

# JRC SCIENTIFIC AND POLICY REPORTS


# IMEP-34: Heavy Metals in Toys according to EN 71-3:1994

Interlaboratory Comparison Report

Fernando Cordeiro, Ines Baer, Piotr Robouch, Håkan Emteborg, Jean Charoud-Got, Bibi Kortsen, Beatriz de la Calle

Corrected version 06/09/2012

June 2012



#### **European Commission**

Joint Research Centre

Institute for Reference Materials and Measurements

#### **Contact information**

Fernando Cordeiro Raposo

Address: Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium

E-mail: Fernando.cordeiro-raposo@ec.europa.eu

Tel.: +32 (0)14571687 Fax: +32 (0)14571865

http://www.jrc.ec.europa.eu/

#### Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (\*):  $00\,800\,6\,7\,8\,9\,10\,11$ 

(\*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server <a href="http://europa.eu/">http://europa.eu/</a>.

JRC72597

EUR 25380 EN

ISBN 978-92-79-25309-6

ISSN 1831-9424

doi:10.2787/63196

Luxembourg: Publications Office of the European Union, 2012

© European Union, 2012

Reproduction is authorised provided the source is acknowledged.

Printed in Belgium

Dear IMEP-34 Participants,

Regrettably a mistake has been detected in the IMEP-34 (EUR 25384) report. As described in 8.2 the measurement results were reported as three replicates and a mean. Due to the EN 71-3:1994 compliance requirements an analytical correction (AC) could be applied in order to assess the compliance to the maximum limits allowed for trace elements in toys. Three cases may have occurred:

- A) Participants did not apply any correction,
- B) Participants have applied the AC only to their mean ("corrected mean"),
- C) Participants have applied the AC to all replicates and their mean.

In our report we stated that we should assess the analytical performance of the participants (using the "uncorrected values") so we have calculated the arithmetic mean of the replicates, hence ignoring the "corrected mean", so case B has been covered. In case A, obviously participants have reported their uncorrected value.

The mistake arises for Case C where, when using the arithmetic mean of the three replicates we are using results which have been "corrected" by the use of the AC. Results should have been "re-corrected" by using the respective AC as follows:

Sb, As, Se - Average of the 3 replicates / 0.4 (AC is 0.60 (60 %).

Corrected value = uncorrected value - 0.6.uncorrected value = uncorrected value.(1-0.6) = uncorrected value.0.4,

this implies that uncorrected value = average of 3 replicates (corrected) / 0.4.

Ba, Cd, Cr, Pb - Average of 3 replicates / 0.7

Hg - Average of 3 replicates / 0.5

Case C applies to 14 participants out of the 56 participants. You are one of these participants. Your performance score has been modified. Please do not consider the previous report as a new report will be sent to you in the next coming days.

We deeply apologise for all the inconvenience this error may have caused.

Fernando Cordeiro (PhD)
International Measurement Evaluation Programme

Beatriz de la Calle (PhD) IMEP Manager

European Commission

DG Joint Research Centre Food Safety and Quality Unit

Retieseweg 111 2440 Geel/Belgium +32 14 571687

Fernando.cordeiro-raposo@ec.europa.eu

# IMEP-34: Heavy metals in toys according to EN 71-3:1994

Interlaboratory Comparison Report

June 2012

Fernando Cordeiro (a)
Ines Baer (c,a)
Piotr Robouch (c)
Håkan Emteborg (c)
Jean Charoud Got (c)
Bibi Kortsen (d)
Beatriz de la Calle (b,c)

(a) ILC coordinator,(b) IMEP programme coordinator,(c) Technical / scientific support,(d) Administrative support



# Summary

The Institute for Reference Materials and Measurements (IRMM) of the Joint Research Centre (JRC), a Directorate-General of the European Commission, operates the International Measurement Evaluation Programme (IMEP). It organises interlaboratory comparisons (ILC's) in support to EU policies. This report presents the results of an ILC which focussed on the determination of soluble antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) according to European Standard EN 71-3:1994.

The principle of the procedure in EN 71-3:1994 [1] consists in the extraction of soluble elements from toy material under the conditions simulating the material remaining in contact with stomach acid for a period of time after swallowing.

Fifty eight participants from twenty six countries registered to the exercise, of which 54 reported results for As, Sb, Ba, Se and Hg and 58 for Cr, Pb, and Cd, respectively.

The test item used was a certified reference material (CRM 623, comminuted paint flakes from alkyd resin paint), certified in 1998, which is not included anymore in the CRM catalogue. The validity of the certified values was assessed using some expert laboratories in the field. In most of the cases the results reported by the certifiers were not in agreement with the CRM reference values. The mean of the means reported by the expert laboratories was used as assigned value for the different measurands. The results reported by the expert laboratories for mercury were very scattered (RSD = 37.5 %). No assigned value could be attributed for mercury and therefore no scores were provided to the participants for this measurand.

The associated uncertainties of the assigned values were obtained following the ISO GUM [2]. Furthermore, participants were invited to report their measurement uncertainties. This was done by all laboratories having submitted results in this exercise.

Laboratory results were rated with z- and zeta ( $\zeta$ -) scores in accordance with ISO 13528 [3]. The standard deviations for proficiency assessment were based on the analytical correction laid down in EN 71-3:1994.

The outcome of the exercise shows an improvement on the overall performance of the participants when compared to IMEP-24 [4] (a proficiency test for heavy metals in toys run in 2009 in which the same European standard was followed), particularly for cadmium, lead and to a lesser extent, for selenium and chromium. The share of satisfactory z-scores ranged from 65 to 81 %.

# Contents

| Sum  | mary                                   |                                                                                                                                                                                                                                                    | 2                          |
|------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Cont | ents.                                  |                                                                                                                                                                                                                                                    | 3                          |
| 1    | Intro                                  | oduction                                                                                                                                                                                                                                           | 4                          |
| 2    | IME                                    | support to EU policy                                                                                                                                                                                                                               | 5                          |
| 3    | Scop                                   | e and aim                                                                                                                                                                                                                                          | 5                          |
| 4    | Time                                   | e frame                                                                                                                                                                                                                                            | 6                          |
| 5    | Invit                                  | tation, registration and distribution                                                                                                                                                                                                              | 6                          |
|      | 5.1<br>5.2<br>5.3                      | Distribution                                                                                                                                                                                                                                       | 6<br>7                     |
| 6    | Test                                   | item                                                                                                                                                                                                                                               | 8                          |
|      | 6.1                                    | Homogeneity and stability studies                                                                                                                                                                                                                  | 8                          |
| 7    | Refe                                   | rence values and their uncertainties                                                                                                                                                                                                               | 9                          |
|      | 7.1<br>7.2                             | Target values Establishing reference values and uncertainties (X <sub>ref</sub> , U <sub>ref</sub> )                                                                                                                                               |                            |
| 8    | Repo                                   | orted results                                                                                                                                                                                                                                      | . 10                       |
|      | 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6 | General observations  Measurement results  Scores and evaluation criteria  Laboratory results and scorings  4.1 Mercury  Conformity assessment according to the European legislation on toys  Further information extracted from the questionnaire | 11<br>11<br>13<br>14<br>15 |
| 9    | Cond                                   | lusion                                                                                                                                                                                                                                             | . 17                       |
| 10   | Ackr                                   | nowledgements                                                                                                                                                                                                                                      | . 17                       |
| Abbr | eviat                                  | ions                                                                                                                                                                                                                                               | . 19                       |
| Refe | rence                                  | es                                                                                                                                                                                                                                                 | . 20                       |
| Anne | exes                                   |                                                                                                                                                                                                                                                    | 22                         |

#### 1 Introduction

Technological developments in the toys market and on the scientific knowledge have raised issues regarding the safety of toys. Increased concerns from consumers lead to a revision of the Directive 88/378/EEC [5]. The recently adopted Directive for the safety of toys (Directive 2009/48/EC, [6]) includes maximum migration limits for a number of trace elements (aluminium, antimony, arsenic, barium, boron, cadmium, chromium (III), chromium (VI), cobalt, copper, lead, manganese, mercury, nickel, selenium, tin, organic tin and zinc).

