strong) acid mixture for digestion and obtained similar mass fractions for both analytes, (close to the diagonal line). The rest of the participants under-estimated both measurand values. As a conclusion, the classical acid mixture used for the determination of iAs may not be suitable to extract the "total" inorganic arsenic present in kaolinitic clay.

Figure 3: The results of 12 laboratories having reported results for total and inorganic arsenic.

6.3 Total cadmium

The expert laboratories reported highly scattered values for Cd in kaolinitic clay ranging from 0.04 to 0.14 mg kg⁻¹ (Table 1) and the homogeneity results could not demonstrate the fitness-for-purpose of the material ($u_{bb} > 0.3 \sigma$; Annex 7). Therefore, no assigned value could be established and no scoring of the results was performed.

Nevertheless, a total of 35 results were reported (Annex 10). Most of them were in the same range observed by the expert laboratories. Only three laboratories (N30, L36 and L44) reported significantly higher values (ca. 0.4 mg kg⁻¹). Algorithm A of ISO 13528 was used to compute an informative "consensus value" of 0.065 mg kg⁻¹ from all the results reported by the participants. Although the PT organiser does not guarantee the representativeness of this value for the total cadmium content in the kaolinitic clay test item, participants may consider comparing their performance by mean of the D% score, as defined in ISO 13528 [10].

6.4 Total mercury

The homogeneity of the test material was proven to be adequate for total Hg (Annex 7). Due to the challenging matrix investigated and the low mercury content the PT organisers set σ to 25 % of the assigned value. The results provided by the three expert laboratories were in agreement (Table 1).

All the participants using ICP-MS (10 out of 10) and elemental mercury analyser (EMA, 11 out of 11) reported satisfactory results similarly to the 8 participants (out of 10) using CV-AAS. No significant trend could be observed related with the analytical technique. All laboratories used strong acid mixtures with closed microwave digestion systems. The four laboratories (N31, N35, N12 and N27) having added HF confirmed the assigned value (Annex 11).

94 % of the laboratories (29/31) obtained satisfactory performance expressed as z-score ($|z| \le 2$, Figure 2), while 61 % of the laboratories (19/31) obtained satisfactory performance expressed as ζ -score.

6.5 Extractable lead

The homogeneity of the test material was proven to be adequate for ex-Pb (Annex 7). Two expert laboratories provided results that were in agreement from which the assigned range was derived: 3.15 ± 0.44 (k=2) mg kg⁻¹; where the uncertainty of the assigned value was smaller than 0.3σ (0.24 mg kg⁻¹, Table 1).

Expert laboratories and all participants were requested to quantify "extractable lead" applying the recommendations set in Commission Regulation (EU) No 1275/2013. Eight participants (out of 36) erroneously applied closed microwave (CMW) digestion with strong acid mixtures (instead of the prescribed 5 % HNO₃) and reported (outlying) values above 40 mg kg⁻¹ (Annex 12). Three of them (N17, L42 and L43) acknowledged having analysed "total lead" instead of the requested "extractable lead". Most of the participants followed the standard operating procedure described in EN 15510 (Annex 7) [5], varying the ratio "sample intake / volume of HNO₃ (5 %)". The following instrumental techniques were mainly used: ICP-MS and electro thermal AAS (ET-AAS). No significant trend could be observed related with the analytical technique. None of the participants used the ICP-AES technique recommended in EN 15510 [5].

After removal of the "outlying" data, 71 % (20/28) obtained a satisfactory performance, expressed as z-score ($|z| \le 2$, Figure 2). Similarly, 61 % (17/28) obtained a satisfactory performance expressed as ζ -score ($|\zeta| \le 2$, Figure 2). Five laboratories submitted results ranging from 4.4 to 4.9 mg kg⁻¹ (48 % above the assigned value) and reported likely under-estimated standard measurement uncertainties (below 10 %).

Figure 2 also presents the z- and ζ -score of the complete set of results reported for extractable lead (including the "outlying" values mentioned above) for which the number of unsatisfactory results (|z| and $|\zeta| > 3$) is significantly increased.

6.6 Compliance

Kaolinitic clay is commonly classified as "technological feed additive" and used as "binder" or "anti-caking agent" [1, 2].

Similarly to other bentonite/montmorillonite clays, this feed additive (FA) is intended to be included in feedingstuffs (FS) at concentration levels ranging from 1 to 25 g kg⁻¹ [20].

The assigned values for total As, Hg and ex-Pb are compared as such (X_{ref} in FA) or converted into an "hypothetical" content in feed (25 g of kaolinitic clay per kilogram feed, corresponding to a dilution factor of 40) to the maximum levels for undesirable substances (i.e. As, Cd, Hg and Pb) set by Directive 2002/32/EC [6] (Table 2). Since all levels are below the MLs, the test item is considered by the PT organiser as compliant.

Table 2 -Assigned values (X_{ref}) and maximum limits (ML) in Feed Additive (FA) or
Feedingstuffs (FS). All values are expressed in mg kg⁻¹.

Analyte	X _{ref} in FA	X _{ref} in FS ^a	ML [6]	in which matrix?
As	7.93	0.20	2	in feed material
			12	in mineral feedingstuffs
Cd			2	in binder or anticaking FA
Hg	0.047	0.001	0.1	in feed material
ex-Pb	3.15		30	in binder or anticaking FA

^a Applying a dilution factor of 40 to take into account the condition of use of this feed additive in feedingstuffs.

Annex 14 summarises the compliance statements provided by the participants. 69 % of the 39 laboratories stated correctly that the material is compliant (cf. green cells in Annex 14). 13 % of them concluded that the material was not compliant, based on their outlying results reported while analysing lead - instead of extractable lead (yellow cells in Annex 14). Finally, six laboratories interpreted erroneously Directive 2002/32/EC [6] comparing their results for As in kaolinitic clay (feed additive) to the ML for As in feed material and concluded incorrectly that the material was not compliant.

6.7 Additional observations

Most of the participants (85 %) are NRLs, accredited according to ISO/IEC 17025 for the analysis of As, Cd, Hg and Pb in feed. However, they do not monitor regularly inorganic arsenic in mineral matrices; hence, this type of analysis is usually not included in their accreditation scope.

Participants claiming to analyse more than 250 samples/year reported satisfactory results for As and/or Hg.

Several CEN standard methods (i.e. EN 15510 [5]; EN 15550 [21], EN 15621 [22] and EN 16206 [23]) are available for the elemental analysis in feed, applying GF-AAS or ICP-AES. However, none of these standards are designed for the accurate quantification of total As, Hg and Pb in clay matrices. Laboratories used the sample preparation protocol described in the standard but did not use the instrumental approach prescribed. The only standard available for the determination of iAs in feedingstuffs (EN 16278 [18]) may not be adequate for the analysis of clay matrices (i.e. kaolinitic clay), since it uses "diluted hydrochloric acid and hydrogen peroxide solution coupled with microwave assisted heating". None of the participants succeeded to extract properly the "total" inorganic arsenic present in the clay.

Participants evaluated their measurement uncertainty using one or several of the following approaches: - applying the "Guide to the expression of uncertainty in measurement, GUM" [13] (9 laboratories); - from their in-house method validation studies (27 laboratories); - from inter-laboratory comparison results (8 laboratories) and/or - from precision data (8 laboratories). Two thirds of all laboratories seem to report realistic uncertainties (case "a", Annex 8-12). However, this did not ensure systematically satisfactory z-scores. This may be attributed to the significant biases observed, such as (i) the insufficient extraction of the "total" As from the clay matrix (as indicated by the 1st mode at 5.6 mg kg⁻¹); or (ii) the over-estimated extractable Pb levels due to the use of an extraction procedure stronger than the one prescribed [3,5].

7. Conclusion

Considering the overall satisfactory performance of the participating laboratories in EURL-HM-21, the analytical capability of the participating laboratories for the determination of total As, Hg and extractable Pb in kaolinitic clay was successfully demonstrated at the investigated concentration levels.

As a whole, the NRLs presented good uncertainty evaluations. This may be due to (i) the several PTs organised so far by the EURL-HM and (ii) the various trainings on relevant topics related to the analyses of heavy metals in feed and food provided by the EURL-HM during the annual workshops.

No scoring was provided for total Cd and inorganic As. The first showed inadequate homogeneity, while the latter appeared to be difficult to extract from the clay matrix when mild acid mixtures ($5 \% HNO_3/H_2O_2$) for digestion are used.

For the accurate determination of extractable lead mass fractions in kaolinitic clays (and other phyllosilicates) laboratories must follow the experimental protocol prescribed by Commission Regulation (EU) No. 1275/2013. The use of higher concentration of acid mixtures for sample digestion may lead to significantly over-estimated results.

In order to assess the compliance of this particular clay, laboratories must properly interpret the EU legislation and select the relevant legal maximum levels in feed additives (e.g. Cd, ex-Pb) and in various feedingstuffs (e.g. As, Hg).

Taking into consideration the difficult matrix analysed, laboratories are advised to revise their sample treatment (digestion procedure and acid mixtures) rather than reviewing their measurement uncertainty evaluation.

8. References

- 1. Commission Directive 85/429/EEC of 8 July 1985 amending the annexes to Council Directive 70/524/EEC concerning additives in feedingstuffs, Official Journal of the European Union, L245 (1985).
- 2. European Union register of feed additives, available at: <u>http://ec.europa.eu/food/food/animalnutrition/feedadditives/docs/comm_register_feed_additives_1831-03.pdf</u>
- 3. Commission Regulation (EU) N° 1275/2013 amending Annex I to Directive 2002/32/EC. Official Journal of the European Union, L 328 (2013).
- 4. "Determination of the ratio between the extractable and the total lead contents in a selection of raw and processed kaolinitic clays", M. B. de la Calle et al., JRC 69122 (2012).
- 5. EN 15510:2007, "Animal feeding stuffs Determination of calcium, sodium, phosphorus, magnesium, potassium, iron, zinc, copper, manganese, cobalt, molybdenum, arsenic, lead and cadmium by ICP-AES", issued by the European Committee for Standardization.
- 6. Directive 2002/32/EC on undesirable substances in animal feed. Official Journal of the European Union, L 140 (2002).
- Regulation (EC) N° 882/2004 of The European Parliament and of The Council of 29 April 2004, on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules. Official Journal of the European Union, L 165 (2004).
- 8. ISO 17043:2010, "Conformity assessment General requirements for proficiency testing", issued by ISO-Geneva (CH), International Organization for Standardization.
- 9. See IMEP-105, IMEP-108, IMEP-111, IMEP-114 and IMEP-117 https://ec.europa.eu/jrc/en/interlaboratory-comparisons
- 10. ISO 13528:2005, "Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons", issued by ISO-Geneva (CH), International Organization for Standardization.
- 11. SoftCRM, http://www.eie.gr/iopc/softcrm/index.html, (Accessed at date of publication of this report).
- 12. ISO Guide 35:2006, "Reference Materials General and statistical principles for certification", issued by ISO-Geneva (CH), International Organization for Standardization.
- ISO/IEC Guide 98:2008, "Uncertainty of measurement Part 3: Guide to the expression of uncertainty in measurement" (GUM 1995), issued by the ISO-Geneva (CH). Available also from the Joint Committee for Guides in Metrology (JCGM 100:2008) at: http://www.bipm.org/utils/common/documents/jcgm/JCGM 100 2008 E.pdf
- 14. Eurachem/CITAC, "Quantifying Uncertainty in Analytical Measurement".
 - http://www.eurachem.org., 3rd Ed. (2012).
- 15. ISO 21748:2010: "Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation", issued by ISO-Geneva (CH), International Organization for Standardization.
- "Is my uncertainty realistic?", AMC Technical Brief N°15, issued by the Analytical Methods Committee (AMC) of the Royal Society of Chemistry, UK (2003). Available at: <u>http://www.rsc.org/images/realistic-estimate-technical-brief-15 tcm18-214874.pdf</u>

- 17. Eurolab Technical Report 1/2007, "Measurement uncertainty revisited: Alternative approach to uncertainty evaluation, available at: http://www.eurolab.org/documents/1-2007.pdf
- 18. EN 16278:2012, "Animal feeding stuffs. Determination of inorganic arsenic by hydride generation atomic absorption spectrometry (HG-AAS) after microwave extraction and separation by solid phase extraction (SPE)", issued by the European Committee for Standardization.
- 19. EN 16206:2012, "Animal feeding stuffs. Determination of arsenic by hydride generation atomic absorption spectrometry (HGAAS) after microwave pressure digestion (digestion with 65 % nitric acid and 30 % hydrogen peroxide), ", issued by the European Committee for Standardization.
- 20. "Representing data distributions with kernel density estimates", AMC Technical Brief N $^{\circ}$ 4, issued by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry, UK, (2006).
- 21. EURL-FA evaluation reports: FAD-2011-0002, FAD-2010-0018 and FAD-2010-0233, available from: <u>https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports</u>
- 22. EN 15550:2007, "Animal feeding stuffs Determination of cadmium and lead by graphite furnace atomic absorption spectrometry (GF-AAS) after pressure digestion", issued by the European Committee for Standardization.
- 23. EN 15621:2012, "Animal feeding stuffs Determination of calcium, sodium, phosphorus, magnesium, potassium, sulphur, iron, zinc, copper, manganese and cobalt after pressure digestion by ICP-AES", issued by the European Committee for Standardization.
- 24. EN 16206:2012, "Animal feeding stuffs Determination of arsenic by hydride generation atomic absorption spectrometry (HG-AAS) after microwave pressure digestion (digestion with 65 % nitric acid and 30 % hydrogen peroxide)", issued by the European Committee for Standardization.

9. Abbreviations

AAS	Atomic Absorption Spectroscopy
CITAC	Cooperation on International Traceability in Analytical Chemistry
CRM	Certified Reference Material
CV-AAS	Cold Vapour Atomic Absorption Spectrometry
CV-AFS	Cold Vapour Atomic Fluorescence Spectrometry
CMW	Closed microwave
DA	Dry Ashing
EMA	Elemental Mercury Analyser (or direct mercury analyser, DMA, Annex 11)
ET-AAS	Electro Thermal Atomic Absorption Spectrometry (also called Graphite Furnace Atomic Absorption Spectroscopy, GF-AAS)
EURL-HM	European Union Reference Laboratory for Heavy Metals in Feed and Food
EU	European Union
GUM	Guide to the expression of Uncertainty in Measurement
HG-AAS	Hydride Generation Atomic Absorption Spectroscopy
HPLC-ICP-MS	High Performance Liquid Chromatography coupled with ICP-MS
IC-ICP-MS	Ion chromatography coupled with ICP-MS
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectrometry
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
ICP-OES	Inductively Coupled Plasma Optical Emission Spectrometry
ICP-ID-MS	Inductively Coupled Plasma Isotope Dilution Mass Spectrometry
ICP-SF-MS	Inductively Coupled Plasma Sector Field Mass Spectrometry
ILC	Interlaboratory Comparison
IMEP	International Measurement Evaluation Programme
IRMM	Institute for Reference Materials and Measurements
ISO	International Organisation for Standardisation
JRC	Joint Research Centre
LC-ICP-MS	Liquid Chromatography coupled with ICP-MS
k ₀ -NAA	k_0 -standardised Neutron Activation Analysis
NRL	National Reference Laboratory
ML	Maximum level
OCL	Official Control Laboratory
PT	Proficiency Testing
Q-ICP-MS	Quadrupole Inductively Coupled Plasma Mass Spectroscopy
Z-ET-AAS	Zeeman- Electro Thermal Atomic Absorption Spectrometry

Annex 1: Invitation letter to NRLs

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Heavy Metals

> Geel, 26 February 2015 JRC.D.5/PRO/FCR/acs/ARES

Sent by e-mail

<u>Subject</u>: Proficiency testing for the determination of total As, Cd, Hg, iAs and extractable Pb in kaolinitic clay (EURL-HM-21)

Dear National Reference Laboratory representative,

We would like to invite you on behalf of the EURL-HM in Feed and Food to participate in the Proficiency Test EURL-HM-21 for the "Determination of <u>total</u> As, Cd, Hg, iAs and <u>extractable</u> Pb in kaolinitic clay".

You are kindly reminded that according to Regulation (EC) No 882/2004 it is your duty as NRL to participate in proficiency tests organised by the EURL-HM if you hold a mandate for this type of matrix.

Your participation is free of charge.

Please register using the following link:

https://web.jrc.ec.europa.eu/ilcRegistrationWeb/registration/registration.do?selComparis on=1381

Once you submitted your registration copy the confirmation page that will appear and send it to <u>JRC-IRMM-EURL-HEAVY-METALS@ec.europa.eu</u>. This e-mail will be the confirmation of your participation.

If you know a laboratory interested in participating in the EURL-HM-21 exercise, please forward this link: <u>https://ec.europa.eu/jrc/en/interlaboratory-comparison/eurl-hm-21?search&form-return</u>

In case you plan to pay for the participation of official food control laboratories belonging to your national network, please inform them that their identity will be disclosed to you.

The deadline for registration is 10 April 2015. Samples will be sent to participants during the first half of May 2015. The deadline for submission of results is 12 June 2015.