To allow toy manufacturers and other economic operators sufficient time to adapt to the requirements lay down by this Directive on chemical requirements, a transition period of four years is provided in which Part 3 of Annex II of Directive 88/378/EEC [5] relating to migration limits of elements is still applicable. The standard to be applied for the determination of extractable elements in toys is the European standard EN 71-3:1994 [1].

The requirements set up in the European standard EN 71-3:1994 are for the migration of trace elements from the following toy materials: coatings, polymeric and similar materials, paper and paper board, textiles, glass/ceramic/metallic materials, materials intended to leave a trace, pliable modelling materials, paints and other materials [1]. The material of interest for this interlaboratory comparison is a comminuted paint from alkyd resin paint, hence a powder-like toy material (as defined in Directive 2009/48/EC, [6]).

Concerned trace elements are antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se). Their migration from toys should comply with the limits listed in Table 1 when tested according to the procedure given in the European standard. An analytical correction is allowed for each element and is listed in the same table. The analytical result can be reduced by the given percentage when the analytical result equals or exceeds the set limit.

Table 1 summarises the maximum migrated limits (from toys or their components) as set in the European legislation.

Table 1 – Trace elements and their maximum limits (in  $mg\ kg^{-1}$ ) as set in European legislation on toys (in dry, brittle, powder-like toy material)

| Directive                 | Sb | As  | Ва   | Cd  | Cr    | Pb   | Hg  | Se   |
|---------------------------|----|-----|------|-----|-------|------|-----|------|
| 2009/48/EC [6]            | 45 | 3.8 | 4500 | 1.9 | 37.5ª | 13.5 | 7.5 | 17.5 |
| EN 71-3:1994 [1]          | 60 | 25  | 1000 | 75  | 60    | 90   | 60  | 500  |
| Analytical correction [%] | 60 | 60  | 30   | 30  | 30    | 30   | 50  | 60   |

<sup>&</sup>lt;sup>a</sup> as Cr(III)

IMEP-34 is to be considered as the follow-up exercise of the IMEP-24 [4] and aims to assess the performance of laboratories in measuring the above listed trace elements in toys.

# 2 IMEP support to EU policy

The International Measurement Evaluation Programme (IMEP®) is hold by the Joint Research Centre - Institute for Reference Materials and Measurements. IMEP provides support to the European measurement infrastructure in the following ways:

IMEP **disseminates metrology** from the highest level down to the field laboratories. These laboratories can benchmark their measurement result against the IMEP certified reference value. This value is established according to metrological best practice.

IMEP helps laboratories to assess their estimate of **measurement uncertainty**. The participants are invited to report the uncertainty on their measurement results. IMEP integrates the estimate into the scoring, and provides assistance for the interpretation.

IMEP **supports EU policies** by organising interlaboratory comparisons in the frame of specific EU Directives, or on request of a specific Directorate-General. In the case of IMEP-34, it was realised in the context of the former Directive [5] applying the European Standard EN 71-3:1994 and in the context of the new toy safety Directive 2009/48/EC [6] for compliance assessment.

IMEP-34 provided specific **support to the European Co-operation for Accreditation (EA)** in the frame of a Memorandum of Understanding (MoU) on a number of metrological issues, including the organisation of interlaboratory comparisons. National accreditation bodies were invited to nominate a limited number of laboratories for free participation in IMEP-34. The Swedish Board for Accreditation and Conformity Assessment (SWEDAC) liaised between EA and IMEP for this ILC.

# 3 Scope and aim

Similarly to IMEP-24 [4], IMEP-34 enables laboratories performing tests on toy products to monitor their performance and to compare it with other laboratories from Europe and abroad. Another aim is to identify problems related to technique and methodology. This was particularly interesting in this exercise, since the sample preparation procedure to be applied is known to cause great spread of results. The observation of this spread in former interlaboratory trials actually led to the introduction of the analytical correction into the EN 71-3:1994 [1]. Furthermore, this ILC exercise aims to check if any significant improvement can be detected on the participant's performance since IMEP-24, and to assess the conformity compliance towards the new legislation [6].

#### 4 Time frame

The project started in May 2011. Expert laboratories, which agreed on using their reported values for the establishment of the reference values, were invited to register (Annex 1). The EA coordinator Annika Norling informed the national accreditation bodies. The exercise was publicly announced on the IMEP webpage<sup>1</sup> in the middle of July 2011. In parallel, laboratories specialised in toy safety related analyses were contacted.

Interested laboratories could register till  $19^{th}$  September 2011. Samples were sent out to the laboratories on 10 and  $11^{th}$  October 2011. For all laboratories the deadline for reporting results was  $18^{th}$  November 2011.

# 5 Invitation, registration and distribution

Invitations for participation were sent to the EA coordinator (Annex 2) for distribution to nominated laboratories. Notified bodies from the NANDO list were sent an email (Annex 3) inviting them to take part in the exercise, after having retrieved their contact information from the NANDO webpage<sup>2</sup>. NANDO lists notified bodies fulfilling the relevant requirements and which can be designated to carry out conformity assessment according to a directive, which in this case is the Toy Safety Directive. Finally, a call for participation was also released on the IRMM website (Annex 4).

Instructions on measurands, sample storage and measurement procedure were sent to the participants in an accompanying letter together with the test items. The letter also contained the individual "code for access" to the result reporting website and the deadline for reporting (Annex 5). The reporting website included a questionnaire to collect additional information related to the experimental work (Annex 6).

#### 5.1 Distribution

The test items were dispatched by IRMM on the 10-11 October 2011 to the certifying laboratories and to the participants. Each laboratory received one package containing the alkyd resin paint in powder form, the 'Confirmation of receipt' form (Annex 7) and an accompanying letter with instructions on sample handling, procedure and timelines (Annex 5).

The dispatch was followed by the courier's parcel tracking system on internet and in most of the cases the sample was delivered within a couple of days. Fifty eight laboratories

<sup>&</sup>lt;sup>1</sup> http://irmm.jrc.ec.europa.eu/html/interlaboratory\_comparisons/

<sup>&</sup>lt;sup>2</sup> http://ec.europa.eu/enterprise/newapproach/nando/

registered out of which the majority submitted results for most of the measurands. Figure 1 represents the participating countries.

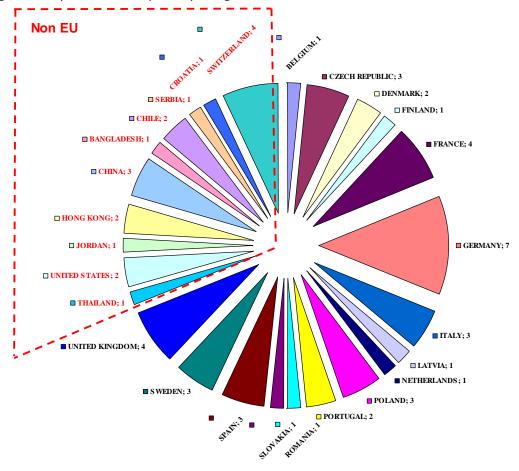



Fig. 1 – Participating countries, number of laboratories (non-EU countries in red)

#### 5.2 Confidentiality

EA was invited to nominate laboratories for participation. The following confidentiality statement was made to EA: "Confidentiality of the participants and their results towards third parties is guaranteed. However, IMEP will disclose details of the participants that have been nominated by EA to the EA working group for ILCs in Testing. The EA accreditation bodies may wish to inform the nominees of this disclosure."

#### 5.3 Procedure to apply

As this exercise was run to verify the performance of the laboratories when applying the EN 71-3:1994 [1], they were recommended to apply the corresponding procedure. Concerning the quantitative analysis of migrated elements, the standard recommends the use of methods having a detection limit of a maximum of 1/10 of the values to be determined.

#### 6 Test item

The test item used for this exercise is the certified reference material CRM 623 which consists of 2 g of comminuted paint flakes from alkyd resin paint (in powder form) contained in an amber glass bottle. This material was certified in 1998 for levels of toxic element migration using the method specified in the EN 71-3:1994 [1]. All elements except mercury were certified. The CRM 623 was taken out of sales because of doubts of stability observed during monitoring analysis. The material was designed to be used without any further sieving or processing, hence, all analytical variability introduced by scrapping the paint off from each plate is avoided in the present ILC exercise (in contrast to IMEP-24).

The certification report is not available for the public since the material is not commercialised anymore. However, details about the certification are publically available [7, 8] and are summarised hereafter. The paint was ordered at a specialised paint manufacturing company Trimite Ltd (UK). It was adulterated with 8 toxic elements at concentrations sufficient to yield soluble element concentrations at or around the maximum permissible levels. The paint was produced using dark grey "base" paint and adding a series of "tinters" each containing one of the eight toxic elements. Auto Imagination Ltd (UK) was contacted to spray the completed paint batches onto mild steel panels and to produce the comminuted paint flakes. Mild steels were degreased and abraded on one side by sand blasting. The comminuted paint flakes were produced by spraying the alkyd resin paint onto sheets of plastics. Just before the paint was fully dry, the film of paint was scrapped off and left to dry. Flakes produced were gently comminuted using a water cooled analytical grinder and sieved through a 500 µm mesh size.

#### 6.1 Homogeneity and stability studies

Since the material is withdrawn from the market it was decided to carry out a homogeneity study. Two certifying laboratories investigated the homogeneity of the test item using (i) neutron activation analysis with  $k_0$ -standardization ( $k_0$ -NAA) for the determination of total content of As, Ba, Cd, Hg, Sb and Se; (ii) inductively coupled plasma coupled with optical emission spectrometry (ICP-OES) for the determination of extractable lead, since  $k_0$ -NAA does not allow the determination of lead.

Both laboratories received 10 randomly chosen bottles from the sample set stored at 18 °C and analyses were performed in duplicate following, either the procedure given in EN 71-3:1994 [1] or their own method. Results were evaluated according to ISO 13528 [3] which describe tests to determine whether a ILC test item is adequately homogeneous for its purpose.

Assumption was made that, in case the test item is proven to be homogeneous for the total content, the corresponding soluble (extractable) content would be considered equally homogeneous. The homogeneity results can be found in Annex 8.

The test item used in this PT is similar to the CRM 620 used in the frame of the IMEP-24 project. As CRM 620 was proven to be stable, no additional short-term stability study was deemed necessary for the CRM 623 material.

#### 7 Reference values and their uncertainties

#### 7.1 Target values

By target values is meant the concentration of trace elements aimed at when producing the material. In this exercise they were set by the elements' concentrations of the material available. This material has been specifically produced for the toy safety norm for which the limits are set in EN 71-3:1994 [1] and target values were aimed at being close to these limits. Thus, the material was considered fit-for-purpose.

# 7.2 Establishing reference values and uncertainties (X<sub>ref</sub>, U<sub>ref</sub>)

Five expert laboratories were contacted to perform accurate analysis so that their values could be used to either confirm the reference values from the expired certificate, or for the establishment of new reference values. Additionally, a reference value had to be determined for mercury, where no certified value was available. The five expert laboratories were:

- SGS CTS, Chemical Toys (Fr)
- LGC Ltd, Teddington (UK)
- SP Technical Research Institute of Sweden (SE)
- Finnish Customs Laboratory (FI)
- Istituto Italiano per la Sicurezza dei Giocattoli S.r.l., Cabiate Co (IT)

One of the certifiers reported several "less than X" values (for Sb, As, Cr, Pb and Se), and submitted highly scattered Hg results. The advisory board decided to exclude the results of this certifier from the pool of results used to establish the various assigned values.

Annex 9 presents the results obtained by the remaining four expert laboratories and their expanded uncertainties. These results were generally in good agreement among them (except for Hg), but did not confirm the original certified values. For all the measurands, except mercury, the advisory board decided to set the assigned value ( $X_{ref}$ ) as the average values derived from the results reported by the certifiers ( $X_{Exp} \pm U_{Exp}$ ), instead of the original certified values. The associated combined uncertainty ( $u_{ref}$ ) is calculated by

propagating contributions (standard deviations) from characterisation ( $u_{Char}$ ) and homogeneity ( $u_{Hom}$ ) as follows [9]:

$$u_{ref} = \sqrt{u_{Char}^2 + u_{Hom}^2}$$
 Eq. 1

where the uncertainty of characterisation  $u_{Char}$  is calculated from the uncertainties reported by the expert laboratories ( $u_{Exp}$ ) following the ISO GUM approach [2, 10]:

$$u_{Char} = \sqrt{\left(\sum_{i=1}^{n} u_{Exp}^{2}\right)} / n$$
 Eq. 2

where n refers to the number of accepted data sets.

No assigned value was established for Hg, and therefore no laboratory performance was evaluated for this element.

Certifier C 17  $\hat{\sigma}$ Measurand C 2 C 38  $\mathbf{u}_{\mathrm{ref}}$ XExt  $U_{Ext}$ (k=2) (%) 12.36 9.29 2.5 2.0 9.6 0.4 1.0 Antimony (Sb) 0.5 30 Arsenic (As) 7.16 0.9 8.16 0.8 5.8 4.4 6.4 0.2 0.5 30 1.1 0.6 Barium (Ba) 96.11 94.8 17.0 Cadmium (Cd) 31.96 2.2 27.3 4.8 28.7 18.6 26.6 1.5 3.2 15 7.1 Chromium (Cr) 7.57 0.6 7.42 1.3 7.1 1.5 6.2 0.3 0.3 0.6 15 Lead (Ph) 14.32 12.17 11.6 11.8 1.0 2.1 3.0 9.1 2.0 0.5 1.6 17 18.5 21.9 Selenium (Se) 27.0 3.1 24.9 2.5 2.5 17.2 2.3 0.7 0.6 0.9 1.8 30 142.7 Mercury (Hg) No scoring

Table 2 – Assigned values, their associated uncertainties and  $\hat{\sigma}$  for each element

# 8 Reported results

#### 8.1 General observations

From the 58 laboratories that registered, all have submitted results together with their associated uncertainties. All except one have completed the associated questionnaire.