Do not hesitate to contact us, in case of questions/doubts,

Yours sincerely

Fermand Codein lipos

Dr. Fernando Cordeiro EURL-HM-21 Coordinator

Cc: Franz Ulberth (Head of Unit SFB)

1. Robard

Dr. Piotr Robouch Operating Manager EURL-HM

Retieseweg 111, B-2440 Geel - Belgium. Telephone: +32-(0)14-571 211. Telephone: direct line +32-(0)14-571 687, Fax: +32-(0)14-571 865. E-mail: JRC-IRMM-EURL-HEAVY-METALS@ec.europa.eu Web site: https://ec.europa.eu/irc/en/eurl/heavy-metals

Annex 2: JRC web announcement

https://ec.europa.eu/jrc/en/interlaboratory-comparison/eurl-hm-21?search&form-return

	A-Z Ir	ndex FAQ Mailing lists Privacy statement Legal notice Contact Search English (en)
	JOINT RESE	ARCH CENTRE
European Commission	The European C	Commission's in-house science service
ropean Commission > IRC Science H	ub > Knowledge > Reference	e & measurement > Interlaboratory comparisons > EURL-HM-21
		ing with us News & events Our Institutes Our Communities
		🖶 Print 🐼 Share 🔊 RSS
Knowledge	< Go back to the list	
Reference & measurement	EURL-HM-2	21
Measurements matter 🛨		
European Union Reference Laboratories +	Description	Determination of total As, Cd, Hg, iAs and extractable Pb in kaolinitic clay
Interlaboratory comparisons	Status	Ongoing
All comparisons 🛨	Year	2015
IMEP ±	Туре	Proficiency Test
NUSIMEP	Participation	Restricted
Other comparisons	Contact	JRC-IRMM-EURL-HEAVY-METAL@ec.europa.eu
Reference Materials (RM) 🛨	IL category	IMEP
Scientific tools & databases	More	The EURL-HM-21 proficiency test (PT) focuses on the determination of the mass
Training		fractions of total arsenic, cadmium, mercury, inorganic arsenic and extractable lead in kaolinitic clay. This PT is organised in support to Directive 2002/32/EC on undesirable
Publications		substances in animal feed. The main objective of this exercise is to assess the analytical capabilities of nominate
Patents & technologies		National Reference Laboratories (NRLs) and official feed control laboratories on the above described measurands.
Photos		Participation in EURL-HM-21 is mandatory for all NRLs having experience in this kind of analysis.
Videos		Registration for NRLs is free of charge.Registration for official feed control laboratories is 300 euros
		Test item and analytes
		The test item to be analysed is kaolinitic clay. Each participant will receive one jar of the proficiency test item. The measurands are total As, Cd, Hg, iAs and extractable Pb in kaolinitic clay.
		General outline of the exercise
		Participants are requested to perform one to three independent analyses using the method of their choice, and to report the mean of their measurement results, its associated expanded measurement uncertainty and coverage factor k. Detailed instructions will be sent together with the test item.
	Registration URL	https://web.jrc.ec.europa.eu/ilcRegistrationWeb/registration/registration.do?sel
	Registration deadline	Friday, 10 April 2015

Annex 3: Sample accompanying letter

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE

Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Heavy Metals

> Geel, 22 April 2015 JRC.D5/FCR/acs/Ares(2015)1702206

«Title» «Firstname» «Surname» «Organisation» «Department» «Addresss» «Addresss» «Zip» «Town» «Country»

Participation in a proficiency testing round to determine the <u>total</u> mass fraction of arsenic (As), cadmium (Cd), mercury (Hg), inorganic arsenic (iAs) and <u>extractable</u> lead (Ex-Pb) in kaolinitic clay – EURL-HM-21.

Dear «Title» «Surname»,

Thank you for participating in the proficiency testing round for the determination of total As, Cd, Hg, iAs and extractable Pb in kaolinitic day. This proficiency testing round (PT) is organised in support to Directive 2002/32/EC on undesirable substances in animal feed.

Please keep this letter. You need it to report your results.

This parcel contains:

a) One bottle containing approximately 15 g of the proficiency test item
b) A "Confirmation of Receipt" form
c) This accompanying letter.

Please check whether the bottle containing the test item remained undamaged during transport. Then, send the "Confirmation of receipt" form back (fax: +32+14-571865, e-mail: <u>JRC-IRMM-EURL-HEAVY-METALS@ec.europa.eu</u>). You should store the sample in a dark place at 4°C until analysis.

The measurands are total As, Cd, Hg, iAs and extractable Pb in kaolinitic clay.

The procedure used for the analyses should resemble as dosely as possible the one that you use in routine analyses.

Reporting of results

Retieseweg 111, B-2440 Geel - Belgium. Telephone: +32-(0)14-571 211. Telephone: direct line +32-(0)14-571 687, Fax: +32-(0)14-571 865.

E-mail: <u>JRC-IRMM-EURL-HEAVY-METALS@</u>ec.europa.eu Web site: <u>http://imm.irc.ec.europa.eu</u> Please perform two or three independent measurements, correct the measurements results for recovery and report on the reporting website:

- the mean of your two or three measurement results (mg kg⁻¹) and its associated expanded uncertainty (mg kg⁻¹),
- the coverage factor and
- the technique used.

The results should be reported in the same form (e.g. number of significant figures) as those normally reported to the customer.

The reporting website is https://irmm.jrc.ec.europa.eu/ilc/ilcReporting.do

To access the webpage you need a personal password key, which is: **«Part_key»**. The system will guide you through the reporting procedure. After entering your results, please complete also the relating questionnaire.

Do not forget to submit and confirm always when required.

Directly after submitting your results and the questionnaire information online, you will be prompted to print the completed report form. Please do so, sign the paper version and return it to IRMM by fax (at +32-14-571-865) or by e-mail. Check your results carefully for any errors before submission, since this is your last definitive confirmation.

The deadline for submission of results is 12/06/2015.

Keep in mind that collusion is contrary to professional scientific conduct and serves only to nullify the benefits of proficiency tests to customers, accreditation bodies and analysts alike.

Your participation in this project is greatly appreciated. If you have any remaining questions, please contact me by e-mail: <u>JRC-IRMM-EURL-HEAVY-METALS@ec.europa.eu</u>

With kind regards,

Fermand Protein Chor

Fernando Cordeiro (Ph.D.) EURL-HM-21 Coordinator

Cc: F. Ulberth (Head of Unit)

Retieseweg 111, B-2440 Geel - Belgium. Telephone: +32-(0)14-571 211. Telephone: direct line +32-(0)14-571 687, Fax: +32-(0)14-571 865.

E-mail: JRC-IRMM-EURL-HEAVY-METALS@ec.europa.eu Web site: http://irmm.irc.ec.europa.eu

Annex 4: Confirmation of receipt form

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Directorate D - Institute for Reference Materials and Measurements European Union Reference Laboratory for Heavy Metals

JRC.D5/IF/acs/ARES(2015)1702206

«Title» «Firstname» «Surname» «Organisation» «Address» «Address2» «Zip» «Town» «Country»

EURL-HM-21

Total mass fraction of arsenic (As), cadmium (Cd), mercury (Hq), inorganic arsenic (iAs) and extractable lead (Ex-Pb) in kaolinitic clay

Confirmation of receipt of the samples

Please return this form at your earliest convenience. This confirms that the sample package arrived. In case the package is damaged, please state this on the form and contact us immediately.

.....

.....

ANY REMARKS

.....

.....

Date of package arrival

Signature

Please return this form to:

Fernando Cordeiro (Ph.D.)

EURL-HM-21 Coordinator EC-JRC-IRMM Retieseweg 111 B-2440 GEEL, Belgium

Fax : +32-14-571865 JRC-IRMM-EURL-HEAVY-METALS@ec.europa.eu

Retieseweg 111, B-2440 Geel - Belgium. Telephone: +32-(0)14-571 211. Telephone: direct line +32-(0)14-571 687, Fax: +32-(0)14-571 865.

E-mail: <u>JRC-IRMM-EURL-HEAVY-METALS@ec.europa.eu</u> Web site: <u>http://irmm.jrc.ec.europa.eu</u>

Annex 5: Questionnaire

* 1. You are:

- a National ReferenceLaboratory (NRL)
- an Official Control Laboratory (OCL)

O other

*2. Does the koalinitic clay you analysed comply with the maximum levels (MLs) set in the Directive 2002/32/EC?

- O yes
- O no

*2.1 specify why

3. Which type of sample digestion did you use?

	1. closed microwave	2. Pressure Bomb	3. Open microwave	4. Dry ashing	5. H2SO4	6. Other
tot As	0	0	0	0	0	0
tot Cd	0	0	0	0	0	0
tot Hg	\odot	0	0	0	0	0
ex-Pb	\odot	0	0	0	0	0
iAs	0	0	0	0	0	0

4. Which digestion mixture did you use?

	1. H2O2	2. HCI	3. HCIO4	4. HNO3	5. H2SO4	6. HF
tot As	0	0	0	0	0	0
tot Cd	0	0	0	0	0	0
tot Hg	0	0	0	0	0	0
ex-Pb	0	0	0	0	0	0
iAs	0	0	0	0	0	0

*5. Have you followed a standard method of analysis

O yes

O no

5.1. If yes - which one(s)

5.2. Experiemental details (for extractable lead)

	Answers
sample intake (in g)	
volume of 5% HNO3 added (ml)	
Extraction time (min)	
Extraction temperature (oC)	
External calibration (Yes/No)	
Standard Addition (Yes/No)	

*6. Did you correct for recovery?

O yes

🔘 no

*7. Provide the estimated analytical recovery; specify how the recovery was determined; provide the LOD of your method

	tot As	tot Cd	tot Hg	ex-Pb	iAs
Recovery (%)					
spiking with a known amount of the same analyte					
using a CRM					
other					
LOD (mg/kg)					

*8. additional relevant remarks concerning the method of analysis

9. did you use a CRM for instrumental calibration?

	tot As	tot Cd	tot Hg	ex-Pb	iAs
CRM used	0	0	0	0	0

* 10. Did you correct for moisture content?

\bigcirc	y	e	S
------------	---	---	---

🔘 no

* what was the moisture content in your sample?

11. Does your laboratory carry out this type of analysis on a regular basis? (How many samples per year)

	Never	1-50	51-250	251-1000	1000+
tot As	0	0	0	0	0
tot Cd	0	\bigcirc	\bigcirc	\odot	\bigcirc
tot Hg	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
ex-Pb	0	\bigcirc	\bigcirc	\odot	\bigcirc
iAs	0	0	0	0	0

* 12. How did you estimate your uncertainty budget? (you may select several options)

ISO GUM

ISO 21758 - uncertainty of standard methods

from in-house validation study

measurement replicates (precision)

estimation based on judgement

from inter-laboratory comparison data

 yes no 14. Does your I 	aboratory	y participa	ate to PTs	s of this t	ype?				
⊖ yes ⊖ no									
 15. Which qual ISO 9000 ISO 17025 other 	ity systen	n does yo	our labora	tory have	•				
if "other" - which		clay* are	you accre	edited?				2	
if "other" - which		clay* are tot Cd	you accre tot Hg	edited? ex-Pb	iAs]			
	nalyte in				iAs]			

Annex 6: Sample preparation

for the determination of extractable lead in kaolinitic clay

The extractable lead should be analysed following the protocol:

- a) Weigh about 2 g of the test sample to the nearest 1 mg into a 250 mL beaker;
- b) Add 85 mL of a 5 % (w/w) HNO_3 solution^(#);
- c) Cover the beaker with a watch-glass and boil for 30 min on a hot plate (make sure that the plate warms up homogeneously all over the surface);
- d) Allow to cool. Decant the liquid into a 100 mL volumetric flask, rinsing the beaker and the watch-glass several times with 5 % (w/w) HNO₃;
- e) Dilute to the mark with 5 % (w/w) HNO₃;
- f) After homogenising, filter through a dry folded filter paper into a dry container. Use the first portion of the filtrate to rinse the glassware and discard that part. If the determination is not carried out immediately, the container with filtrate shall be covered;
- g) Carry out a blank test at the same time as the extraction, with only the reagents and follow the same procedure as for the samples.

^(#) To prepare 1 kg stock of 5 % (w/w) HNO₃ (density ~ 1.0257 kg L⁻¹): mix 77 g of 65 % (w/w) HNO₃ with 923 g water. Use a balance of two digits for the weighing.

Note: Method derived from EN 15510:2007 [5] and recommended in the JRC report [4].

Annex 7: Homogeneity studies

Normalised values to the mean for each set (X): x_i/X (all values in mg kg⁻¹)

	As		C	Cd		g	ex-Pb	
Sample Nr.	R ₁	R ₂						
2	1.01	1.00	1.067	0.950	0.933	1.044	1.082	1.082
133	1.07	1.04	1.183	1.083	0.978	0.978	1.096	1.099
25	0.97	0.95	0.867	0.867	1.111	0.933	0.984	1.041
144	1.01	1.04	1.092	1.075	1.089	1.022	1.008	0.953
161	0.96	0.97	0.875	0.875	1.022	1.000	1.038	0.973
91	0.96	0.95	0.950	1.017	1.089	1.044	1.011	0.970
113	1.08	1.06	0.992	0.983	1.000	1.067	0.997	0.964
39	0.95	0.95	0.925	0.925	0.933	0.867	0.975	0.970
63	1.03	1.03	1.233	1.175	1.089	1.000	0.874	0.984
77	0.97	0.98	0.967	0.958	0.978	1.022	0.951	0.934
Mean	1.	00	1.000		1.000		1.000	
σ	1.	35	0.010		0.012		0.61	
0.3*σ	0.4	41	0.0	03	0.003		0.183	
S _x	0.2	0.272		0.013		0.002		.98
Sw	0.079		0.0	05	0.003		0.131	
$S_{S}(u_{bb})$	0.27		0.013		0.001		0.174	
S _S ≤0.3*σ?	Ye	es	N	0	Yes		Yes	

where:

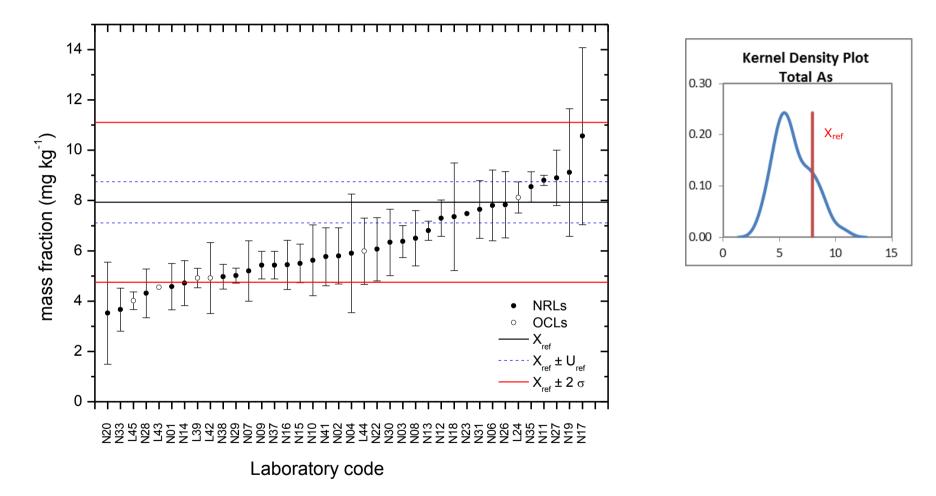
 σ ~ is the standard deviation for the PT assessment (as a % of X_{ref}),

 S_x is the standard deviation of the sample averages,

 S_w is the within-sample standard deviation,

 S_s is the between-sample standard deviation.

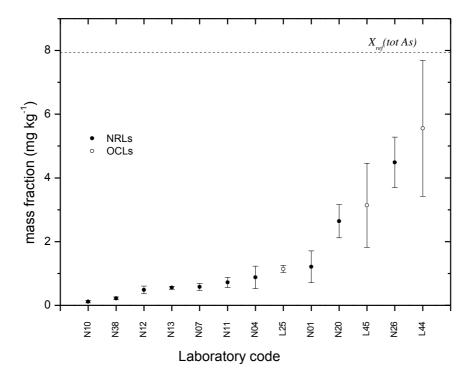
Annex 8: Results for total arsenic (As)


Assigned values: $X_{ref} = 7.93$; $U_{ref} = 0.82$; $\sigma = 1.59$ (all values in mg kg⁻¹, referring to 12% moisture content)

Dote 12% 4.58 0.92 4.58 0.92 2 0.46 ICP-MS Q -2.11 -5.43 a N02 NC 6.59 1.27 5.80 1.12 2 0.56 AAS -1.34 -3.08 a N03 DM 7.24 0.72 6.37 0.63 2 0.32 ICP -0.98 -3.01 b N04 DM 6.7 2.68 5.90 2.36 2 1.18 ICP -0.08 -0.16 a N06 DM 8.87 1.6 7.81 1.41 2 0.70 ICP-MS -1.72 -3.76 a N06 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N10 DM 6.31 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 D D D D D D D D	ا مه											
NO2 NC 6.59 1.27 5.80 1.12 2 0.56 AAS -1.34 -3.08 a N03 DM 7.24 0.72 6.37 0.63 2 0.32 ICP -0.98 -3.01 b N04 DM 6.7 2.68 5.90 2.36 2 1.18 ICP-MS -1.28 -1.63 a N06 DM 8.87 1.6 7.81 1.41 2 0.70 ICP-MS -1.72 -3.76 a N07 12% 5.2 1.2 5.2 1.2 0.6 ICP-MS -1.72 -3.76 a N08 12% 6.5 1.1 6.5 1.1 2 0.55 ICP-MS -1.86 -5.07 b N10 DM 6.38 0.2 8.8 0.2 0.11 ICP-MS -4.04 -1.16 b N13 12% 6.8 0.38 0.26 0.4480 IC			X_{lab}	U _{lab}	$X_{lab12\%}$	U _{lab12%}	k	Ulab12%	Technique	z-score ^a	ζ -score ^a	MU ^b
N03 DM 7.24 0.72 6.37 0.63 2 0.32 ICP -0.98 -3.01 b N04 DM 6.7 2.68 5.90 2.36 2 1.18 ICP-MS -1.28 -1.63 a N06 DM 8.87 1.6 7.81 1.41 2 0.70 ICP -0.08 -0.16 a N07 12% 5.2 1.2 5.2 1.2 2 0.6 ICP-MS -1.72 -3.76 a N08 12% 6.5 1.1 6.5 1.1 2 0.55 ICP-MS -1.58 -5.07 b N10 DM 6.39 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 -2.83 a N11 12% 7.298 0.726 7.298 0.726 2 0.363 IG-AAS -0.40 1.16 b N13 12% 5.5 0.77 5.5	N01	12%	4.58	0.92	4.58	0.92	2	0.46	ICP-MS Q	-2.11	-5.43	а
N04 DM 6.7 2.68 5.90 2.36 2 1.18 ICP-MS -1.28 -1.63 a N06 DM 8.87 1.6 7.81 1.41 2 0.70 ICP -0.08 -0.16 a N07 12% 5.2 1.2 5.2 1.2 2 0.6 ICP-MS -1.72 3.76 a N08 12% 6.5 1.1 6.5 1.12 2 0.55 ICP-MS -1.68 -5.07 b N10 DM 6.39 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 -2.83 a N11 12% 8.8 0.2 8.8 0.2 2.0.11 ICP 0.55 2.05 b N13 12% 6.8 0.38 6.8 0.38 2 0.19 ICP-IMS -0.71 -2.50 b N14 DM 5.3584 1.0181 7.77 2 <td>N02</td> <td>NC</td> <td>6.59</td> <td>1.27</td> <td>5.80</td> <td>1.12</td> <td>2</td> <td>0.56</td> <td>AAS</td> <td>-1.34</td> <td>-3.08</td> <td>а</td>	N02	NC	6.59	1.27	5.80	1.12	2	0.56	AAS	-1.34	-3.08	а
N06 DM 8.87 1.6 7.81 1.41 2 0.70 ICP -0.08 -0.16 a N07 12% 5.2 1.2 5.2 1.2 2 0.6 ICP-MS -1.72 -3.76 a N08 12% 6.5 1.1 6.5 1.1 2 0.55 ICP-MS -0.90 -2.09 a N09 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 5.07 b N10 DM 6.39 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 -2.83 a N11 12% 7.298 0.726 2 0.363 HG-AAS -0.40 +1.16 b N13 12% 5.4 0.98 2 0.49 ICP-IMS -1.53 -4.32 b N16 12% 5.44 0.98 2 1.76 ICP-OES 1.66 <td< td=""><td>N03</td><td>DM</td><td>7.24</td><td>0.72</td><td>6.37</td><td>0.63</td><td>2</td><td>0.32</td><td>ICP</td><td>-0.98</td><td>-3.01</td><td>b</td></td<>	N03	DM	7.24	0.72	6.37	0.63	2	0.32	ICP	-0.98	-3.01	b
N07 12% 5.2 1.2 5.2 1.2 2 0.6 ICP-MS -1.72 -3.76 a N08 12% 6.5 1.1 6.5 1.1 2 0.55 ICP-MS -0.90 -2.09 a N09 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N10 DM 6.39 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 -2.83 a N11 12% 7.298 0.726 7.298 0.726 2 0.363 HG-AAS -0.40 -1.16 b N13 12% 6.8 0.38 6.8 0.38 2 0.4480 ICP-MS -0.71 -2.50 b N14 DM 5.354 1.0181 4.7154 0.8959 2 0.4480 ICP-IMS -1.57 -3.90 a N16 12% 5.4 0.98<	N04	DM	6.7	2.68	5.90	2.36	2	1.18	ICP-MS	-1.28	-1.63	а
N08 12% 6.5 1.1 6.5 1.1 2 0.55 ICP-MS -0.90 -2.09 a N09 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N10 DM 6.39 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 -2.83 a N11 12% 7.298 0.726 7.298 0.726 2 0.363 HG-AAS -0.40 -1.16 b N11 12% 6.8 0.38 6.8 0.38 2 0.19 ICP-MS -0.40 -1.16 b N13 12% 6.8 0.38 6.8 0.38 2 0.49 ICP-MS -0.71 -2.50 b N14 DM 5.3584 1.0181 4.7154 0.8959 2 0.4480 ICP-MS -0.16 1.45 c N16 DM 8.36 2.41<	N06	DM	8.87	1.6	7.81	1.41	2	0.70	ICP	-0.08	-0.16	а
N09 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N10 DM 6.39 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 -2.83 a N11 12% 8.8 0.2 8.8 0.2 0.16 ICP 0.55 2.05 b N12 12% 7.298 0.726 7.298 0.726 2 0.633 HG-AAS -0.40 -1.16 b N13 12% 6.8 0.38 6.8 0.38 2 0.19 ICP-MS -0.71 -2.50 b N14 DM 5.3584 1.0181 4.7154 0.8959 2 0.4480 ICP-IMS -1.53 -4.32 b N14 DM 5.5 0.77 5.5 0.77 2 0.39 GF-AAS -1.53 -4.32 b N14 DM 5.36 2.14 2	N07	12%	5.2	1.2	5.2	1.2	2	0.6	ICP-MS	-1.72	-3.76	а
N10 DM 6.39 1.6 5.62 1.41 2 0.70 ICP-MS -1.46 -2.83 a N11 12% 8.8 0.2 8.8 0.2 2 0.1 ICP-MS -1.46 -2.83 a N11 12% 7.298 0.726 7.298 0.726 2 0.363 HG-AAS -0.40 -1.16 b N13 12% 6.8 0.38 6.8 0.38 2 0.19 ICP-MS -0.71 -2.50 b N14 DM 5.3584 1.0181 4.7154 0.8959 2 0.4480 ICP-IDMS -2.03 -5.29 a N16 12% 5.4 0.98 2 0.49 ICP-MS -1.57 -3.90 a N17 DM 12 4 10.56 3.52 2 1.76 ICP-OES 1.66 1.45 c N18 DM 8.36 2.431 7.36 2.14 </td <td>N08</td> <td>12%</td> <td>6.5</td> <td>1.1</td> <td>6.5</td> <td>1.1</td> <td>2</td> <td>0.55</td> <td>ICP-MS</td> <td>-0.90</td> <td>-2.09</td> <td>а</td>	N08	12%	6.5	1.1	6.5	1.1	2	0.55	ICP-MS	-0.90	-2.09	а
N11 12% 8.8 0.2 8.8 0.2 2 0.1 ICP 0.55 2.05 b N12 12% 7.298 0.726 7.298 0.726 2 0.363 HG-AAS -0.40 -1.16 b N13 12% 6.8 0.38 6.8 0.38 2 0.19 ICP-MS -0.71 -2.50 b N14 DM 5.3584 1.0181 4.7154 0.8959 2 0.4480 ICP-MS -0.71 -2.50 b N15 12% 5.5 0.77 5.5 0.77 2 0.39 GF-AAS -1.53 -4.32 b N16 12% 5.44 0.98 2 1.07 ICP -0.36 -0.50 a N17 DM 12 4 10.56 3.52 2 1.77 HG-AAS 0.75 0.89 a N20 DM 4 2.31 3.52 2.03 <t< td=""><td>N09</td><td>DM</td><td>6.17</td><td>0.62</td><td>5.43</td><td>0.55</td><td>2</td><td>0.27</td><td>ICP-MS</td><td>-1.58</td><td>-5.07</td><td>b</td></t<>	N09	DM	6.17	0.62	5.43	0.55	2	0.27	ICP-MS	-1.58	-5.07	b
N12 12% 7.298 0.726 7.298 0.726 2 0.363 HG-AAS -0.40 -1.16 b N13 12% 6.8 0.38 6.8 0.38 2 0.19 ICP-MS -0.71 -2.50 b N14 DM 5.3584 1.0181 4.7154 0.8959 2 0.4480 ICP-MS -0.71 -2.50 b N15 12% 5.5 0.77 5.5 0.77 2 0.39 GF-AAS -1.53 -4.32 b N16 12% 5.44 0.98 5.44 0.98 2 0.49 ICP-MS -1.57 -3.90 a N17 DM 12 4 10.56 3.52 2 1.76 ICP-OES 1.66 1.45 c N18 DM 8.36 2.431 7.36 2.14 2 1.07 ICP -0.36 -0.50 a N20 DM 4 2.31	N10	DM	6.39	1.6	5.62	1.41	2	0.70	ICP-MS	-1.46	-2.83	а
N13 12% 6.8 0.38 6.8 0.38 2 0.19 ICP-MS -0.71 -2.50 b N14 DM 5.3584 1.0181 4.7154 0.8959 2 0.4480 ICP-IDMS -2.03 -5.29 a N15 12% 5.5 0.77 5.5 0.77 2 0.39 GF-AAS -1.53 -4.32 b N16 12% 5.44 0.98 5.44 0.98 2 0.49 ICP-MS -1.57 -3.90 a N17 DM 12 4 10.56 3.52 2 1.76 ICP-OES 1.66 1.45 c N18 DM 8.36 2.431 7.36 2.14 2 1.07 ICP-MS -1.57 0.89 a N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -0.29 -1.10 b N21 DM 6.85 7.48	N11	12%	8.8	0.2	8.8	0.2	2	0.1	ICP	0.55	2.05	b
N14 DM 5.3584 1.0181 4.7154 0.8959 2 0.4480 ICP-IDMS -2.03 -5.29 a N15 12% 5.5 0.77 5.5 0.77 2 0.39 GF-AAS -1.53 -4.32 b N16 12% 5.44 0.98 5.44 0.98 2 0.49 ICP-MS -1.57 -3.90 a N17 DM 12 4 10.56 3.52 2 1.76 ICP-MS -1.57 -3.90 a N18 DM 8.36 2.431 7.36 2.14 2 1.07 ICP -0.36 -0.50 a N19 12% 9.115 2.538 2 1.27 HG-AAS -2.78 -4.02 a N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -0.29 -1.10 b N22 DM 6.89 1.43 6.06 1.26 <td>N12</td> <td>12%</td> <td>7.298</td> <td>0.726</td> <td>7.298</td> <td>0.726</td> <td>2</td> <td>0.363</td> <td>HG-AAS</td> <td>-0.40</td> <td>-1.16</td> <td>b</td>	N12	12%	7.298	0.726	7.298	0.726	2	0.363	HG-AAS	-0.40	-1.16	b
N15 12% 5.5 0.77 5.5 0.77 2 0.39 GF-AAS -1.53 -4.32 b N16 12% 5.44 0.98 5.44 0.98 2 0.49 ICP-MS -1.57 -3.90 a N17 DM 12 4 10.56 3.52 2 1.76 ICP-OES 1.66 1.45 c N18 DM 8.36 2.431 7.36 2.14 2 1.07 ICP -0.36 -0.50 a N19 12% 9.115 2.538 9.115 2.538 2 1.27 HG-AAS -2.78 -4.02 a N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -2.78 -4.02 a N22 DM 6.89 1.43 6.06 1.26 2 0.63 ICP-MS -1.10 b N26 DM 8.9 1.5 7.83	N13	12%	6.8	0.38	6.8	0.38	2	0.19	ICP-MS	-0.71	-2.50	b
N16 12% 5.44 0.98 5.44 0.98 2 0.49 ICP-MS -1.57 -3.90 a N17 DM 12 4 10.56 3.52 2 1.76 ICP-OES 1.66 1.45 c N18 DM 8.36 2.431 7.36 2.14 2 1.07 ICP -0.36 -0.50 a N19 12% 9.115 2.538 9.115 2.538 2 1.27 HG-AAS -2.78 -4.02 a N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -2.78 -4.02 a N22 DM 6.89 1.43 6.06 1.26 2 0.63 ICP-MS -1.18 -2.49 a N23 NC 8.5 7.48 ICP-MS -0.06 -0.13 a N27 12% 8.9 1.1 8.9 1.12 0.55 Z-ET-AAS	N14	DM	5.3584	1.0181	4.7154	0.8959	2	0.4480	ICP-IDMS	-2.03	-5.29	а
N17 DM 12 4 10.56 3.52 2 1.76 ICP-OES 1.66 1.45 c N18 DM 8.36 2.431 7.36 2.14 2 1.07 ICP -0.36 -0.50 a N19 12% 9.115 2.538 9.115 2.538 2 1.27 HG-AAS -0.75 0.89 a N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -2.78 4.02 a N22 DM 6.89 1.43 6.06 1.26 2 0.63 ICP-MS -1.18 -2.49 a N23 NC 8.5 7.48 HG-AAS -0.29 -1.10 b N26 DM 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-	N15	12%	5.5	0.77	5.5	0.77	2	0.39	GF-AAS	-1.53	-4.32	b
N18 DM 8.36 2.431 7.36 2.14 2 1.07 ICP -0.36 -0.50 a N19 12% 9.115 2.538 9.115 2.538 2 1.27 HG-AAS 0.75 0.89 a N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -2.78 -4.02 a N22 DM 6.89 1.43 6.06 1.26 2 0.63 ICP-MS -1.18 -2.49 a N23 NC 8.5 7.48 HG-AAS -0.29 -1.10 b N26 DM 8.9 1.5 7.83 1.32 2 0.66 ICP-MS -0.06 -0.13 a N27 12% 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SF	N16	12%	5.44	0.98	5.44	0.98	2	0.49	ICP-MS	-1.57	-3.90	а
N19 12% 9.115 2.538 9.115 2.538 2 1.27 HG-AAS 0.75 0.89 a N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -2.78 -4.02 a N22 DM 6.89 1.43 6.06 1.26 2 0.63 ICP-MS -1.18 -2.49 a N23 NC 8.5 7.48 HG-AAS -0.29 -1.10 b N26 DM 8.9 1.5 7.83 1.32 2 0.66 ICP-MS -0.06 -0.13 a N27 12% 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-MS -2.28 -5.70 a N29 NC 5.7 0.34 5.02 0.30 2 0.15 <td< td=""><td>N17</td><td>DM</td><td>12</td><td>4</td><td>10.56</td><td>3.52</td><td>2</td><td>1.76</td><td>ICP-OES</td><td>1.66</td><td>1.45</td><td>С</td></td<>	N17	DM	12	4	10.56	3.52	2	1.76	ICP-OES	1.66	1.45	С
N20 DM 4 2.31 3.52 2.03 2 1.02 HG-AAS -2.78 -4.02 a N22 DM 6.89 1.43 6.06 1.26 2 0.63 ICP-MS -1.18 -2.49 a N23 NC 8.5 7.48 HG-AAS -0.29 -1.10 b N26 DM 8.9 1.5 7.83 1.32 2 0.66 ICP-MS -0.06 -0.13 a N27 12% 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-MS -2.28 -5.70 a N29 NC 5.7 0.34 5.02 0.30 2 0.15 ICP -1.84 -6.67 b N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS<	N18	DM	8.36	2.431	7.36	2.14	2	1.07	ICP	-0.36	-0.50	а
N22 DM 6.89 1.43 6.06 1.26 2 0.63 ICP-MS -1.18 -2.49 a N23 NC 8.5 7.48 HG-AAS -0.29 -1.10 b N26 DM 8.9 1.5 7.83 1.32 2 0.66 ICP-MS -0.06 -0.13 a N27 12% 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-MS -2.28 -5.70 a N29 NC 5.7 0.34 5.02 0.30 2 0.15 ICP -1.84 -6.67 b N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS -1.01 -2.05 a N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-	N19	12%	9.115	2.538	9.115	2.538	2	1.27	HG-AAS	0.75	0.89	а
N23 NC 8.5 7.48 HG-AAS -0.29 -1.10 b N26 DM 8.9 1.5 7.83 1.32 2 0.66 ICP-MS -0.06 -0.13 a N27 12% 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-MS -2.28 -5.70 a N29 NC 5.7 0.34 5.02 0.30 2 0.15 ICP -1.84 -6.67 b N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS -1.01 -2.05 a N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-AAS -0.18 -0.40 a N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFI	N20	DM	4	2.31	3.52	2.03	2	1.02	HG-AAS	-2.78	-4.02	а
N26 DM 8.9 1.5 7.83 1.32 2 0.66 ICP-MS -0.06 -0.13 a N27 12% 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-MS -2.28 -5.70 a N29 NC 5.7 0.34 5.02 0.30 2 0.15 ICP -1.84 -6.67 b N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS -1.01 -2.05 a N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-AAS -0.18 -0.40 a N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFICP-MS -2.69 -7.21 a N35 DM 9.71 0.68	N22	DM	6.89	1.43	6.06	1.26	2	0.63	ICP-MS	-1.18	-2.49	а
N27 12% 8.9 1.1 8.9 1.1 2 0.55 Z-ET-AAS 0.61 1.41 a N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-MS -2.28 -5.70 a N29 NC 5.7 0.34 5.02 0.30 2 0.15 ICP -1.84 -6.67 b N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS -1.01 -2.05 a N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-AAS -0.18 -0.40 a N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFICP-MS -2.69 -7.21 a N35 DM 9.71 0.68 8.54 0.60 2 0.30 k ₀ -INAA 0.39 1.20 b N37 DM 6.17 0.62 <	N23	NC	8.5		7.48				HG-AAS	-0.29	-1.10	b
N28 DM 4.9 1.1 4.31 0.97 2 0.48 SFICP-MS -2.28 -5.70 a N29 NC 5.7 0.34 5.02 0.30 2 0.15 ICP -1.84 -6.67 b N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS -1.01 -2.05 a N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-AAS -0.18 -0.40 a N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFICP-MS -2.69 -7.21 a N35 DM 9.71 0.68 8.54 0.60 2 0.30 k_0-INAA 0.39 1.20 b N37 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N38 DM 5.65 0.56	N26	DM	8.9	1.5	7.83	1.32	2	0.66	ICP-MS	-0.06	-0.13	а
N29 NC 5.7 0.34 5.02 0.30 2 0.15 ICP -1.84 -6.67 b N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS -1.01 -2.05 a N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-AAS -0.18 -0.40 a N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFICP-MS -2.69 -7.21 a N35 DM 9.71 0.68 8.54 0.60 2 0.30 k ₀ -INAA 0.39 1.20 b N37 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N38 DM 5.65 0.56 4.97 0.49 3.18 0.15 ICP -1.87 -6.74 b N41 NC 6.554 1.311	N27	12%	8.9	1.1	8.9	1.1	2	0.55	Z-ET-AAS	0.61	1.41	а
N30 DM 7.2 1.5 6.34 1.32 2 0.66 ICP-MS -1.01 -2.05 a N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-AAS -0.18 -0.40 a N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFICP-MS -2.69 -7.21 a N35 DM 9.71 0.68 8.54 0.60 2 0.30 k ₀ -INAA 0.39 1.20 b N37 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N38 DM 5.65 0.56 4.97 0.49 3.18 0.15 ICP -1.87 -6.74 b N41 NC 6.554 1.311 5.77 1.15 2 0.58 HG-AAS -1.36 -3.06 a	N28	DM	4.9	1.1	4.31	0.97	2	0.48	SFICP-MS	-2.28	-5.70	а
N31 DM 8.69 1.304 7.65 1.15 2 0.57 GF-AAS -0.18 -0.40 a N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFICP-MS -2.69 -7.21 a N35 DM 9.71 0.68 8.54 0.60 2 0.30 k ₀ -INAA 0.39 1.20 b N37 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N38 DM 5.65 0.56 4.97 0.49 3.18 0.15 ICP -1.87 -6.74 b N41 NC 6.554 1.311 5.77 1.15 2 0.58 HG-AAS -1.36 -3.06 a L24 NC 9.23 0.7 8.12 0.62 2 0.308 ET-AAS 0.12 0.37 b L39 DM 5.59 0.44	N29	NC	5.7	0.34	5.02	0.30	2	0.15	ICP	-1.84	-6.67	b
N33 DM 4.16 0.97 3.66 0.85 2 0.43 SFICP-MS -2.69 -7.21 a N35 DM 9.71 0.68 8.54 0.60 2 0.30 k ₀ -INAA 0.39 1.20 b N37 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N38 DM 5.65 0.56 4.97 0.49 3.18 0.15 ICP -1.87 -6.74 b N41 NC 6.554 1.311 5.77 1.15 2 0.58 HG-AAS -1.36 -3.06 a	N30	DM	7.2	1.5	6.34	1.32	2	0.66	ICP-MS	-1.01	-2.05	а
N35 DM 9.71 0.68 8.54 0.60 2 0.30 k ₀ -INAA 0.39 1.20 b N37 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N38 DM 5.65 0.56 4.97 0.49 3.18 0.15 ICP -1.87 -6.74 b N41 NC 6.554 1.311 5.77 1.15 2 0.58 HG-AAS -1.36 -3.06 a	N31	DM	8.69	1.304	7.65	1.15	2	0.57	GF-AAS	-0.18	-0.40	а
N37 DM 6.17 0.62 5.43 0.55 2 0.27 ICP-MS -1.58 -5.07 b N38 DM 5.65 0.56 4.97 0.49 3.18 0.15 ICP -1.87 -6.74 b N41 NC 6.554 1.311 5.77 1.15 2 0.58 HG-AAS -1.36 -3.06 a L24 NC 9.23 0.7 8.12 0.62 2 0.308 ET-AAS 0.12 0.37 b L39 DM 5.59 0.44 4.92 0.39 4.3 0.01 HG-AAS -1.90 -7.33 b L42 12% 4.92 1.41 2 0.71 ICP-MS -1.90 -3.69 a L43 DM 5.17 4.55 ICP-MS -2.13 -8.23 b	N33	DM	4.16	0.97	3.66	0.85	2	0.43	SFICP-MS	-2.69	-7.21	а
N38 DM 5.65 0.56 4.97 0.49 3.18 0.15 ICP -1.87 -6.74 b N41 NC 6.554 1.311 5.77 1.15 2 0.58 HG-AAS -1.36 -3.06 a L24 NC 9.23 0.7 8.12 0.62 2 0.308 ET-AAS 0.12 0.37 b L39 DM 5.59 0.44 4.92 0.39 4.3 0.01 HG-AAS -1.90 -7.33 b L42 12% 4.92 1.41 2 0.71 ICP-MS -1.90 -3.69 a L43 DM 5.17 4.55 ICP-MS -2.13 -8.23 b	N35	DM	9.71	0.68	8.54	0.60	2	0.30	k _o -INAA	0.39	1.20	b
N41 NC 6.554 1.311 5.77 1.15 2 0.58 HG-AAS -1.36 -3.06 a L24 NC 9.23 0.7 8.12 0.62 2 0.308 ET-AAS 0.12 0.37 b L39 DM 5.59 0.44 4.92 0.39 4.3 0.01 HG-AAS -1.90 -7.33 b L42 12% 4.92 1.41 2 0.71 ICP-MS -1.90 -3.69 a L43 DM 5.17 4.55 ICP-MS -2.13 -8.23 b	N37	DM	6.17	0.62	5.43	0.55	2	0.27		-1.58	-5.07	b
L24 NC 9.23 0.7 8.12 0.62 2 0.308 ET-AAS 0.12 0.37 b L39 DM 5.59 0.44 4.92 0.39 4.3 0.01 HG-AAS -1.90 -7.33 b L42 12% 4.92 1.41 2 0.71 ICP-MS -1.90 -3.69 a L43 DM 5.17 4.55 ICP-MS -2.13 -8.23 b	N38	DM	5.65	0.56	4.97	0.49	3.18	0.15	ICP	-1.87	-6.74	b
L39 DM 5.59 0.44 4.92 0.39 4.3 0.01 HG-AAS -1.90 -7.33 b L42 12% 4.92 1.41 4.92 1.41 2 0.71 ICP-MS -1.90 -3.69 a L43 DM 5.17 4.55 ICP-MS -2.13 -8.23 b	N41	NC	6.554	1.311	5.77	1.15	2	0.58	HG-AAS	-1.36	-3.06	а
L42 12% 4.92 1.41 4.92 1.41 2 0.71 ICP-MS -1.90 -3.69 a L43 DM 5.17 4.55 ICP-MS -2.13 -8.23 b	L24	NC	9.23	0.7	8.12	0.62	2	0.308	ET-AAS	0.12	0.37	b
L43 DM 5.17 4.55 ICP-MS -2.13 -8.23 b	L39	DM	5.59	0.44	4.92	0.39	4.3	0.01	HG-AAS	-1.90	-7.33	b
	L42	12%	4.92	1.41	4.92	1.41	2	0.71	ICP-MS	-1.90	-3.69	а
L44 DM 6.8 1.5 5.98 1.32 2 0.66 ICP -1.23 -2.51 a	L43	DM	5.17		4.55				ICP-MS	-2.13	-8.23	b
	L44	DM	6.8	1.5	5.98	1.32	2	0.66	ICP	-1.23	-2.51	а
L45 DM 4.56 0.4 4.01 0.35 2 0.176 HG-AAS -2.47 -8.76 b	L45	DM	4.56	0.4	4.01	0.35	2	0.176	HG-AAS	-2.47	-8.76	b