 $<sup>\</sup>hat{\sigma}$  is expressed as a percentage of the respective X $_{\rm ref}$  value.

Laboratories which have reported "less than X" values were not given any scores. The majority of the participants reported measurement results for all eight elements. Only a very few obvious blunders were reported from one participant, including very low or very high values.

#### 8.2 Measurement results

In IMEP-34, participants were asked to perform three independent results (one replicate from each of the bottles sent to each participant) and to report "the corrected mean". Unfortunately, this sentence seemly led to some confusion because it was understood by many participants as mandatory to correct their mean (using the respective AC as given in Table 1, as requested by EN 71-3) regardless on whether the material was compliant or not with the legislation. The use of the analytical correction (AC) depends on the concentration level found. If below the maximum tolerable limit ( $X_{EN}$ ) the AC does not need to be applied since the material is already compliant. Hence the "Sample accompanying letter" (Annex 5) should have read in "Reporting of results: The result of each replicate and the corrected mean (<u>if applicable</u>, accordingly to EN 71-3)".

Participants were contacted by the PT coordinator to clarify whether the individual values reported for the three replicates have been corrected or not using the AC. Scores were then provided on the raw data (not corrected) taking the average of the three replicates.

All the results are shown in tables (Annex 10-17) including the reported averaged value, the uncertainty, the technique used, scorings, and the uncertainty evaluation (see below). Additionally Annexes 10 to 17 illustrate, in graphs, all the observed variability and include the Kernel density plots for each element.

The software used to calculate Kernel densities was provided by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry [11, 12].

The results are generally normally distributed around the assigned value, or at least not much deviating from it. Some sub-populations can be observed in the Kernel plots mainly due to punctual very high or very low results.

#### 8.3 Scores and evaluation criteria

Individual laboratory performance is expressed in terms of z- and ( $\zeta$ -) zeta-scores in accordance with ISO 13528 [3] and the IUPAC International Harmonised Protocol [13]:

z-score = 
$$\frac{x_{lab} - X_{ref}}{\hat{\sigma}}$$
 and  $\zeta$ -score =  $\frac{x_{lab} - X_{ref}}{\sqrt{u_{ref}^2 + u_{lab}^2}}$ 

Where:

 $x_{lab}$  is the measurement result reported by a participant

X<sub>ref</sub> is the reference value (assigned value)

 $u_{ref}$  is the standard uncertainty of the reference value  $u_{lab}$  is the standard uncertainty reported by a participant  $\hat{\sigma}$  is the standard deviation for proficiency assessment

Both scores can be interpreted as (accordingly to ISO 17043, [14]):

Satisfactory result when  $|z- \text{ or } \zeta-\text{score}| \leq 2$ ,

Questionable result when  $2 < |z- \text{ or } \zeta\text{-score}| < 3 \text{ and,}$ 

Unsatisfactory result when  $|z-\text{ or }\zeta\text{-score}| \geq 3$ 

The z-score indicates whether a laboratory is able to perform the measurement in accordance with what can be considered as good practice within the EU. The standard deviation for proficiency testing  $\hat{\sigma}$  is an estimate of the expected / required variability of the trial. It has to be determined for each ILC individually. In this exercise, it was established based on the analytical correction (AC) given in EN 71-3:1994. These were interpreted as expanded uncertainties. Thus,  $\hat{\sigma}$  was set as half the AC (for each trace element, except for Pb, where it was set as 0.17  $X_{ref}$ ), assuming a confidence interval of 95 %. Table 2 summarises all reference values for the present PT exercise ( $X_{Exp}$ ,  $X_{ref}$ ,  $U_{ref}$ ,  $\hat{\sigma}$ ).

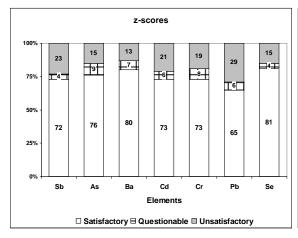
The IUPAC International Harmonised Protocol [13] suggests that participants can apply their own  $\hat{\sigma}$  and recalculate the scores if the purpose of their measurements is different.

The  $\zeta$ -score provides an indication of whether the estimate of uncertainty is consistent with the laboratory's deviation from the reference value [3, 13]. It is calculated only for those results that were accompanied by an uncertainty statement. The interpretation is similar to the interpretation of the z-score. An unsatisfactory  $\zeta$ -score may be caused by an underestimated uncertainty or by a large deviation from the reference value.

The standard uncertainty of the laboratory ( $u_{lab}$ ) was calculated as follows; if an expanded uncertainty was reported, it was divided by the coverage factor k. If no coverage factor was provided, the reported uncertainty was considered as the half-width of a rectangular distribution. The reported uncertainty was then divided by  $\sqrt{3}$ , in accordance with recommendations issued by Eurachem and CITAC [15].

Uncertainty estimation is not trivial; therefore an additional assessment was provided to each laboratory reporting uncertainty, indicating how reasonable their uncertainty estimate is. The standard uncertainty from the laboratory  $(u_{lab})$  is most likely to fall in a range between a minimum uncertainty  $(u_{min})$ , and a maximum allowed  $(u_{max})$ , (case "a").  $u_{min}$  is set to the standard uncertainty of the reference value  $(u_{min} = u_{ref})$ . It is unlikely that a laboratory carrying out the analysis on a routine basis would measure the trace element with a smaller uncertainty than the expert laboratories chosen to establish the assigned value.  $u_{max}$  is set to the target standard deviation  $(\hat{\sigma})$  accepted for the PT  $(u_{max} = \hat{\sigma})$ . If  $u_{lab}$  is smaller than  $u_{ref}$  (case "b") the laboratory may have underestimated its uncertainty.

Such a statement has to be taken with care as each laboratory reported only measurement uncertainty, whereas the uncertainty of the reference value, generally, also includes contributions of homogeneity and stability (when applicable). If those are large, measurement uncertainties smaller than  $u_{ref}$  are possible and plausible. If  $u_{lab} > \hat{\sigma}$  (case "c"), the laboratory may have overestimated the uncertainty. An evaluation of this statement can be made when looking at the difference of the reported value and the assigned value: if the difference is small and the uncertainty is large, then overestimation is likely. If, however, the deviation is large but is covered by the uncertainty, then the uncertainty is properly assessed but large. It should be pointed out that  $\hat{\sigma}$  is only a normative criterion if set down by legislation.


#### 8.4 Laboratory results and scorings

Scores were calculated with the raw data for all participants (taking the average of the three "non-corrected" replicates). Those having reported no value or a "less than" value were not included in any further statistical evaluation.

A large percentage of participants reported satisfactory measurement results (ranging from 65 to 81 % in z-score). Unsatisfactory z-scores ranged from 13 to 29 % (Figure 2).

This overall performance is more satisfactory than for IMEP-24. The percentage of satisfactory results in IMEP-24 was 44 % and 43 % for Cd and Pb, respectively. This comparison is valid as the same  $\hat{\sigma}$  was used in both IMEP rounds.