^a performance: satisfactory, questionable, unsatisfactory, ^b a: $u_{ref} \leq u_{lab} \leq \sigma$; b: $u_{lab} < u_{ref}$; and c: $u_{lab} > \sigma$ DM: dry mass; NC: not corrected for moisture content; 12 %: moisture content of 12 %.

EURL-HM-21: Total As in kaolinitic clay



Lab code		X _{lab}	U _{lab}	X _{lab12%}	U _{lab12%}	k	Ulab12%	Technique
N01	12%	1.21	0.5	1.21	0.5	2	0.25	HPLC-ICP-MS
N04	DM	1	0.4	0.88	0.35	2	0.18	HPLC-ICP-MS
N06	DM	< 0.2						ICP
N07	12%	0.58	0.11	0.58	0.11	2	0.06	HPLC-ICP-MS
N10	DM	0.132	0.04	0.116	0.035	2	0.018	LC-ICP-MS
N11	12%	0.72	0.16	0.72	0.16	2	0.08	HPLC-ICP-MS
N12	12%	0.483	0.12	0.483	0.12	2	0.06	LC-ICP-MS
N13	12%	0.55	0.044	0.55	0.044	2	0.022	HPLC-ICP-MS
N20	DM	3	0.59	2.64	0.52	2	0.26	HG-AAS
N26	DM	5.1	0.9	4.49	0.79	2	0.40	ICP-MS
N38	DM	0.25	0.05	0.22	0.04	3.18	0.01	HG-AAS
L25	DM	1.3	0.13	1.14	0.11	2	0.06	LC-ICP-MS
L44	DM	6.31	2.42	5.55	2.13	2	1.06	ICP
L45	DM	3.57	1.5	3.14	1.32	2	0.66	HG-AAS

Annex 9: Results for inorganic arsenic (iAs)

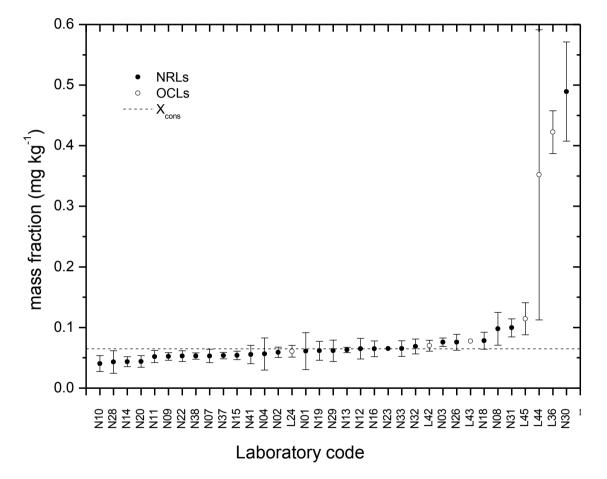
DM: dry mass; NC: not corrected for moisture content; 12 %: moisture content of 12 %.

EURL-HM-21: iAs in kaolinitic clay

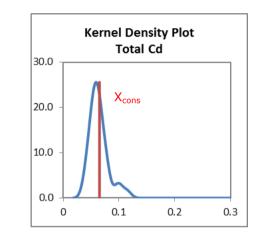
Measurement results and associated expanded measurement uncertainties (referring to 12% moisture content)

Annex 10: Results for total cadmium (Cd)

Consensus from participants:


 $X_{cons} = 0.065 \text{ mg kg}^{-1}$, referring to 12% moisture content

Lab code		X _{lab}	U _{lab}	X _{lab12%}	U _{lab12%}	k	Ulab12%	Technique
N01	12%	0.0611	0.0305	0.0611	0.0305	2	0.0153	ICP-MS
N02	NC	0.067	0.0098	0.059	0.009	2	0.004	AAS
N03	DM	0.086	0.008	0.076	0.007	2	0.004	ICP
N04	DM	0.064	0.03	0.056	0.026	2	0.013	ICP-MS
N05	DM	< 0.5						AAS
N06	DM	< 0.2						ICP
N07	12%	0.053	0.011	0.053	0.011	2	0.006	ICP-MS
N08	12%	0.098	0.027	0.098	0.027	2	0.014	ICP-MS
N09	DM	0.0593	0.0071	0.0522	0.0062	2	0.0031	ICP-MS
N10	DM	0.046	0.015	0.040	0.013	2	0.007	ICP-MS
N11	12%	0.052	0.01	0.052	0.01	2	0.005	ICP
N12	12%	0.065	0.017	0.065	0.017	2	0.009	ET-AAS
N13	12%	0.063	0.0044	0.063	0.0044	2	0.0022	ICP-MS
N14	DM	0.0495	0.0094	0.0436	0.0083	2	0.0041	ICP-IDMS
N15	12%	0.054	0.007	0.054	0.007	2	0.004	GF-AAS
N16	12%	0.065	0.013	0.065	0.013	2	0.007	ICP-MS
N17	DM	< 0.1						ICP-OES
N18	DM	0.089	0.016	0.078	0.014	2	0.007	AAS
N19	12%	0.0616	0.0157	0.0616	0.0157	2	0.008	GF-AAS
N20	DM	0.05	0.011	0.044	0.010	2	0.005	ET-AAS
N22	DM	0.06	0.01	0.053	0.009	2	0.004	ICP-MS
N23	NC	0.074		0.065				GF-AAS
N26	DM	0.086	0.015	0.076	0.013	2	0.007	ICP-MS
N27	12%	< 0.25						Z-ET-AAS
N28	DM	0.049	0.021	0.043	0.018	2	0.009	ET-AAS
N29	NC	0.07	0.02	0.062	0.018	2	0.009	ICP
N30	DM	0.556	0.093	0.489	0.082	2	0.041	ICP-MS
N31	DM	0.113	0.017	0.099	0.015	2	0.007	GF-AAS
N32	DM	0.078	0.014	0.069	0.012	2	0.006	AAS
N33	DM	0.0742	0.0147	0.065	0.013	2	0.006	SFICP-MS
N37	DM	0.061	0.006	0.054	0.005	2	0.003	ICP-MS
N38	DM	0.06	0.006	0.053	0.005	3.18	0.002	ICP
N41	NC	0.063	0.017	0.055	0.015	2	0.007	GF-AAS
L24	NC	0.069	0.011	0.061	0.010	2	0.005	ET-AAS
L36	DM	0.48	0.011	0.422	0.035	2	0.000	AAS
L39	DM	< 0.100	0.04	0. 122	0.000	-	0.010	AAS
L43	DM	0.088		0.077				ICP-MS
L40	12%	0.000	0.009	0.07	0.009	2	0.005	ICP
L44	DM	0.4	0.272	0.352	0.239	2	0.120	ICP
L45	DM	0.4	0.03	0.352	0.026	2	0.013	AAS
L7J		0.13	0.03	0.114	0.020	2	0.013	,,,,,,,

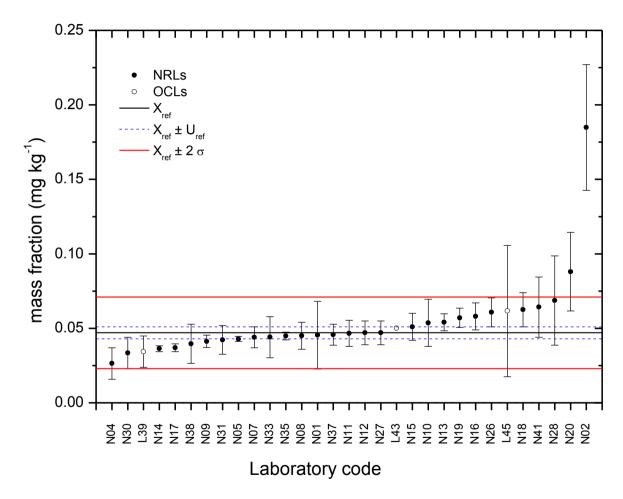

DM: dry mass; NC: not corrected for moisture content; 12 %: moisture content of 12 %.

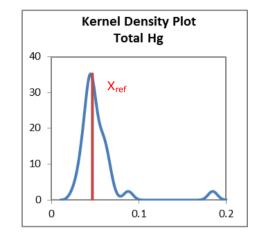
EURL-HM-21: Total Cd in kaolinitic clay

Annex 11: Results for total mercury (Hg)

Assigned values: $X_{ref} = 0.047$; U_{ref} (k=2) = 0.004; $\sigma = 0.012$

(all values in mg kg⁻¹, referring to 12% moisture content)


Lab		X _{lab}	U _{lab}	X _{lab12%}	U _{lab12%}	k	U _{lab12%}	Technique	z-score ^a	ζ-score ^a	MU ^b
code											
N01	12%	0.0454	0.0227	0.0454	0.0227	2	0.011	ICP-MS	-0.11	-0.11	а
N02	NC	0.21	0.048	0.18	0.042	2	0.021	CV-AAS	11.85	6.50	С
N03	DM	< 0.05						ICP			
N04	DM	0.03	0.012	0.026	0.011	2	0.005	ICP-MS	-1.74	-3.48	а
N05	DM	0.0487	0.0019	0.0429	0.002	2	0.001	DMA	-0.32	-1.46	b
N06	DM	< 0.05						DMA			
N07	12%	0.044	0.007	0.044	0.007	2	0.004	DMA	-0.23	-0.62	а
N08	12%	0.045	0.009	0.045	0.009	2	0.005	DMA	-0.14	-0.32	а
N09	DM	0.0469	0.0047	0.0413	0.004	2	0.002	DMA	-0.46	-1.67	b
N10	DM	0.061	0.018	0.054	0.016	2	0.008	DMA	0.60	0.85	а
N11	DM	0.053	0.01	0.047	0.009	2	0.004	ICP	0.00	0.00	а
N12	12%	0.047	0.008	0.047	0.008	2	0.004	CV-AFS	0.03	0.08	а
N13	12%	0.054	0.0057	0.054	0.0057	2	0.003	ICP-MS	0.63	1.96	а
N14	DM	0.0413	0.0022	0.0363	0.002	2	0.001	DMA	-0.88	-3.90	b
N15	12%	0.051	0.009	0.051	0.009	2	0.005	CV-AAS	0.37	0.85	а
N16	12%	0.058	0.009	0.058	0.009	2	0.005	ICP-MS	0.97	2.22	а
N17	DM	0.042	0.003	0.037	0.003	2	0.001	DMA	-0.83	-3.47	b
N18	DM	0.071	0.013	0.062	0.011	2	0.006	DMA	1.36	2.54	а
N19	12%	0.057	0.0065	0.057	0.0065	2	0.003	CV-AAS	0.89	2.54	а
N20	DM	0.1	0.03	0.09	0.026	2	0.013	CV-AAS	3.55	3.08	С
N22	DM	< 0.05						ICP-MS			
N26	DM	0.069	0.011	0.061	0.010	2	0.005	ICP-MS	1.21	2.59	а
N27	12%	0.047	0.008	0.047	0.008	2	0.004	DMA	0.03	0.08	а
N28	DM	0.078	0.034	0.069	0.030	2	0.015	CV-AAS	1.89	1.45	С
N29	NC	< 0.08						ICP			
N30	DM	0.038	0.012	0.0334	0.011	2	0.005	ICP-MS	-1.13	-2.27	а
N31	DM	0.048	0.011	0.0422	0.010	2	0.005	DMA	-0.38	-0.81	а
N32	DM	< 0.1						CV-AAS			
N33	DM	0.0501	0.0157	0.0441	0.014	2	0.007	SFICP-MS	-0.22	-0.35	а
N35	DM	0.051	0.003	0.045	0.003	2	0.001	CV-AAS	-0.15	-0.63	b
N37	DM	0.052	0.008	0.046	0.007	2	0.004	DMA	-0.08	-0.21	а
N38	DM	0.045	0.015	0.040	0.013	3.18	0.004	ICP	-0.60	-1.46	а
N41	NC	0.073	0.023	0.064	0.020	2	0.010	CV-AAS	1.51	1.69	а
L39	DM	0.039	0.012	0.034	0.011	2	0.005	CV-AAS	-1.06	-2.12	a
L43	DM	0.057		0.050				ICP-MS	0.30	1.43	b
L44	DM	< 0.025						LECO AMA			
L45	DM	0.07	0.05	0.06	0.04	2	0.02	CV-AAS	1.28	0.68	С


^a performance: satisfactory, questionable, unsatisfactory, ^b a: $u_{ref} \le u_{lab} \le \sigma$; b: $u_{lab} < u_{ref}$; and c: $u_{lab} > \sigma$

DM: dry mass; NC: not corrected for moisture content; 12 %: moisture content of 12 %.

EURL-HM-21: Total Hg in kaolinitic clay

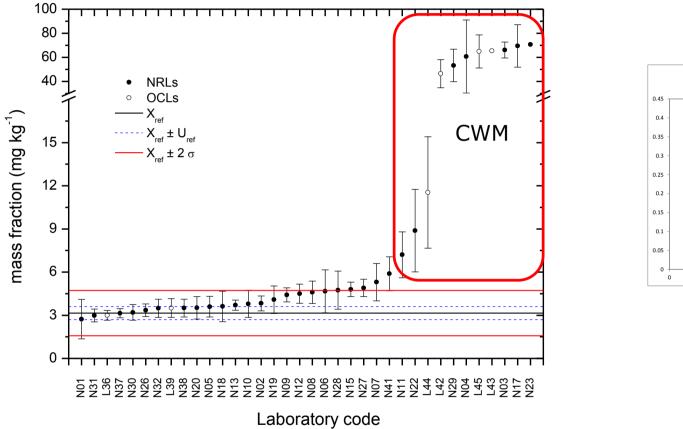
 $X_{ref} = 0.047$; U_{ref} (k=2) = 0.004; $\sigma = 0.012$ (all values in mg kg⁻¹, referring to 12% moisture content)

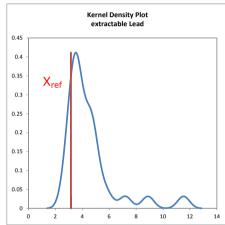
Annex 12: Results for extractable lead (ex-Pb)

Assigned values: $X_{ref} = 3.15$; U_{ref} (k=2) = 0.45; σ = 0.79

Code X _{ab} U _{ab} X _{ab12%} U _{ab12%} K U _{ab12%} Iecnnuçue z-score* ζ-score* MUP N01 12% 2.73 1.37 2.73 1.37 2 0.69 ICP-MS -0.54 -0.59 a N02 NC 4.35 0.59 3.83 0.52 2 0.260 AAS 0.85 1.96 a N03 DM 75.1 7.5 66.09 6.6 2 3.3 ICP 79.79 19.03 c N04 DM 6.9 34.5 60.7 30.4 2 15.18 ICP-MS 7.29 3.79 c N05 DM 4.68 0.78 1.37 2.0.65 ICP-MS 1.60 3.83 a N06 DM 5.03 1.3 5.3 1.3 2 0.65 ICP-MS 1.60 3.83 a N01 12% 7.2 1.61 2 0.47 I	Lab			-								
NOI 12% 2.73 1.37 2.73 1.37 2 0.69 ICP-MS -0.54 -0.59 a N02 NC 4.35 0.59 3.83 0.52 2 0.260 AAS 0.85 1.96 a N03 DM 75.1 7.5 66.09 6.6 2 3.3 ICP 79.79 19.03 c N04 DM 69 3.45 60.7 30.4 2 15.18 ICP-MS 7.979 19.03 a N06 DM 4.085 0.817 3.595 0.719 2 0.359 AAS 0.56 1.04 a N07 12% 4.6 0.78 4.6 0.78 2 0.39 ICP-MS 1.60 3.83 a N01 12% 4.6 0.78 4.6 0.78 2 0.47 ICP-MS 1.60 3.83 a N11 12% 4.6 0.67 4.5 <th></th> <th></th> <th>X_lab</th> <th>U_{lab}</th> <th>X_{lab12%}</th> <th>U_{lab12%}</th> <th>k</th> <th>Ulab12%</th> <th>Technique</th> <th>z-score^a</th> <th>ζ-score^a</th> <th>MU^b</th>			X_lab	U _{lab}	X _{lab12%}	U _{lab12%}	k	Ulab12%	Technique	z-score ^a	ζ -score ^a	MU ^b
N03 DM 75.1 7.5 66.09 6.6 2 3.3 ICP 79.79 19.03 c N04 DM 69 34.5 60.7 30.4 2 15.18 ICP-MS 72.99 3.79 c N05 DM 4.085 0.817 3.595 0.719 2 0.359 AAS 0.56 1.04 a N06 DM 5.3 1.3 5.3 1.3 2 0.656 ICP-MS 2.72 3.12 a N08 12% 4.6 0.78 4.6 0.78 2 0.39 ICP-MS 1.83 3.21 a N09 DM 5.02 0.55 4.42 0.48 2 0.24 ICP-MS 1.60 3.83 a N11 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS 0.81 1.22 a N11 12% 4.5 0.67 1.6		12%	2.73	1.37	2.73	1.37	2	0.69	ICP-MS	-0.54	-0.59	а
N04 DM 69 34.5 60.7 30.4 2 15.18 ICP-MS 72.99 3.79 c N05 DM 4.085 0.817 3.595 0.719 2 0.359 AAS 0.56 1.04 a N06 DM 5.3 1.7 4.664 1.496 2 0.748 ICP-MS 2.72 3.12 a N07 12% 5.3 1.3 5.3 1.3 2 0.65 ICP-MS 1.83 3.21 a N08 12% 4.6 0.78 4.6 0.78 2 0.39 ICP-MS 1.83 3.21 a N09 DM 5.02 0.55 4.42 0.48 2 0.24 ICP-MS 0.81 1.22 a N11 12% 7.2 1.6 7.2 0.34 ICP-MS 0.81 1.22 a N11 12% 4.5 0.67 1.62 8.8 ICP-MS<	N02	NC	4.35	0.59	3.83	0.52	2	0.260	AAS	0.85	1.96	а
N05 DM 4.085 0.817 3.595 0.719 2 0.359 AAS 0.56 1.04 a N06 DM 5.3 1.7 4.664 1.496 2 0.748 ICP 1.91 1.93 a N07 12% 5.3 1.3 5.3 1.3 2 0.65 ICP-MS 2.72 3.12 a N08 12% 4.6 0.78 4.6 0.78 2 0.39 ICP-MS 1.60 3.83 a N09 DM 4.31 1.07 3.79 0.94 2 0.47 ICP-MS 0.81 1.22 a N11 12% 7.2 1.6 7.2 1.6 2 0.8 ET-AAS 5.13 4.87 c N12 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS 0.69 1.92 b N15 12% 4.8 0.5 4.8	N03	DM	75.1	7.5	66.09	6.6	2	3.3	ICP	79.79	19.03	С
N06 DM 5.3 1.7 4.664 1.496 2 0.748 ICP 1.91 1.93 a N07 12% 5.3 1.3 5.3 1.3 2 0.65 ICP-MS 2.72 3.12 a N08 12% 4.6 0.78 4.6 0.78 2 0.39 ICP-MS 1.83 3.21 a N09 DM 5.02 0.55 4.42 0.48 2 0.24 ICP-MS 1.60 3.83 a N10 DM 4.31 1.07 3.79 0.94 2 0.47 ICP-MS 0.81 1.22 a N11 12% 7.2 1.6 7.2 1.6 7.2 0.67 2 0.34 ICP-MS 0.69 1.92 b N15 12% 4.5 0.67 4.5 0.67 2 0.25 GF-AAS 2.09 4.90 a N17 DM 79 <	N04	DM	69	34.5	60.7	30.4	2	15.18	ICP-MS	72.99	3.79	С
N07 12% 5.3 1.3 5.3 1.3 2 0.65 ICP-MS 2.72 3.12 a N08 12% 4.6 0.78 4.6 0.78 2 0.39 ICP-MS 1.83 3.21 a N09 DM 5.02 0.55 4.42 0.48 2 0.24 ICP-MS 1.60 3.83 a N10 DM 4.31 1.07 3.79 0.94 2 0.47 ICP-MS 0.81 1.22 a N11 12% 7.2 1.6 7.2 1.6 2 0.8 ET-AAS 5.13 4.87 c N11 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS 0.69 1.92 b N15 12% 4.8 0.5 4.8 0.5 2 0.25 GF-AAS 2.09 4.90 a N17 DM 79 20 69.5	N05	DM	4.085	0.817	3.595	0.719	2	0.359	AAS	0.56	1.04	а
N08 12% 4.6 0.78 2 0.39 ICP-MS 1.83 3.21 a N09 DM 5.02 0.55 4.42 0.48 2 0.24 ICP-MS 1.60 3.83 a N10 DM 4.31 1.07 3.79 0.94 2 0.47 ICP-MS 0.81 1.22 a N11 12% 7.2 1.6 7.2 1.6 2 0.8 ET-AAS 5.13 4.87 c N12 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS 0.69 1.92 b N15 12% 4.8 0.5 4.8 0.5 2 8.8 ICP-MS 2.09 4.90 a N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.06 1.48 3.5 0.78 2	N06	DM	5.3	1.7	4.664	1.496	2	0.748	ICP	1.91	1.93	а
N09 DM 5.02 0.55 4.42 0.48 2 0.24 ICP-MS 1.60 3.83 a N10 DM 4.31 1.07 3.79 0.94 2 0.47 ICP-MS 0.81 1.22 a N11 12% 7.2 1.6 7.2 1.6 2 0.8 ET-AAS 5.13 4.87 c N12 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS Q 1.71 3.34 a N13 12% 3.7 0.35 3.7 0.35 2 0.18 ICP-MS Q 1.71 3.34 a N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.106 1.198 3.613 1.054 2 0.422 GF-AAS 1.17 1.74 a N20 DM 4.079 0.9635 2 </td <td>N07</td> <td>12%</td> <td>5.3</td> <td>1.3</td> <td>5.3</td> <td>1.3</td> <td>2</td> <td>0.65</td> <td>ICP-MS</td> <td>2.72</td> <td>3.12</td> <td>а</td>	N07	12%	5.3	1.3	5.3	1.3	2	0.65	ICP-MS	2.72	3.12	а
N10 DM 4.31 1.07 3.79 0.94 2 0.47 ICP-MS 0.81 1.22 a N11 12% 7.2 1.6 7.2 1.6 2 0.8 ET-AAS 5.13 4.87 c N12 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS 1.71 3.34 a N13 12% 3.7 0.35 3.7 0.35 2 0.18 ICP-MS 0.69 1.92 b N15 12% 4.8 0.5 4.8 0.5 2 0.25 GF-AAS 2.09 4.90 a N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.106 1.198 3.613 1.054 2 0.42 ET-AAS 0.46 0.81 a N20 DM 4 0.893 3.5	N08	12%	4.6	0.78	4.6	0.78	2	0.39	ICP-MS	1.83	3.21	а
N11 12% 7.2 1.6 7.2 1.6 2 0.8 ET-AAS 5.13 4.87 c N12 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS Q 1.71 3.34 a N13 12% 3.7 0.35 3.7 0.35 2 0.18 ICP-MS Q 1.71 3.34 a N13 12% 4.8 0.5 4.8 0.5 2 0.25 GF-AAS 2.09 4.90 a N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.106 1.198 3.613 1.054 2 0.527 AAS 0.58 0.80 a N10 0.9635 4.079 0.9635 2 0.482 GF-AAS 1.17 1.74 a N20 DM 4 0.89 3.5 0.78 2	N09	DM	5.02	0.55	4.42	0.48	2	0.24	ICP-MS	1.60	3.83	а
N12 12% 4.5 0.67 4.5 0.67 2 0.34 ICP-MS Q 1.71 3.34 a N13 12% 3.7 0.35 3.7 0.35 2 0.18 ICP-MS 0.69 1.92 b N15 12% 4.8 0.5 4.8 0.5 2 0.25 GF-AAS 2.09 4.90 a N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.106 1.198 3.613 1.054 2 0.527 AAS 0.58 0.80 a N19 12% 4.079 0.9635 4.079 0.9635 2 0.482 GF-AAS 1.17 1.74 a N20 DM 4 0.89 3.5 0.78 2 0.4 ET-AAS 0.46 0.81 a N22 DM 10.09 3.25 8.88 </td <td>N10</td> <td>DM</td> <td>4.31</td> <td>1.07</td> <td>3.79</td> <td>0.94</td> <td>2</td> <td>0.47</td> <td>ICP-MS</td> <td>0.81</td> <td>1.22</td> <td>а</td>	N10	DM	4.31	1.07	3.79	0.94	2	0.47	ICP-MS	0.81	1.22	а
N13 12% 3.7 0.35 3.7 0.35 2 0.18 ICP-MS 0.69 1.92 b N15 12% 4.8 0.5 4.8 0.5 2 0.25 GF-AAS 2.09 4.90 a N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.106 1.198 3.613 1.054 2 0.527 AAS 0.58 0.80 a N19 12% 4.079 0.9635 4.079 0.9635 2 0.482 GF-AAS 1.17 1.74 a N20 DM 4 0.89 3.5 0.78 2 0.4 ET-AAS 0.46 0.81 a N20 DM 4.09 0.6 2 1.43 ICP-MS 7.26 3.95 c N27 12% 4.9 0.6 4.9 0.6 2	N11	12%	7.2	1.6	7.2	1.6	2	0.8	ET-AAS	5.13	4.87	С
N15 12% 4.8 0.5 4.8 0.5 2 0.25 GF-AAS 2.09 4.90 a N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.106 1.198 3.613 1.054 2 0.527 AAS 0.58 0.80 a N19 12% 4.079 0.9635 4.079 0.9635 2 0.482 GF-AAS 1.17 1.74 a N20 DM 4 0.89 3.5 0.78 2 0.4 ET-AAS 0.46 0.81 a N20 DM 10.09 3.25 8.88 2.86 2 1.43 ICP-MS 0.46 0.81 a N22 DM 10.09 3.25 8.88 2.86 2 1.43 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 <td>N12</td> <td>12%</td> <td>4.5</td> <td>0.67</td> <td>4.5</td> <td>0.67</td> <td>2</td> <td>0.34</td> <td>ICP-MS Q</td> <td>1.71</td> <td>3.34</td> <td>а</td>	N12	12%	4.5	0.67	4.5	0.67	2	0.34	ICP-MS Q	1.71	3.34	а
N17 DM 79 20 69.5 17.6 2 8.8 ICP-OES 84.15 7.54 c N18 DM 4.106 1.198 3.613 1.054 2 0.527 AAS 0.58 0.80 a N19 12% 4.079 0.9635 4.079 0.9635 2 0.482 GF-AAS 1.17 1.74 a N20 DM 4 0.89 3.5 0.78 2 0.4 ET-AAS 0.46 0.81 a N20 DM 10.09 3.25 8.88 2.86 2 1.43 ICP-MS 7.26 3.95 c N23 NC 80.3 70.7 ICP 85.60 300.85 b N26 DM 3.8 0.5 3.34 0.4 2 0.22 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 0.65 2 0.3 Z-ET-AAS<	N13	12%	3.7	0.35	3.7	0.35	2	0.18	ICP-MS	0.69	1.92	b
N18 DM 4.106 1.198 3.613 1.054 2 0.527 AAS 0.58 0.80 a N19 12% 4.079 0.9635 4.079 0.9635 2 0.482 GF-AAS 1.17 1.74 a N20 DM 4 0.89 3.5 0.78 2 0.4 ET-AAS 0.46 0.81 a N22 DM 10.09 3.25 8.88 2.86 2 1.43 ICP-MS 7.26 3.95 c N23 NC 80.3 70.7 ICP 85.60 300.85 b N26 DM 3.8 0.5 3.34 0.4 2 0.22 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 0.6 2 0.3 Z-ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 0.27 ICP-M	N15	12%	4.8	0.5	4.8	0.5	2	0.25	GF-AAS	2.09	4.90	а
N19 12% 4.079 0.9635 4.079 0.9635 2 0.482 GF-AAS 1.17 1.74 a N20 DM 4 0.89 3.5 0.78 2 0.4 ET-AAS 0.46 0.81 a N22 DM 10.09 3.25 8.88 2.86 2 1.43 ICP-MS 7.26 3.95 c N23 NC 80.3 70.7 ICP ICP 85.60 300.85 b N26 DM 3.8 0.5 3.34 0.4 2 0.22 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 0.6 2 0.3 Z-ET-AAS 2.21 4.66 a N28 DM 5.39 1.51 4.74 1.33 2 6.66 ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.63 0	N17	DM	79	20	69.5	17.6	2	8.8	ICP-OES	84.15	7.54	С
N20 DM 4 0.89 3.5 0.78 2 0.4 ET-AAS 0.46 0.81 a N22 DM 10.09 3.25 8.88 2.86 2 1.43 ICP-MS 7.26 3.95 c N23 NC 80.3 70.7 ICP 85.60 300.85 b N26 DM 3.8 0.5 3.34 0.4 2 0.22 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 0.6 2 0.3 Z-ET-AAS 2.21 4.66 a N28 DM 5.39 1.51 4.74 1.33 2 0.66 ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 6.73 ICP 63.50 7.44 c N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS	N18	DM	4.106	1.198	3.613	1.054	2	0.527	AAS	0.58	0.80	а
N22 DM 10.09 3.25 8.88 2.86 2 1.43 ICP-MS 7.26 3.95 c N23 NC 80.3 70.7 ICP 85.60 300.85 b N26 DM 3.8 0.5 3.34 0.4 2 0.22 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 0.6 2 0.3 Z-ET-AAS 2.21 4.66 a N28 DM 5.39 1.51 4.74 1.33 2 0.66 ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 6.73 ICP 63.50 7.44 c N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS<	N19	12%	4.079	0.9635	4.079	0.9635	2	0.482	GF-AAS	1.17	1.74	а
N23 NC 80.3 70.7 ICP 85.60 300.85 b N26 DM 3.8 0.5 3.34 0.4 2 0.22 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 0.6 2 0.3 Z-ET-AAS 2.21 4.66 a N28 DM 5.39 1.51 4.74 1.33 2 0.66 ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 6.73 ICP 63.50 7.44 c N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.1584 ICP	N20	DM	4	0.89	3.5	0.78	2	0.4	ET-AAS	0.46	0.81	а
N26 DM 3.8 0.5 3.34 0.4 2 0.22 ICP-MS 0.24 0.60 b N27 12% 4.9 0.6 4.9 0.6 2 0.3 Z-ET-AAS 2.21 4.66 a N28 DM 5.39 1.51 4.74 1.33 2 0.66 ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 6.73 ICP 63.50 7.44 c N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS 0.42 0.86 a N37 DM 3.57 0.36 3.14 <td>N22</td> <td>DM</td> <td>10.09</td> <td>3.25</td> <td>8.88</td> <td>2.86</td> <td>2</td> <td>1.43</td> <td>ICP-MS</td> <td>7.26</td> <td>3.95</td> <td>С</td>	N22	DM	10.09	3.25	8.88	2.86	2	1.43	ICP-MS	7.26	3.95	С
N27 12% 4.9 0.6 4.9 0.6 2 0.3 Z-ET-AAS 2.21 4.66 a N28 DM 5.39 1.51 4.74 1.33 2 0.66 ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 6.73 ICP 63.50 7.44 c N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS 0.42 0.86 a N37 DM 3.57 0.36 3.14 0.32 2 0.1584 ICP-MS -0.02 -0.05 b N38 DM 3.98 0.7 3.	N23	NC	80.3		70.7				ICP	85.60	300.85	b
N28 DM 5.39 1.51 4.74 1.33 2 0.66 ET-AAS 2.01 2.27 a N29 NC 60.5 15.3 53.2 13.5 2 6.73 ICP 63.50 7.44 c N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS 0.42 0.86 a N37 DM 3.57 0.36 3.14 0.32 2 0.1584 ICP-MS -0.02 -0.05 b N38 DM 3.98 0.7 3.50 0.62 3.2 0.19 ICP 0.44 1.17 b N41 NC 6.683 1.337 <td< td=""><td>N26</td><td>DM</td><td>3.8</td><td>0.5</td><td>3.34</td><td>0.4</td><td>2</td><td>0.22</td><td>ICP-MS</td><td>0.24</td><td>0.60</td><td>b</td></td<>	N26	DM	3.8	0.5	3.34	0.4	2	0.22	ICP-MS	0.24	0.60	b
N29 NC 60.5 15.3 53.2 13.5 2 6.73 ICP 63.50 7.44 c N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS -0.02 -0.05 b N38 DM 3.98 0.7 3.50 0.62 3.2 0.19 ICP 0.44 1.17 b N41 NC 6.683 1.337 5.88 1.18 2 0.59 GF-AAS 3.46 4.33 a L36 DM 3.4 0.39 2.	N27	12%	4.9	0.6	4.9	0.6	2	0.3	Z-ET-AAS	2.21	4.66	а
N30 DM 3.63 0.62 3.19 0.55 2 0.27 ICP-MS 0.05 0.11 a N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS 0.42 0.86 a N37 DM 3.57 0.36 3.14 0.32 2 0.1584 ICP-MS -0.02 -0.05 b N38 DM 3.98 0.7 3.50 0.62 3.2 0.19 ICP 0.44 1.17 b N41 NC 6.683 1.337 5.88 1.18 2 0.59 GF-AAS 3.46 4.33 a	N28	DM	5.39	1.51	4.74	1.33	2	0.66	ET-AAS	2.01	2.27	а
N31 DM 3.389 0.508 2.982 0.447 2 0.224 GF-AAS -0.22 -0.54 b N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS 0.42 0.86 a N37 DM 3.57 0.36 3.14 0.32 2 0.1584 ICP-MS -0.02 -0.05 b N38 DM 3.98 0.7 3.50 0.62 3.2 0.19 ICP 0.444 1.17 b N41 NC 6.683 1.337 5.88 1.18 2 0.59 GF-AAS 3.46 4.33 a	N29	NC	60.5	15.3	53.2	13.5	2	6.73	ICP	63.50	7.44	C
N32 DM 3.96 0.713 3.48 0.63 2 0.31 AAS 0.42 0.86 a N37 DM 3.57 0.36 3.14 0.32 2 0.1584 ICP-MS -0.02 -0.05 b N38 DM 3.98 0.7 3.50 0.62 3.2 0.19 ICP 0.44 1.17 b N41 NC 6.683 1.337 5.88 1.18 2 0.59 GF-AAS 3.46 4.33 a L36 DM 3.4 0.39 2.99 0.34 2 0.195 AAS -0.21 -0.55 b L39 DM 3.98 0.74 3.50 0.65 3.18 0.23 AAS 0.44 1.08 a L42 12% 46.5 11.7 46.5 11.7 2 5.85 ICP-MS 54.96 7.40 c L43 DM 74.3 65.4 ICP	N30	DM	3.63	0.62	3.19	0.55	2	0.27	ICP-MS	0.05	0.11	а
N37 DM 3.57 0.36 3.14 0.32 2 0.1584 ICP-MS -0.02 -0.05 b N38 DM 3.98 0.7 3.50 0.62 3.2 0.19 ICP 0.44 1.17 b N41 NC 6.683 1.337 5.88 1.18 2 0.59 GF-AAS 3.46 4.33 a	N31	DM	3.389	0.508	2.982	0.447	2	0.224	GF-AAS	-0.22	-0.54	b
N38 DM 3.98 0.7 3.50 0.62 3.2 0.19 ICP 0.44 1.17 b N41 NC 6.683 1.337 5.88 1.18 2 0.59 GF-AAS 3.46 4.33 a L36 DM 3.4 0.39 2.99 0.34 2 0.195 AAS -0.21 -0.55 b L39 DM 3.98 0.74 3.50 0.65 3.18 0.23 AAS 0.44 1.08 a L42 12% 46.5 11.7 46.5 11.7 2 5.85 ICP-MS 54.96 7.40 c L43 DM 74.3 65.4 ICP-MS 78.90 277 b L44 DM 13.1 4.4 11.5 3.9 2 2.2 ICP 10.62 3.79 b	N32	DM	3.96	0.713	3.48	0.63	2	0.31	AAS	0.42	0.86	а
N41 NC 6.683 1.337 5.88 1.18 2 0.59 GF-AAS 3.46 4.33 a L36 DM 3.4 0.39 2.99 0.34 2 0.195 AAS -0.21 -0.55 b L39 DM 3.98 0.74 3.50 0.65 3.18 0.23 AAS 0.44 1.08 a L42 12% 46.5 11.7 46.5 11.7 2 5.85 ICP-MS 54.96 7.40 c L43 DM 74.3 65.4 ICP-MS 78.90 277 b L44 DM 13.1 4.4 11.5 3.9 2 2.2 ICP 10.62 3.79 b	N37	DM	3.57	0.36	3.14	0.32	2	0.1584		-0.02	-0.05	b
L36 DM 3.4 0.39 2.99 0.34 2 0.195 AAS -0.21 -0.55 b L39 DM 3.98 0.74 3.50 0.65 3.18 0.23 AAS 0.44 1.08 a L42 12% 46.5 11.7 46.5 11.7 2 5.85 ICP-MS 54.96 7.40 c L43 DM 74.3 65.4 ICP-MS 78.90 277 b L44 DM 13.1 4.4 11.5 3.9 2 2.2 ICP 10.62 3.79 b	N38	DM	3.98	0.7	3.50	0.62	3.2	0.19	ICP	0.44	1.17	b
L39 DM 3.98 0.74 3.50 0.65 3.18 0.23 AAS 0.44 1.08 a L42 12% 46.5 11.7 46.5 11.7 2 5.85 ICP-MS 54.96 7.40 c L43 DM 74.3 65.4 Image: constraint of the state o	N41	NC	6.683	1.337	5.88	1.18	2	0.59	GF-AAS	3.46	4.33	а
L42 12% 46.5 11.7 46.5 11.7 2 5.85 ICP-MS 54.96 7.40 c L43 DM 74.3 65.4 ICP-MS 78.90 277 b L44 DM 13.1 4.4 11.5 3.9 2 2.2 ICP 10.62 3.79 b	L36	DM	3.4	0.39	2.99	0.34	2	0.195	AAS	-0.21	-0.55	b
L42 12% 46.5 11.7 46.5 11.7 2 5.85 ICP-MS 54.96 7.40 c L43 DM 74.3 65.4 ICP-MS 78.90 277 b L44 DM 13.1 4.4 11.5 3.9 2 2.2 ICP 10.62 3.79 b	L39	DM	3.98	0.74	3.50	0.65	3.18	0.23	AAS	0.44	1.08	а
L43 DM 74.3 65.4 ICP-MS 78.90 277 b L44 DM 13.1 4.4 11.5 3.9 2 2.2 ICP 10.62 3.79 b	L42			11.7	46.5	11.7	2		ICP-MS			С
L44 DM 13.1 4.4 11.5 3.9 2 2.2 ICP 10.62 3.79 b	L43								ICP-MS			b
	L44			4.4	11.5	3.9	2	2.2	ICP			b
	L45	DM	73.8	15.6	64.9	13.7	2	7.8	AAS	78.34	7.92	С