The situation is slightly different for the  $\zeta$ -scores (Figure 2). Only three elements (Ba, Cd and Pb) had equal or over 50 % of the participants getting satisfactory scores. That means that although the results reflected by the z-scores are generally good, there is an obvious problem with the estimation of the uncertainty for some elements, resulting in a high number of unsatisfactory  $\zeta$ -scores. Annex 18 summarises all the scores per participant.



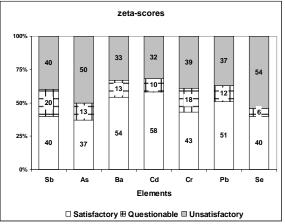



Fig. 2 – Overview of scores (in %)

All participants provided an uncertainty estimate, and most of these estimates were accompanied by a coverage factor. This is encouraging, but contrasts with the relatively modest proportion of results with a satisfactory  $\zeta$ -score. Considering that only 23 % of the participants stated in the questionnaire that they usually report the uncertainty to their customers, one might think that this is the reason for the lack of experience in uncertainty estimation and reporting. When plotting the scores as a function of the reporting / non-reporting to customers, there is a trend for those reporting uncertainties to their customers to perform better (54 % of those who report uncertainty to their customers got a satisfactory  $\zeta$ -score).

Uncertainty evaluation, for each element, is given in Annex 10 to 17. An overall evaluation is summarised in Table 3. Only a small percentage of participants have overestimated their uncertainty (case "c"). The percentages of participants who have estimated their uncertainty lower than the respective  $u_{ref}$  (case "b") ranges from 44 % (Se) to 67 % (Cd). It is worth mention that the contribution arising from the homogeneity is included in the estimation of  $u_{ref}$  but is not reflected in  $u_{lab}$ . The percentage of participants having reported an uncertainty value within  $u_{ref}$  and  $\hat{\sigma}$  (case "a") ranges from 26 % (Cd) to 54 % (Se).

As conclusion, participants are advised to verify their  $\zeta$ -scores, and review the principles of uncertainty estimation described in the ISO GUM [2] and in related guidance for the field of analytical chemistry, e.g. the EURACHEM / CITAC Guide [15].

|               | Uncert | ainty sco | re (%) |
|---------------|--------|-----------|--------|
| Measurand     | а      | b         | С      |
| Antimony (Sb) | 50     | 46        | 4      |
| Arsenic (As)  | 44     | 52        | 4      |
| Barium (Ba)   | 42     | 54        | 4      |
| Cadmium (Cd)  | 26     | 67        | 7      |
| Chromium (Cr) | 47     | 45        | 8      |
| Lead (Pb)     | 31     | 57        | 12     |
| Selenium (Se) | 54     | 44        | 2      |

Table 3 - Uncertainty evaluation for each element

Where: "a":  $u_{ref} \le u_{lab} \le \hat{\sigma}$ ; "b":  $u_{lab} < u_{ref}$ ; "c":  $u_{lab} > \hat{\sigma}$ 

# 8.4.1 Mercury

The analysis of Hg in the test item seems challenging. The Kernel density plot shows a bi-modal distribution of reported results (Annex 17). The same trend was observed by one of the certifiers when having four different analysts to perform their measurements on the three independent replicates, and in the results reported by the other four expert

laboratories. The advisory board decided not to assign a reference value and not to perform any evaluation (scoring) for this element.

#### 8.5 Conformity assessment according to the European legislation on toys

Participants were asked in the questionnaire whether they 'would accept or reject the entrance of the material on the market' according to Directive 88/378/EEC and to the new toy safety Directive 2009/48/EC.

As for all the elements the assigned values are below the maximum limit (Table 1), the material is compliant with Directive 88/378/EEC (maximum migration limits as set by EN 71-3:1994). Twenty eight participants stated that the material is compliant to this Directive, while 20 stated the opposite; 4 participants did not reply to this question.

According to Directive 2009/48/EC this powder-like toy material should have been judged non compliant, since the assigned values (Table 2) are larger than the maximum migration limits for several trace elements (As, Cd and Se, see Table 1). Most of the reported results largely exceeded these limits. Nevertheless, 17 participants judged the test item as compliant while 26 considered it as non-compliant; 9 participants did not answer to this question.

In the sample accompanying letter (Annex 5) the sample matrix was defined as "an alkyd resin paint in powder form". It is therefore surprising to see approximately 50 % of laboratories having used the wrong migration limits specified in Directive 2009/48/EC (scraped-off instead of powder-like), to assess the compliance of the test item, hence allowing placing on the market of a non-compliant toy.

Annex 19 presents the participant's answers regarding the conformity assessment to both toy safety Directives.

#### 8.6 Further information extracted from the questionnaire

Almost all participants completed the questionnaire, although few of them skipped a large part of it. Since this exercise was carried out using the EN 71-3:1994, many questions were related to the sample preparation. All laboratories followed the EN 71-3:1994 for the required analysis; L27 deviated slightly from the standard and used a filter with different porosity.

Thirteen participants sieved the test sample. This experimental procedure increased the extraction efficiency and the recovery of all the elements.

The majority of the participants weighted 0.5~g of test sample per replicate, applied the recommended temperature of  $37~^{\circ}\text{C}$  during sample preparation and performed the analysis on the same day of sample processing.

For the uncertainty estimate, several participants gave various combinations of the given choices. Twenty-seven participants estimated their uncertainty from precision studies (replicates), 26 from in-house validation studies, 15 estimated their uncertainty following

ISO GUM approaches, 7 based on judgement, 3 from interlaboratory comparison data and finally 6 using a known uncertainty from the standard method.

It has to be emphasised that the latter should not be used on its own - the correct implementation of a standard method, in a laboratory, should always be verified by the laboratory applying it.

All except one have a quality system based on ISO 17025. Three have a quality system based on both ISO 17025 and ISO 9000 series and one based on ISO 9000 series. 93 % of the participants are accredited. 68 % of the participants declared to take part in an interlaboratory comparison on a regular basis.

Eighty nine percent of the participants carry out this type of analysis regularly. However, the number of samples analysed by the 52 laboratories who answered to this question varies as can be seen in Table 4 where the number of samples per year is reported.

Seventeen laboratories use a reference material (RM) for this type of analysis (30 %). All of them used the RM for the validation of their measurement protocol while 13 used it for the calibration of their instruments. The RMs used by the participants, are listed in Table 5.

Table 4 - Reported samples analysed per year (in %)

| Number of samples per year          | < 50      | 50 - 250  | 250 - 1000 | >1000     |
|-------------------------------------|-----------|-----------|------------|-----------|
| Number of laboratories (% of total) | 16 (39 %) | 10 (19 %) | 10 (19 %)  | 16 (31 %) |

Table 5 - Reference materials used by the participants as stated in the questionnaire

| Lab ID | Which reference material?                                                                       |
|--------|-------------------------------------------------------------------------------------------------|
| C 2    | In-house material for method for migration                                                      |
| C17    | In-house quality control material is used.                                                      |
| L05    | ex Toy test material round 43                                                                   |
| L07    | CRM Solution                                                                                    |
| L10    | GBW(E)081536                                                                                    |
| L12    | (mono-elemental standards are used for calibration of course)                                   |
| L15    | CRM- Certificate standard with a note concentration of metals                                   |
| L16    | PC-CR4 (in-house SRM)                                                                           |
| L18    | CRM solution                                                                                    |
| L23    | Multielemental acid solution                                                                    |
| L25    | Titrisol for each of the eight trace elements (Merck)                                           |
| L29    | Solutions of known metals                                                                       |
| L32    | Spiked samples                                                                                  |
| L34    | In-house made                                                                                   |
| L41    | made in-house RM                                                                                |
| L43    | RM: ICP multi-element standard HC 945548, Merck ,CRM: TraceCERT, Fluka analytical (19 elements) |
| L44    | Standard Reference Material for each metal (PANREAC)                                            |
| L45    | Certified reference material (CRM) from which are made internal standards to check the method   |
| L50    | not applicable                                                                                  |
| L51    | In-house reference material                                                                     |

For the participants who have declared the use of standard solutions of the trace elements under investigation we wish to recall that standard solutions do not allow the trueness assessment of their method, only a matrix-matched reference material does.