(all values in mg kg⁻¹, referring to 12% moisture content)


^a performance: satisfactory, questionable, unsatisfactory,


^b a: $u_{ref} \le u_{lab} \le \sigma$; b: $u_{lab} < u_{ref}$; and c: $u_{lab} > \sigma$

DM: dry mass; NC: not corrected for moisture content; 12 %: moisture content of 12 %.

EURL-HM-21: ex-Pb in kaolinitic clay

 $X_{ref} = 3.15$; U_{ref} (k=2) = 0.45; $\sigma = 0.79$ (all values in mg kg⁻¹, referring to 12% moisture content)

Measurement results and associated expanded measurement uncertainties (referring to 12% moisture content)

		0		011	0	Rec	covery (R, in	· %)	1.05			Experime	ntal details fo	r Ex-Pb	
Lab ID		Sample digestion	Digestion mixture	Std. method?	Correct recovery?	R	Spiking	CRM	LOD (mg/Kg)	Additional remarks regarding the method of analysis?	Weighed mass (g)	Volume HNO ₃ (mL)	Extraction time (min.)	External Cal.?	Standard additions?
	As	CMW	HNO ₃	No	No	100			0.025						
	Cd	CMW	HNO ₃	No	No	100			0.006	For the determination of As (m/z 75) with ICPMS there is					
N01	Hg	CMW	HNO ₃	No	No	100			0.013	an interference on Sm or Nd (m/z 150++), so we					
	iAs	Other	HNO ₃	No	No	100			0.02	measured As in MS/MS mode with O2 (m/z 91)					
	Ex-Pb	Other		No	No	100			0.04		1	8 ml	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	No	No	80-110	No	Yes	0.067						
N02	Cd	CMW	H ₂ O ₂ +HNO ₃	No	No	80-110	No	Yes	0.0033						
1102	Hg	CMW	H ₂ O ₂ +HNO ₃	No	No	80-110	No	Yes	0.050						
	Ex-Pb	Other		No	No		No	No			2	85 ml	30	Yes	No
	As	CMW	H ₂ O ₂ +HCI+HNO ₃	No	No	80-110		Yes	0.005						
Noo	Cd	CMW	H ₂ O ₂ +HCI+HNO ₃	No	No			Yes	0.005						
N03	Hg	CMW	H ₂ O ₂ +HCI+HNO ₃	No	No			Yes	0.05						
	Ex-Pb	CMW		No	No			Yes	0.010		0.5	10	30	Yes	
	As	CMW	HNO ₃	Yes											
	Cd	CMW	HNO ₃	Yes											
N04	Hg	CMW	HNO ₃	Yes											
	iAs	CMW	HCI	Yes											
	Ex-Pb	CMW		Yes											
	Cd	DA	HNO ₃	No	No				0.163						
N05	Hg		-	No	No				0.0005						
	Ex-Pb			No	No						2	85 mL	30	No	No
	As	CMW	H ₂ O ₂ +HNO ₃	Yes	No	95	No	Yes	2						
	Cd	CMW	H ₂ O ₂ +HNO ₃	Yes	No	92	No	Yes	0.1						
N06	Hg	Other		Yes	No	96	No	Yes	0.050						
	iAs	CMW	HCI	Yes	No	93	No	Yes	0.050						
	Ex-Pb	Other		Yes	No		No	No	1.0		0.25-0.50	50 ml	30	Yes	No
	As	CMW	HNO ₃	No	No	100	No	Yes	0.0012						
	Cd	CMW	HNO ₃	No	No	100	No	Yes	0.0003						
N07	Hg			No	No	100	No	Yes	0.000051						
	iAs	CMW	H ₂ O ₂ +HNO ₃	No	No	100	No	Yes	0.0024	1					
	Ex-Pb	Other	v	No	No		No		0.0018		1	8	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	No	No	95	Yes	No		We also analyzed extractable As, together with		•			
	Cd	СММ	H ₂ O ₂ +HNO ₃	No	No	105	Yes	No	1	extractable Pb, applying the method prescribed in the					
N08	Hg	Other		No	No	97	Yes	No		legislation for extractable Pb. The result for extractable					
	Ex-Pb	Other		No	No	97	Yes	No		As was 1.2 mg/Kg.	0.5	50 mL	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	Yes	No	100	No	Yes	0.001						
	Cd	CMW	H ₂ O ₂ +HNO ₃	Yes	No	104	No	Yes	0.0003	1					
N09			2-2 -3	Yes	No	99	No	Yes	0.0001						
				Yes	No		No	Yes			0.2	50	30	Yes	No
	Hg Ex-Pb	Other Other				99 102			0.0001 0.018		0.2	50	30	Yes	No

Annex 13: Experimental details and scoring (z-scores)