Annex 20 provides a comprehensive list of experimental details stated by the participants.

#### 9 Conclusion

The scatter of the results in IMEP-34 was smaller than in IMEP-24, showing a normal distribution around the reference values for all elements except mercury.

Similarly to IMEP-24, participants' results tend to be lower than  $X_{ref}$  in the case of arsenic and selenium, elements known to be difficult to analyse. The reason for these lower results could be attributed to the sample preparation, these elements being very volatile and easy to loose.

Conformity assessment to the two Directives was made. Half of the participants took the right decision regarding the compliance of the test item with legislation, even though about 50 % of the participants would have unduly allowed the test item to enter the European market according to Directive 2009/48/EC.

# 10 Acknowledgements

The author's wishes to acknowledge the Istituto Italiano per la Sicurezza dei Giocattoli S.r.l., LGC Ltd, SP Technical Research Institute of Sweden, Finnish Customs Laboratory, SGS CTS, Chemical Toys for performing high precision analyses on the test material for the establishment of the assigned values and SCK/CEN for measurements for the homogeneity and stability studies. Franz Ulberth is thanked for revising the manuscript.

The laboratories participating in this exercise, listed below are kindly acknowledged.

| Organisation                                                                   | Country                        |
|--------------------------------------------------------------------------------|--------------------------------|
| SGS Bangladesh Limited                                                         | BANGLADESH                     |
| CTIB-TCHN                                                                      | BELGIUM                        |
| Instituto de Investigaciones y Control                                         | CHILE                          |
| CESMEC S A                                                                     | CHILE                          |
| Specialized Technology Resources (Shanghai) Limited - Shenzhen Branch          | CHINA                          |
| Specialized Technology Resources(Shanghai) Ltd.                                | CHINA                          |
| TUV Rhienland (Shanghai) Co., Ltd                                              | CHINA                          |
| Institute of Public Health dr.Andrija Štampar                                  | CROATIA                        |
| Institut pro testovani a certifikaci                                           | CZECH REPUBLIC                 |
| Textilni zkusebni ustav                                                        | CZECH REPUBLIC                 |
| Technical and Test Institute for construction Prague                           | CZECH REPUBLIC                 |
| Eurofins Miljø A/S                                                             | DENMARK                        |
| Technological Institute                                                        | DENMARK                        |
| -                                                                              | FRANCE                         |
| ·                                                                              | FRANCE                         |
| BV CPS France                                                                  | FRANCE                         |
| Hermes Hansecontrol                                                            | GERMANY                        |
| INDIKATOR GmbH                                                                 | GERMANY                        |
| SLG Prüf- und Zertifizierungs GmbH                                             | GERMANY                        |
| Dr. Graner & Partner GmbH                                                      | GERMANY                        |
| Intertek                                                                       | GERMANY                        |
| PFI Pirmasens                                                                  | GERMANY                        |
| Entwicklungs- und Prüflabor Holztechnologie GmbH (EPH)                         | GERMANY                        |
| , ,                                                                            | HONG KONG                      |
| , ,                                                                            | HONG KONG                      |
|                                                                                | ITALY                          |
|                                                                                | ITALY                          |
| Royal Scientific Society                                                       | JORDAN                         |
| ·                                                                              | LATVIA                         |
|                                                                                | NETHERLANDS                    |
| <u> </u>                                                                       | POLAND                         |
|                                                                                | POLAND                         |
|                                                                                | POLAND                         |
| CATIM                                                                          | PORTUGAL                       |
| CITEVE - Centro Tecnologico das Industrias Têxteis e Vestuario de Portugal     | PORTUGAL                       |
| LAREX CNIEP                                                                    | ROMANIA                        |
| Institute for public health Belgrade                                           | SERBIA                         |
| VÚTCH-CHEMITEX spol.s r.o.                                                     | SLOVAKIA                       |
| Centro Analítico Inspección y Control de Calidad de Comercio Exterior (SOIVRE) | SPAIN                          |
|                                                                                | SPAIN                          |
|                                                                                | SPAIN                          |
|                                                                                | SWEDEN                         |
| INNVENTIA AB                                                                   | SWEDEN                         |
|                                                                                | SWITZERLAND                    |
| LABORATORIO CANTONALE                                                          | SWITZERLAND                    |
|                                                                                | SWITZERLAND                    |
|                                                                                | SWITZERLAND                    |
| TUV Rheinland Thailand Ltd.                                                    | THAILAND                       |
| STR (UK) Ltd.                                                                  | UNITED KINGDOM                 |
| City of Edinburgh Council                                                      | UNITED KINGDOM                 |
| Intertek                                                                       | UNITED KINGDOM  UNITED KINGDOM |
| SGS North America Inc., Consumer Testing Services                              | UNITED KINGDOM UNITED STATES   |
| Consumer Testing Laboratories                                                  | UNITED STATES UNITED STATES    |
| Consums. Tooling Euporatorico                                                  | S.T.IED STATES                 |

#### **Abbreviations**

AAS Atomic Absorption Spectroscopy

AC Analytical Correction

AMC Analytical Methods Committee of the Royal Society of Chemistry
CITAC Co-operation for International Traceability in Analytical Chemistry

CRM Certified Reference Material

CVAAS Cold Vapour Atomic Absorption Spectrometry

EA European Co-operation for Accreditation

EC European Commission

EN European Standard

ETAAS Electro Thermal Atomic Absorption Spectrometry

EU European Union

EURACHEM A focus for Analytical Chemistry in Europe FAAS Flame Atomic Absorption Spectroscopy

GUM Guide to the Expression of Uncertainty in Measurement

ICP-MS Inductively-Coupled Plasma Mass Spectrometry

ICP-OES Inductively-Coupled Plasma Optical Emission Spectrometry

ILC Interlaboratory Comparison

IMEP International Measurement Evaluation Programme IRMM Institute for Reference Materials and Measurements

ISO International Organisation for Standardisation

IUPAC International Union for Pure and Applied Chemistry

JRC Joint Research Centre

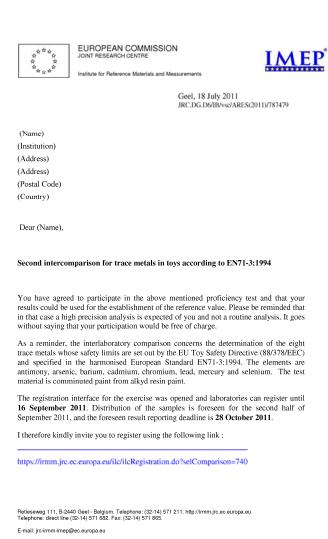
NANDO New Approach Notified and Designated Organisations