		0.004				Measurement Uncertainty		0			
Lab ID		CRM for Ins. cal.?	Moisture correction?	Moisture (% m/m)	Samples / year	Estimation	Reported	Quality system	ILC?	Accredited?	Do you have any comments? Let us know!
	As		Yes		250-1000		Yes	Yes	Yes	Yes	
	Cd		Yes		> 1000		Yes	Yes	Yes	Yes	According to the report of the workshop 2014 the results are reported relative to a feedingstuff with a
N01	Hg		Yes	0,86	> 1000	From interlaboratory comparison data	Yes	Yes	Yes	Yes	moisture content of 12 %
	iAs		Yes		50-250		Yes	Yes	Yes		
	Ex-Pb		Yes		0-50		Yes	Yes	Yes	Yes	
	As		No		50-250		Yes	Yes	Yes	Yes	
N02	Cd		No		50-250	From in-house validation	Yes	Yes	Yes	Yes	
	Hg		No		Never		Yes	Yes	Yes		
	Ex-Pb		No		Never		Yes	Yes	Yes		
	As		No		0-50		Yes	Yes	Yes		
N03	Cd		No		0-50	Uncertainty budget (ISO GUM)	Yes	Yes	Yes		Measurements results can affect: unusual matrix, we doesn't have the same reference material and No specific sample preparation method for kaolinitic clay. For ext. Pb determination we used the same
	Hg		No		0-50		Yes	Yes	Yes		method as for As and Cd (microwave digestion)
	Ex-Pb		No		0-50		Yes	Yes	Yes		
	As		No		> 1000		No	Yes		Yes	
	Cd		No		> 1000		No	Yes		Yes	
N04	Hg		No		> 1000	From in-house validation	No	Yes		Yes	We used the routine analyse for Pb
	iAs		No		250-1000		No	Yes			
	Ex-Pb		No		> 1000		No	Yes		Yes	
	Cd	Yes	Yes		50-250		No	Yes	Yes	Yes	
N05	Hg	Yes	Yes	0.407	50-250	From in-house validation	No	Yes	Yes	Yes	
	Ex-Pb	Yes	Yes				No	Yes	Yes		
	As		No		0-50		Yes	Yes	No		
	Cd		No		0-50		Yes	Yes	No		
N06	Hg		No		0-50		Yes	Yes	No		
	iAs		No		0-50		Yes	Yes	No		
	Ex-Pb		No		0-50		Yes	Yes	No		
	As	Yes	Yes		0-50		No	Yes	Yes		
	Cd	Yes	Yes	1.2 %; afterwards	0-50	From in-house validation, Estimation	No	Yes	Yes		
N07	Hg	Yes	Yes	result corrected to 12	0-50	based on judgment	No	Yes	Yes		
	iAs	Yes	Yes	% moisture content	0-50		No	Yes	Yes		
	Ex-Pb	Yes	Yes		Never		No	Yes	Yes		
	As	Yes	Yes	0.00.0/ (77)	50-250		Yes	Yes	Yes	Yes	We have analyzed inorganic As in the sample by HPLC-ICP-MS, applying the same extraction method we
N08	Cd	Yes	Yes	0.69 % (The results are refer to a 12 % of	50-250	From in-house validation	Yes	Yes	Yes	Yes	use for food matrixes (microwave -50 min in $HNO_3 0.3\% + 3\%H_2O_2$). However, the result was very low
100	Hg	Yes	Yes	water content)	50-250		Yes	Yes	Yes	Yes	compare to total As, so we think that the extraction conditions are too soft to recover the As in this kind of
	Ex-Pb	Yes	Yes	·	Never		Yes	Yes	Yes		matrix.
	As	Yes	Yes		50-250		Yes	Yes	Yes	Yes	
N09	Cd	Yes	Yes	0.77	50-250	Uncertainty budget (ISO GUM), From	Yes	Yes	Yes	Yes	Our reported results in table are recalculated as concentration of HM in 100% of dry mass. Our NRL used
1103	Hg	Yes	Yes	0.77	50-250	in-house validation	Yes	Yes	Yes	Yes	to express results for feed refer to a moisture content of 12% in accordance with Directive 2002/32/EC.
	Ex-Pb	Yes	Yes		0-50		Yes	Yes	Yes	Yes	

						Rec	overy (R, in	ı %)				Experime	ntal details for	Ex-Pb	
Lab ID		Sample digestion	Digestion mixture	Std. method?	Correct recovery?	R	Spiking	CRM	LOD (mg/Kg)	Additional remarks regarding the method of analysis?	Weighed mass (g)	Volume HNO ₃ (mL)	Extraction time (min.)	External Cal.?	Standard additions?
	As	СММ	HNO ₃	No	No	100		Yes	0.05						
	Cd	CMW	HNO ₃	No	No	100		Yes	0.01						
N10	Hg	Other		No	No	100		Yes	0.01						
	iAs	Other		No	No	100		Yes	0.100						
	Ex-Pb	Other		No	No	100		Yes	0.01		1	20	30	No	No
	As	CMW	HNO ₃	No	No										
	Cd	CMW	HNO ₃	No	No										
N11	Hg	CMW	HNO ₃	No	No					Results reported as 12 % moisture					
	iAs	Other		No	No										
	Ex-Pb	Other		No	No						2	86	30	Yes	No
	As	CMW	HNO ₃ +HF	No	Yes	94	Yes	Yes	0.075						
	Cd	CMW	HNO ₃ +HF	No	Yes	106	Yes	Yes	0.0024						
N12	Hg	CMW	HNO ₃ +HF	No	Yes	120	Yes	Yes	0.010						
	iAs	CMW	H_2O_2 +HNO ₃	No	Yes	30	Yes		0.010						
	Ex-Pb	CMW		No	Yes	98	Yes	Yes	0.002		0.5	21 mL	30	Yes	Yes
	As	CMW	HNO ₃	No	Yes	100	Yes	Yes	0,0025						
	Cd	CMW	HNO ₃	No	Yes	105	Yes	Yes	0,0007						
N13	Hg	CMW	HNO ₃	No	Yes	94	Yes	Yes	0,0005						
	iAs	Other	H_2O_2 +HNO ₃	No	Yes	100	Yes	Yes	0,030						
	Ex-Pb	Other		No	Yes	99	Yes	Yes			2	100 ml	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	Yes	No										
N14	Cd	CMW	H ₂ O ₂ +HNO ₃	Yes	No										
	Hg	CMW	H ₂ O ₂ +HNO ₃	Yes	No										
	As	CMW	H ₂ O ₂ +HNO ₃	No	No	92.8	Yes		0.050						
N15	Cd	CMW	H ₂ O ₂ +HNO ₃	No	No	101.2	Yes		0.050						
	Hg	CMW	H ₂ O ₂ +HNO ₃	No	No	95.5	Yes		0.02						
	Ex-Pb	Other		No	No	102.6	Yes		0.50		0.20	100	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	No	No										
N16	Cd	CMW	H ₂ O ₂ +HNO ₃	No	No										
	Hg	CMW	H ₂ O ₂ +HNO ₃	No	No										
	As	CMW	H ₂ O ₂ +HNO ₃	No	Yes	99,7	Yes	Yes	0,5						
N17	Cd	CMW	H ₂ O ₂ +HNO ₃	No	Yes	97,0	Yes	Yes	0,1	The sample for As, Cd and Pb analysis was digested					
	Hg			No	Yes			Yes	0,01	under pressure: 0,55 g / 5 ml 67 % HNO ₃ /in 50 ml					
	Ex-Pb	CMW		No	Yes	82,9	Yes	Yes	0,5		0,55	5ml		Yes	No
	As	CMW	HCI+HNO ₃	No	No	121	No	Yes	0.001						
N18	Cd	CMW	HCI+HNO ₃	No	No	114	No	Yes	0.001						
	Hg	CMW	HCI+HNO ₃	No	No	114	No	Yes	0.001						
	Ex-Pb	Other		No	No	92	No	Yes	0.002		0.500	10 ml	30	Yes	No
	As	DA	HCI+HNO ₃	Yes	No	96.84	No	Yes	0.1	For all analitical method used, at the bottom of all					
N19	Cd	CMW	H ₂ O ₂ +HNO ₃	Yes	No	96.97	No	Yes	0.003	crucibles and digestion vessels, there was a white					
	Hg	CMW	H ₂ O ₂ +HNO ₃	Yes	No	88.64	No	Yes	0.003	sediment.					
	Ex-Pb	Other		Yes	No	81.32	No	Yes	0.050		2	85	30	Yes	No

						Measurement Uncertainty					
Lab ID		CRM for Ins. cal.?	Moisture correction?	Moisture (% m/m)	Samples / year	Estimation	Reported	Quality system	ILC?	Accredited?	Do you have any comments? Let us know!
	As	Yes	Yes	it was written	50-250		Yes	Yes	Yes		
	Cd	Yes	Yes	"Concentration in dry	50-250		Yes	Yes	Yes		
N10	Hg	Yes	Yes	mass" on the result	50-250	From interlaboratory comparison data	Yes	Yes	Yes		
	iAs	Yes	Yes	input page (moisture content : 0.5 %)	0-50		Yes	Yes	Yes		
	Ex-Pb	Yes	Yes	coment : 0.5 /6)	0-50		Yes	Yes	Yes		
	As		Yes		50-250		Yes	Yes	No	Yes	
	Cd		Yes		50-250		Yes	Yes	No	Yes	
N11	Hg		Yes	0.5	50-250	From in-house validation	Yes	Yes	No	Yes	
	iAs		Yes		0-50	_	Yes	Yes	No		
	Ex-Pb		Yes				Yes	Yes	No		
	As		Yes		0-50	_	Yes	Yes	Yes	Yes	
	Cd		Yes		0-50		Yes	Yes	Yes	Yes	
N12	Hg		Yes	0.44	0-50	From in-house validation	Yes	Yes	Yes	Yes	
	iAs		Yes		0-50		Yes	Yes	Yes		
	Ex-Pb		Yes		0-50		Yes	Yes	Yes		
	As		Yes		250-1000	-	Yes	Yes	Yes	Yes	
	Cd		Yes		250-1000		Yes	Yes	Yes	Yes	
	Hg		Yes	0,81	250-1000	From in-house validation	Yes	Yes	Yes	Yes	
	iAs		Yes		0-50		Yes	Yes	Yes	Yes	
	Ex-Pb		Yes		Never		Yes	Yes	Yes		
	As	Yes	Yes		250-1000		Yes	Yes		Yes	
N14	Cd	Yes	Yes	0.38	250-1000	From in-house validation	Yes	Yes		Yes	
	Hg	Yes	Yes		250-1000		Yes	Yes		Yes	
	As	Yes	Yes		0-50	-	Yes	Yes	No	Yes	
N15	Cd	Yes	Yes	0.6	0-50	From in-house validation	Yes	Yes Yes	No	Yes Yes	All results are in mg/ kg (ppm) relative to a feedingstuff with a moisture content of 12 %
	Hg	Yes Yes	Yes Yes		0-50	_	Yes Yes	Yes	No No	Tes	
	Ex-Pb	Yes	No		0-50		Yes	Yes	No		
N16	As Cd	Yes	No		0-50 0-50	From in-house validation, From	Yes	Yes	No		
NIO	Ca Hg	Yes	No		0-50	interlaboratory comparison data	Yes	Yes	No		
		162	Yes				Yes	Yes	Yes	Yes	
	As Cd		Yes	-	50-250 50-250	From in-house validation, From	Yes	Yes	Yes	Yes	
N17			Yes	0,3		interlaboratory comparison data	Yes	Yes	Yes	Yes	
	Hg Ex-Pb		Yes		50-250		Yes	Yes	Yes	100	
	EX-PD As	Yes	Yes		0-50		Yes	Yes	Yes	Yes	
		Yes	Yes	-	0-50	Uncertainty budget (ISO GUM), From	Yes	Yes	Yes	Yes	
IN IO	Cd Hg	Yes	Yes	0.86	0-50	in-house validation	Yes	Yes	Yes	Yes	
	ng Ex-Pb	Yes	Yes	-	Never	-	Yes	Yes	Yes		
	As		No		250-1000		No	Yes	Yes	Yes	
	Cd		No	-	250-1000	Uncertainty budget (ISO GUM), From	No	Yes	Yes	Yes	For Cd determination, we also used the extractable Cd method and results was comparable with those
N19	Hg		No		250-1000	in-house validation	No	Yes	Yes	Yes	obtained by digestion method.
	ng Ex-Pb		No		200-1000	-	No	Yes	Yes		
	EX-PD		NU				NO	165	165		1

						Rec	covery (R, ir	n %)				Experime	ntal details fo	r Ex-Pb	
Lab ID		Sample digestion	Digestion mixture	Std. method?	Correct recovery?	R	Spiking	CRM	LOD (mg/Kg)	Additional remarks regarding the method of analysis?	Weighed mass (g)	Volume HNO ₃ (mL)	Extraction time (min.)	External Cal.?	Standard additions?
	As	DA	HCI+HNO ₃	Yes	Yes	108	Yes	No	0.125						
	Cd	CMW	HNO ₃	Yes	Yes	115	Yes	No	0.003						
N20	Hg	CMW	HNO ₃	Yes	Yes	99	Yes	No	0.025						
	iAs	DA	HCI+HNO ₃	Yes	Yes	54	Yes	No	0.125						
	Ex-Pb	Other		Yes	Yes	139	Yes	No	0.25		0.2	85mL	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	No	Yes	109.8		Yes	0.05						
N22	Cd	CMW	H ₂ O ₂ +HNO ₃	No	Yes	115.4		Yes	0.003	Did Not recovery correct for Extractable Pb (No CRM					
	Hg	CMW	H ₂ O ₂ +HNO ₃	No	Yes	118.4		Yes	0.01	available)					
	Ex-Pb	Other		No	Yes				0.03		0.50	10	30	No	No
	As	CMW	H ₂ O ₂ +HNO ₃		No	91	No	Yes							
N23	Cd	CMW	H ₂ O ₂ +HNO ₃		No	91	No	Yes							
	Ex-Pb	CMW			No						0.5	8 mL		No	No
L24	As	CMW	HCI+HNO ₃ +HF	No											
L24	Cd	CMW	HCI+HNO ₃ +HF	No											
L25	iAs	Other		No	Yes	121	Yes		0.01						
	As	CMW	HCI+HNO ₃	No	Yes	98	Yes	Yes	0.01						
	Cd	CMW	HCI+HNO ₃	No	Yes	98	Yes	Yes	0.001						
N26	Hg	CMW	HCI+HNO ₃	No	Yes	97	Yes	Yes	0.02						
	iAs	Other	HCI	No	Yes	73	Yes	Yes	0.05						
	Ex-Pb	Other		No	Yes	102	Yes	No	0.01		2	85	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃ +HF	Yes	Yes	104.5	No	Yes	0.18						
N27	Cd	CMW	H ₂ O ₂ +HNO ₃ +HF	Yes	Yes	108.5	No	Yes	0.075						
N27	Hg			Yes	Yes	99.8	No	Yes	0.010						
	Ex-Pb	Other		Yes	Yes	101.1	No	Yes			2	85	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	Yes	No			No	0,2						
N28	Cd	CMW	H ₂ O ₂ +HNO ₃	Yes	No			No							
1120	Hg	CMW	H ₂ O ₂ +HNO ₃	Yes	No			No	0.02						
	Ex-Pb	Other		Yes	No			No	0.012		2		30	Yes	1
	As	CMW	H ₂ O ₂ +HNO ₃	No	Yes	98	Yes								
N29	Cd	CMW	H ₂ O ₂ +HNO ₃	No	Yes	101	Yes								
1425	Hg	CMW	H ₂ O ₂ +HNO ₃	No	Yes	98	Yes								
	Ex-Pb	CMW		No	Yes	101	Yes				0.5	3	20	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	No	Yes	100	No	Yes	0.008						
N30	Cd	CMW	H ₂ O ₂ +HNO ₃	No	Yes	89	No	Yes	0.002						
1100	Hg	CMW	H ₂ O ₂ +HNO ₃	No	Yes	84	No	Yes	0.007						
	Ex-Pb	Other		No	Yes	100	No	Yes	0.005		2	85 mL	30	Yes	No
	As	CMW	HNO ₃ +HF	No	No		No	No	0,01						
N31	Cd	CMW	HNO ₃ +HF	No	No		No	No	0,01						
1431	Hg	Other		No	No		No	No	0,001						
	Ex-Pb	Other		No	No		No	No	0,01		0.5	30	30	Yes	No

						Measurement Uncertainty					
Lab ID		CRM for Ins. cal.?	Moisture correction?	Moisture (% m/m)	Samples / year	Estimation	Reported	Quality system	ILC?	Accredited?	Do you have any comments? Let us know!
	As		Yes		0-50		No	Yes	Yes		
	Cd		Yes		250-1000		No	Yes	Yes		
N20	Hg		Yes	0.6	0-50	From replicates (precision), From interlaboratory comparison data	No	Yes	Yes		
	iAs		Yes		0-50		No	Yes	Yes		
	Ex-Pb		Yes		0-50		No	Yes	Yes		
	As		Yes		> 1000	Uncertainty budget (ISO GUM), From	No	Yes	Yes		
N22	Cd		Yes	91	> 1000	in-house validation, From replicates	No	Yes	Yes		This laboratory does Not analyses Feed samples and does Not have accreditation for heavy metals in
	Hg		Yes		> 1000	(precision), From interlaboratory comparison data	No	Yes	Yes		Feed. It is accredited for Heavy Metals in all Food matrices
	Ex-Pb		Yes		0-50		No	Yes	Yes		
	As	No	No		0-50			Yes			
N23	Cd	No	No	0.77	0-50			Yes			
	Ex-Pb	No	No		Never			Yes			
L24	As		No No			From replicates (precision), Estimation based on judgment		Yes Yes			
L25	Cd	Yes	Yes	0.4	Never	From in-house validation	No	Yes	No		N 1
LZJ	As	res	Yes	0.4	> 1000	From in-nouse validation	No	Yes	No	Yes	Sample quantity was very small.
	AS Cd		Yes		> 1000		No	Yes	No	Yes	
N26	Hg		Yes	0.9	> 1000	From interlaboratory comparison data	No	Yes	No	Yes	
	iAs		Yes	0.0	50-250		No	Yes	No	Yes	
	Ex-Pb		Yes		Never		No	Yes	No	163	
	As		Yes		250-1000		Yes	Yes	Yes	Yes	
	Cd		Yes		250-1000	Uncertainty budget (ISO GUM), From	Yes	Yes	Yes	Yes	
N27	Hg		Yes	1.51	250-1000	in-house validation, From replicates (precision)	Yes	Yes	Yes	Yes	Result of 12% of moisture. Results of Pb in ZETAAAS after microwave digestion in very different
	Ex-Pb		Yes			(precision)	Yes	Yes	Yes		
	As		Yes		50-250		Yes	Yes	No		
N28	Cd		Yes	0.51	50-250	From in-house validation	Yes	Yes	No	Yes	To low amount of sample for PT
1120	Hg		Yes	0.51	50-250		Yes	Yes	No	Yes	
	Ex-Pb		Yes		Never		Yes	Yes	No	Yes	
	As		No		250-1000		Yes	Yes	Yes	Yes	
N29	Cd		No		250-1000	From in-house validation	Yes	Yes	Yes	Yes	
	Hg		No		50-250		Yes	Yes	Yes	Yes	
	Ex-Pb		No		250-1000		Yes	Yes	Yes	Yes	
	As		Yes		0-50		No	Yes	No		
N30	Cd		Yes	0.80	0-50	From in-house validation	No	Yes	No		
	Hg		Yes		0-50		No	Yes	No		
	Ex-Pb	Vc-	Yes		0-50		No	Yes	No		
	As	Yes	No		Never		No	Yes	No		
N31	Cd	Yes	No		Never	From interlaboratory comparison data	No No	Yes	No		
	Hg	Yes	No No		Never		NO	Yes Yes	No No		
	Ex-Pb		NO		Never		NO	res	NO		

						Rec	overy (R, ir	n %)				Experime	ntal details fo	r Ex-Pb	
Lab ID		Sample digestion	Digestion mixture	Std. method?	Correct recovery?	R	Spiking	CRM	LOD (mg/Kg)	Additional remarks regarding the method of analysis?	Weighed mass (g)	Volume HNO ₃ (mL)		External Cal.?	Standard additions?
	Cd	Other		No	Yes	93	Yes	No	0.002	The test meterial is Net a revising complet the method is					
N32	Hg	CMW	HF	No	Yes	97	Yes	No	0.05	The test material is Not a routine sample, the method is Not accredited and it was first time analyzed in our lab.					
	Ex-Pb			No	Yes	80	Yes	No	0.007	······································	1	25	30	Yes	Yes
	As	CMW	H ₂ O ₂ +HNO ₃ +HF	Yes	No			Yes	0,005						
N33	Cd	CMW	H ₂ O ₂ +HNO ₃ +HF	Yes	No			Yes	0,001						
	Hg	CMW	H ₂ O ₂ +HNO ₃ +HF	Yes	No			Yes	0,01						
N35	As	Other		No	No				0.31	k0-INAA is Non-destructive technique.					
	Hg	Other	HCI+HNO ₃ +HF	No	No				0.001	••••					
L36	Cd	Other	HNO ₃	No	Yes	94.6	Yes	Yes	0.30						
	Ex-Pb	Other		No	Yes	104.9	Yes		1.35		2	85 mL	30		
	As	Other	HCI+HNO ₃	No	No			Yes	0.006						
N37	Cd	Other	HCI+HNO ₃	No	No			Yes	0.006						
	Hg	DA		No	No			Yes	0.0003						
	Ex-Pb	Other		No	No			Yes	0.09		2	85	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	Yes	No	113	Yes	No	0.1						
	Cd	CMW	H ₂ O ₂ +HNO ₃	Yes	No	100	Yes	No	0.02						
N38	Hg	CMW	H ₂ O ₂ +HNO ₃	Yes	No		Yes	No	0.025						
	iAs	Other	HCI	Yes	No	110	Yes	No	0.1						
	Ex-Pb	Other		Yes	No		No	No	0.02		0,5	25 ml	30	Yes	No
	As	DA		Yes	No	78	Yes	No	0.003						
L39	Cd	DA		Yes	No				0.100						
	Hg	Other	HNO ₃ +H ₂ SO ₄	Yes	No				0.010						
	Ex-Pb	Other		Yes	No				0.50		0,5	25 ml	30	Yes	No
	As	CMW	H ₂ O ₂ +HNO ₃	Yes	No	96		Yes	0,05						
N41	Cd	CMW	H ₂ O ₂ +HNO ₃	Yes	No	108		Yes	0,05						
	Hg	CMW	H ₂ O ₂ +HNO ₃	Yes	No	94	Yes	No	0,05						
	Ex-Pb	CMW		Yes	No	98	Yes	No	0,05		2,00	85ml	30	Yes	Yes
	As	CMW	H ₂ O ₂ +HNO ₃	No	No	90.2		Yes	0.03						
L42	Cd	CMW	H ₂ O ₂ +HNO ₃	No	No	95.6		Yes	0.06						
	Ex-Pb	CMW		No	No	118		Yes	0.02		0.5	200	30	Yes	No
	As	CMW	HNO ₃	No	Yes	116		Yes	0.1						
L43	Cd	CMW	HNO ₃	No	Yes	103		Yes	0.02	4					
1	Hg	CMW	HNO ₃	No	Yes	116		Yes	0.02						
	Ex-Pb	CMW		No	Yes	98		Yes	0.1		0.5				
1	As	DA	HCI	No	Yes	97	Yes	No	0.025						
1	Cd	DA	HCI	No	Yes	93	Yes	No	0.03						
L45	Hg	H ₂ SO ₄	HCI+HNO ₃ +H ₂ SO ₄	No	Yes	80	Yes	No	0.02	4					
1	iAs	DA	HCI	No	Yes	79	Yes	No	0.06				I		
	Ex-Pb	DA		No	Yes	84	Yes	No	0.08		3	N/A		Yes	No

Lab ID V CM Moisture (v, im) Samples / yes Estimation Reported (v, w) Ves Ves <th></th>	
N22 H3 Yes Ves Never Never Never Yes Y	
N32Hg Ex-PbYes0.66NeverFrom in-house validationYesYesYesYesN33 $\frac{1}{6x}$ YesYesYesYesYesYesYesYesYesYesN33 $\frac{1}{6x}$ YesYesYesYesYesYesYesYesYesYesN33 $\frac{1}{6x}$ YesYesYesYesYesYesYesYesYesYesYesN33 $\frac{1}{6x}$ Yes	
See by constraint of the sector of	irst time analyzed in
As Yes Yes Yes Yes Yes Yes Yes Yes N35 As Yes	
N3 Cd Yes Yes Yes Yes Yes Yes Yes Yes Wes	
Hg Yes Yes <td>im was to check the</td>	im was to check the
N35 H Yes Yes Yes Yes Yes Yes L36 Cd Yes Yes 0.90 0.50 From in-house validation No Yes No As Yes Yes Yes Yes Yes Yes Yes Yes Kab Yes Yes Yes Yes Yes Yes Yes Iwould like to ask you politely to send larger amount of the proficiency test item in amount of 15 g is really small to perform all requested measurements. Can you al information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanying letter information concerning determination of water content in the accompanyi	
Hg Yes Yes Yes Yes Yes Yes Yes Yes Yes L36 Ex-Pb Yes Yes 0.50 -50 -50 No Yes No M37 As Yes Yes Yes 0.50 -50 -50 -50 No Yes No Yes No N37 Cd Yes Yes Yes 0.50 -50 -50 -50 -50 -50 -50 Kd Yes Yes Yes Yes Yes Yes Yes Yes yes -50 -50 Kd Yes Yes Yes Yes Yes Yes Yes Yes -50<	
L36 Ex-Pb Yes 0.90 0.50 From in-house validation No Yes No N37 As Yes Yes Solution Yes Yes Yes Yes Yes Yes amount of 15 g is really small to perform all requested measurements. Can you all in-house validation, From replicates (precision) Yes Yes Yes Yes Yes amount of 15 g is really small to perform all requested measurements. Can you all in-house validation, From replicates (precision) N38 As Yes No Yes Yes Yes Yes Yes Yes in-house validation, From replicates (precision) Yes Yes Yes Yes Yes in-house validation, From replicates (precision) Yes Yes <t< td=""><td></td></t<>	
Ex-Pb Yes Yes 0-50 No Yes No Yes Yes </td <td></td>	
N37 Cd Yes Yes O.80 50-250 Uncertainly budget (ISO GUM), From replicates (precision) Yes	
N37 Cd Yes Yes Yes Yes Yes Yes Yes amount of 15 g is really small to perform all requested measurements. Can you all information concerning determination of water content in the accompanying letter (precision) N37 Hg Yes Yes Yes Yes Yes Yes Yes Yes Yes amount of 15 g is really small to perform all requested measurements. Can you all information concerning determination of water content in the accompanying letter (precision) N38 Yes Yes Yes Yes Yes Yes Yes Yes one price price price Yes	r the next time. The
Hg Yes Yes Yes Yes Yes Yes Yes Information concerning determination of water content in the accompanying letter K-Pb Yes No 0-50 Yes Yes Yes No Cd Yes No 0-50 0-50 Yes Yes No As No 0-50 0-50 From replicates (precision) Yes Yes No Ex-Pb No 0-50 0-50 From replicates (precision) Yes Yes No L39 As Yes Yes Yes No Hg Yes Yes Yes No Cd Yes Yes Yes No L39 Yes Yes Yes Yes No Ka Yes Yes Yes Yes No L39 Yes Yes Yes Yes No Ka Yes Yes Yes Yes No Ka No 250-1000 250-1000 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Nd No 250-1000 250-1000 Yes	
Ex-PbYesYesYesYesYesContent can vary through laboratories.AsYesNoCdYesNoCdYesNoIAsNo0-50IAsNo0-50Ex-PbNo0-50CdYesYesYesKasYesYesKasYesYesCdYesYesYesKasYesYesCdYesYesYesYesYesKasYesYesCdYesYesYesYesYesKasNoYesYesYesKasYesNoYes	? Methods for water
N38 Cd Yes Yes Yes No Hg No 0.50 0.50 0.50 Yes Yes No iAs No 0.50 0.50 0.50 Yes Yes No L39 As Yes Yes Yes Yes Yes No L39 Yes Yes Yes Yes Yes No Hg Yes Yes Yes Yes No Ka Yes Yes Yes Yes No Ka Yes Yes Yes Yes No Ka No Yes Yes Yes No Ka No Zo-1000 Zo-1000 Zo-1000 Yes Yes Yes N41 No Yes Yes Yes Yes Yes	
N38 Hg No iAs No Ex-Pb No Cd Yes As Yes Cd Yes Hg O-50 0-50 0-50 Yes Yes Yes Yes Ka Yes Cd Yes Hg Yes Ves Yes Ves Yes No 0-50 Prom replicates (precision) Yes Yes Yes No 0-50 0-50 0-50 Prom replicates (precision) Yes Yes Yes Yes Yes No 0-50 0-50 0-50 0-50 0-50 Ves Yes Yes Yes	
Iss No 0-50 Yes Yes No Ex-Pb No 0-50 Yes Yes No As Yes Yes Yes Yes No Cd Yes Yes Yes Yes No Hg Yes Yes Yes Yes No Kx-Pb Yes Yes Yes Yes No Hg Yes Yes Yes Yes No Kx-Pb Yes Yes Yes No Cd Yes Yes Yes No Cd No 250-1000 Estimation based on judgment Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	
Ex-Pb No 0-50 Yes Yes No L39 As Yes Yes Yes Yes No L39 Yes Yes Yes Yes Yes No L39 Yes Yes Yes Yes Yes No Hg Yes Yes Yes Yes No Fx-Pb Yes Yes Yes No Ka No 0.65 0.50 Yes Yes No Ka No Yes Yes Yes Yes Yes Ka No 250-1000 Estimation based on judgment Yes Yes Yes	
As Yes Yes Yes No L39 Cd Hg Yes Yes Yes Yes No Ka Yes Yes Yes Yes Yes Yes Ka Yes Yes Yes Yes Yes Yes Ka No 250-1000 250-1000 250-1000 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes N41 Cd No 250-1000 Estimation based on judgment Yes Yes Yes	
L39 Hg Yes Yes Yes Yes No Ka No 250-1000 250-1000 Formation based on judgment Yes Yes Yes Yes N41 Cd No 250-1000 Estimation based on judgment Yes Yes Yes Yes	
L39 Hg Yes Yes Yes No Ex-Pb Yes Yes Yes Yes No As No 250-1000 250-1000 Yes Yes Yes Yes N41 Cd No 250-1000 Estimation based on judgment Yes Yes Yes Yes	
Ex-Pb Yes Yes Yes Yes No As No 250-1000 Yes Yes Yes Yes Cd No 250-1000 Estimation based on judgment Yes Yes Yes Yes	
As No 250-1000 N41 Cd No As No 250-1000 250-1000 Estimation based on judgment Yes Yes	
N41 No Yes Yes Yes View View View View View	
N41 Estimation based on judgment	
Ha NO 50-250 Yes Yes Yes	
Ex-Pb No 0-50 Yes Yes Yes As No 0-50 No Yes Yes Yes	
L42 Cd No O -50 From in-house validation No Yes Yes Ex-Pb No 0-50 0-50 No Yes Yes	
EX-PD NO General NO Tes Tes As Yes 250-1000 No Yes Yes	
Cd Yes 250 4000 From in bourse validation From No. Yes Yes	
Hg Yes 250-1000 replicates (precision) No Yes Ex-Pb Yes 250-1000 No Yes Yes	
As Yes 50-250 Yes Yes Yes Yes	
XS 100 100 100 100 100 Cd Yes 50-250 Yes Yes Yes	
L45 Hg Yes 1.1 50-250 From in-house validation Yes Yes Yes Sample size given for the PT was too small	
iAs Yes 50-250 Yes Yes Yes Yes	
Ex-Pb Yes 50-250 Yes Yes Yes	

ML	2 or 12 mg kg ⁻¹	2 mg kg ⁻¹	30 mg kg ⁻¹	0.1 mg kg ⁻¹	[6] and Ta	ble 2
Lab	As	Cd	ex-Pb	Hg	Compliance	due to
N01	4.58	0.0611	2.73	0.0454	С	
N02	5.80	0.059	3.83	0.18	С	
N03	6.37	0.076	66.1	< 0.05	NC	Pb
N04	5.9	0.056	60.7	0.026	NC	Pb; As
N05		< 0.5	3.595	0.0429	С	
N06	7.81	< 0.2	4.664	< 0.05	С	
N07	5.2	0.053	5.3	0.044	NC	As
N08	6.5	0.098	4.6	0.045	С	
N09	5.43	0.0522	4.42	0.0413	С	
N10	5.62	0.040	3.79	0.054	С	
N11	8.8	0.052	7.2	0.047	NC	As
N12	7.298	0.065	4.5	0.047	С	
N13	6.8	0.063	3.7	0.054	С	
N14	4.715	0.0436		0.0363	NC	As
N15	5.5	0.054	4.8	0.051	NC	As
N16	5.44	0.065		0.058	С	
N17	10.6	< 0.1	69.5	0.042	С	Pb
N18	7.36	0.078	3.613	0.062	С	
N19	9.115	0.0616	4.079	0.057	С	
N20	3.52	0.04	3.5	0.09	С	
N22	6.06	0.053	8.88	< 0.05	С	
N23	7.48	0.065	70.7		NC	Pb
N26	7.83	0.076	3.34	0.061	С	
N27	8.9	< 0.25	4.9	0.047	С	
N28	4.3	0.043	4.74	0.069	NC	
N29	5.0	0.062	53.2	< 0.08	С	
N30	6.3	0.489	3.19	0.033	С	
N31	7.65	0.099	2.982	0.042	С	
N32		0.069	3.48	< 0.1	С	
N33	3.66	0.0650		0.0441	NC	As
N35	8.54			0.045	С	
N37	5.43	0.054	3.14	0.046	С	
N38	4.97	0.053	3.50	0.040	С	
N41	5.770	0.055	5.88	0.064	С	
L24	8.12	0.061				
L36		0.42	2.99		С	
L39	4.92	< 0.100	3.50	0.034	С	
L42	4.92	0.07	46.5		NC	Pb
L43	4.55	0.077	65.4	0.050	NC	Pb; As
L44	5.98	0.35	11.50	< 0.025		
L45	4.01	0.11	64.9	0.06	NC	Pb

Annex 14: Compliance assessment

C = Compliant; NC = not-compliant; as assessed by participant

Europe Direct is a service to help you find answers to your questions about the European Union Free phone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu

How to obtain EU publications

Our publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

JRC Mission

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new methods, tools and standards, and sharing its know-how with the Member States, the scientific community and international partners.

Serving society Stimulating innovation Supporting legislation