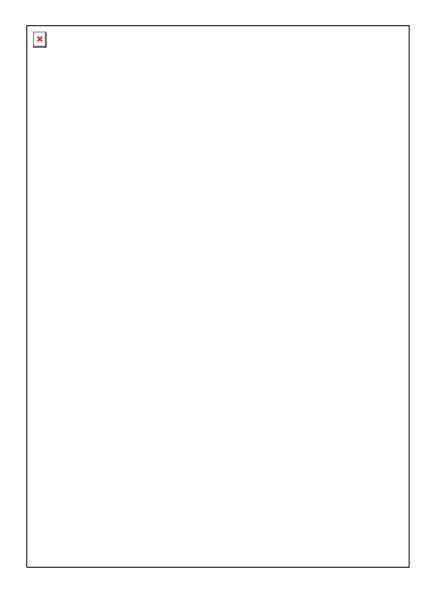
MoU Memorandum of Understanding

SP Swedish National Testing and Research Institute

SWEDAC Swedish Board for Accreditation and Conformity Assessment

#### References


- [1] EN 71-3:1994, "Safety of toys Part 3: Migration of certain elements" (1994), European Committee for Standardisation (CEN), ICS 97.200.50
- [2] ISO/IEC Guide 98:2008, "Uncertainty of measurement Part 3: Guide to the expression of uncertainty in measurement" (GUM 1995), issued by International Organisation for Standardisation
- [3] ISO 13528:2005, "Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons", issued by International Organisation for Standardisation
- [4] IMEP-24: "Analysis of eight heavy metals in toys according to EN 71-3:1994 Interlaboratory comparison report", EUR 24094 (2009), available at:
  http://irmm.jrc.ec.europa.eu/interlaboratory\_comparisons/imep/Pages/index.aspx
- [5] Council Directive 88/378/EEC of 3 May 1988 on the approximation of the laws of the Member States concerning the safety of toys (1988), issued by European Commission, Official Journal of the European Union, L 187
- [6] Directive 2009/48/EC of 18 June 2009 on the safety of toys (2009), issued by European Commission, Official Journal of the European Union, L 170/1
- [7] Quevauviller P, (2001) "Certified reference materials for the quality control of inorganic analyses of manufactured products (glass, polymers, paint coatings)", TrAC
   Trends in Analytical Chemistry 20(8): 446-456
- [8] Roper P, Walker R, Quevauviller P (2000) "Collaborative study for the quality control of trace element determinations in paint coatings. Part 2. Certification of alkyd resin paint reference materials for the migratable contents of trace elements (CRMs 620 and 623)", Fresenius' Journal of Analytical Chemistry 366(3): 289-297
- [9] Pauwels J, Van Der Yeen A, Lamberty A, Schimmel H (2000) "Evaluation of uncertainty of reference materials", Accreditation and Quality Assurance 5(3): 95-99
- [10] Pauwels J, Lamberty A, Schimmel H (1998), "The determination of the uncertainty of reference materials certified by laboratory intercomparison", Accreditation and Quality Assurance 3(5): 180-184
- [11] "Robust statistics: a method of coping with outliers" (2001). AMC Technical Brief issued by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry


- [12] "Representing data distributions with Kernel density estimates" (2006). AMC Technical Brief issued by the Statistical Subcommittee of the Analytical Methods Committee (AMC) of the Royal Society of Chemistry
- [13] Thompson M, Ellison SLR, Wood R (2006) "The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories": (IUPAC technical report). Pure and Applied Chemistry 78(1): 145-196
- [14] ISO/IEC 17043:2010, "Conformity assessment General requirements for proficiency testing", issued by International Organisation for Standardisation
- [15] "Quantifying Uncertainty in Analytical Measurement" (2000). Eurachem/CITAC, <a href="http://www.eurachem.org">http://www.eurachem.org</a>

# **Annexes**

| Annex 1 | : Invitation to expert laboratories                     | 23 |
|---------|---------------------------------------------------------|----|
| Annex 2 | : Invitation to EA to nominate laboratories             | 24 |
| Annex 3 | : Invitation to notified bodies from NANDO list         | 25 |
| Annex 4 | : Publication on IRMM website                           | 26 |
| Annex 5 | : Sample accompanying letter                            | 27 |
| Annex 6 | : Questionnaire                                         | 28 |
| Annex 7 | : 'Confirmation of receipt' form                        | 31 |
| Annex 8 | : Homogeneity study                                     | 32 |
| Annex 9 | : Reference values and their associated uncertainties   | 33 |
| Annex 1 | 0 : Results for Antimony                                | 34 |
| Annex 1 | 1 : Results for Arsenic                                 | 36 |
| Annex 1 | 2 : Results for Barium                                  | 38 |
| Annex 1 | 3 : Results for Cadmium                                 | 40 |
| Annex 1 | 4 : Results for Chromium                                | 42 |
| Annex 1 | 5 : Results for Lead                                    | 44 |
| Annex 1 | 6 : Results for Selenium                                | 46 |
| Annex 1 | 7 : Results for Mercury                                 | 48 |
| Annex 1 | 8 : Summary of scorings                                 | 50 |
| Annex 1 | 9A: Compliance assessment to Directive 88/378/EEC       | 51 |
| Annex 1 | 9B : Compliance assessment to Directive 2009/48/EC      | 52 |
| Annex 2 | 0 : Experimental details derived from the questionnaire | 53 |

# **Annex 1: Invitation to expert laboratories**





#### Annex 2: Invitation to EA to nominate laboratories



**EUROPEAN COMMISSION** JOINT RESEARCH CENTRE



Institute for Reference Materials and Measurements

Geel, 19 July 2011 JRC.DG.D6/IBa/vsc/ARES(2011)/783627

**SWEDAC** Annika Norling Box 2231 10315 Stockholm **SWEDEN** 

Dear Annika,

#### Second intercomparison for trace metals in toys according to EN71-3:1994

The Institute for Reference Materials and Measurements (IRMM) organises a second interlaboratory comparison for the determination of the eight trace metals whose safety limits are set out by the EU Toy Safety Directive (88/378/EEC) and specified in the harmonised European Standard EN71-3:1994. The concerned elements are antimony, arsenic, barium, cadmium, chromium, lead, mercury and selenium. The test material is comminuted paint from alkyd resin paint.

In the frame of the EA-IRMM collaboration agreement, IRMM kindly invites EA to nominate laboratories for free participation. These laboratories must be involved in toy safety evaluation and be familiar with the above mentioned standard, since it will be the method to be applied to the sample. They also should hold (or be in the process of obtaining) an accreditation for this type of measurement.

I suggest that you forward this invitation to the national EA accreditation bodies for their consideration. The number of nominees should not exceed 2-3 laboratories per country.

Confidentiality of the participants and their results towards third parties is guaranteed. However, IMEP will disclose details of the participants that have been nominated by EA to the EA working group for ILCs in Testing. The EA accreditation bodies may wish to inform the nominees of this disclosure.

Registration of participants is open until 16 September 2011. Distribution of the samples is foreseen for the second half of September 2011, and the foreseen result reporting deadline is 28 October 2011.

In order to register, laboratories must:

Enter their details online:

https://irmm.jrc.ec.europa.eu/ilc/ilcRegistration.do?selComparison=740

- Print the completed form when the system asks to do so and clearly indicate on the printed form that you have been appointed by the European Cooperation for Accreditation to take part in this exercise otherwise your laboratory will be invoiced 400 EUR for participation normally applied for non-appointed laboratories.
- Send the printout to both the IMEP-34 and the EA-IMEP-34 coordinators:

**IMEP-34** coordinator Ms. Ines Baer Fax +32 14 571865 E-mail jrc-irmm-imep@ec.europa.eu

Two Ray

EA-IMEP-34 coordinator Mrs. Annika Norling Fax +46 0 791 89 29 E-mail Annika.norling@swedac.se

Please contact me if you have any questions or comments. We are looking forward to our cooperation!

With kind regards

Ines Baer

IMEP-34 Coordinator

#### Annex 3: Invitation to notified bodies from NANDO list

#### KORTSEN KONRAD Bibi (JRC-GEEL)

 From:
 BAER Ines (JRC-GEEL)

 Sent:
 20 July 2011 09:43

 To:
 JRC IRMM IMEP

Subject: IMEP-34 - interlaboratory comparison on trace metals in toys according to EN71-3:1994

Importance: High

#### To whom it may concern

My name is lnes Baer and I am working at the European Commission - Institute for Reference Materials and Measurements (IRMM), more specifically on the organisation of interlaboratory comparisons (ILC) in the frame of IMEP, the International Measurement Evaluation Programme.

We are currently organising IMEP-34, an ILC for the determination of the eight trace metals whose safety limits are set out by the EU Toy Safety Directive (88/378/EEC) and specified in the harmonised European Standard EN71-3:1994. The exercise may be of particular interest to you as your institute is listed under the Toy Safety Directive as being responsible for this type of examination.

For more information on the exercise and for registration please go to <a href="http://irrmm.irc.ec.europa.eu/interlaboratory">http://irrmm.irc.ec.europa.eu/interlaboratory</a> comparisons/imep/34/Pages/IMEP-34.aspx

Registration deadline is 16 September 2011.

FYI, IMEP has carried out a similar exercise two years ago called IMEP-24 and the outcome was met with great interest by laboratories and authorities. You can find the Final Report on our website <a href="http://irrmm.irc.ec.europa.eu/interlaboratory">http://irrmm.irc.ec.europa.eu/interlaboratory</a> comparisons/imep/imep-24/Pages/index.aspx .

Feel free to contact me in case of any further questions.

Looking forward to welcoming you in our exercise.

Kind regards

#### Ines Baer

Ines Baer
International Measurement Evaluation Programme - IMEP
EC-JRC-IRMM
Tel: +32 (0)14 57 16 82
Fax: +32 (0)14 57 18 65
jrc-irmm-imep@ec.europa.eu
http://irmm.irc.ec.europa.eu

Disclaimer: The views expressed are purely those of the writer and may not in any circumstances be regarded as stating an official position of the European Commission

# Annex 4: Publication on IRMM website

IMEP-34 Trace metals in toys II according to EN71-3:1994



News | Links | Press corner | Site map | Contact

http://irmm.jrc.ec.europa.eu/interlaboratory\_comparisons/imep/Imep-34/Pages/IMEP-34.aspx[16/02/2012 11:32:26]

# Annex 5: Sample accompanying letter



#### EUROPEAN COMMISSION

OINT RESEARCH CENTRE

Institute for reference materials and measurements Food Safety & Quality



Geel, 6 October 2011 JRC.DG.D6/IBa/bk/ARES(2011)/

- «TITLE» «FIRSTNAME» «SURNAME»
- «ORGANISATION» «DEPARTMENT»
- «ADDRESS»
- ~ADDICESS
- «ADDRESS2» «ADDRESS3»
- «ADDRESS4»
- «ZIP» «TOWN»
- «COUNTRY»

Participation in IMEP-34, a proficiency test exercise for the determination of eight trace elements in toys according to EN71-3:1994

Dear «TITLE» «SURNAME»,

Thank you for participating in the IMEP-34 proficiency test for the determination of eight trace elements specified in the harmonised European Standard EN71-3:1994, and whose safety limits were set out by the EU toy safety directive 88/378/EEC and which are still included in the current toy safety directive 2009/48/EC. **Please keep this letter**, you need it for reporting your results.

#### This parcel contains:

- a) Three bottles containing approximately 2 g of the test material each
- b) A "Confirmation of Receipt" form
- c) A summary of the questionnaire to be answered on-line after reporting your results.
- d) This accompanying letter

Please check whether the bottles containing the test material remained undamaged during transport. Then, please send the "Confirmation of receipt" form back (fax:  $\pm 32-14-571865$ , e-mail: jrc-irmm-imep@ec.europa.eu). You should store the samples in a dark place at  $\leq 18$  °C until analysis.

#### Measurands and procedure to apply

Measurands are the migrated concentrations of arsenic, antimony, barium, cadmium, chromium, lead, mercury and selenium to be determined as described in EN71-3:1994. The sample matrix is an alkyd resin paint in powder form.

«Part\_key»

Retieseweg~111,~B-2440~Geel-~Belgium.~Telephone:~(32-14)~571~211.~http://irmm.jrc.ec.europa.eu~Telephone:~direct line~(32-14)~571~682.~Fax:~(32-14)~571~865.

E-mail: jrc-irmm-imep@ec.europa.eu

1/4

One measurement per bottle is to be performed, meaning in total 3 replicates. Perform the measurements as you use to in routine sample analysis. A minimum sample intake of  $0.5\,\mathrm{g}$  is recommended.

#### Reporting of results

The reporting website is <a href="https://irmm.jrc.ec.europa.eu/ilc/ilcReporting.do">https://irmm.jrc.ec.europa.eu/ilc/ilcReporting.do</a>
Please report:

- the result for each replicate and the corrected mean (mg kg-1)
- the associated expanded uncertainty (mg kg<sup>-1</sup>),
- · the coverage factor and
- · the technique you used.

The results should be reported in the same form (e.g. number of significant figures) as those normally reported to the customer.

To access the webpage you need a personal password key, which is: "Part\_key". The system will guide you through the reporting procedure. Check your results carefully for any errors before submission, since your results cannot be changed after we have received them.

Please also complete the relating online-questionnaire. A summary of the questions was sent with this letter. Do not forget to save and submit when required.

#### For final submission please:

- · press "Confirm results and questionnaire"
- · print the completed report form
- · sign the paper version and
- . send it to IRMM by fax or by e-mail.

The deadline for submission of results is 18/11/2011.

Please keep in mind that collusion is contrary to professional scientific conduct and serves only to nullify the benefits of proficiency tests to customers, accreditation bodies and analysts alike.

Your participation in this project is greatly appreciated. If you have any remaining questions, please contact me by e-mail: jrc-irmm-imep@ec.europa.eu

With kind regards

Termand Order lopar

Dr. Fernando Cordeiro Raposo IMEP-34 Co-ordinator

Enclosures: 1) three bottles containing the test material; 2) confirmation of receipt form; 3) Summary IMEP-34 questionnaire; 4) Accompanying letter.

«Part\_key»

# **Annex 6: Questionnaire**

| Milc questionnaire                                                               |                                                                                                      |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Comparison for IMEP-34                                                           | 1.9. Did you analyse the samples on the day of processing?  No                                       |
| Please complete the questionnaire.                                               | © Yes                                                                                                |
| Submission Form                                                                  | 1.9.1. If not:                                                                                       |
| 1. Plea se answer following questions regarding EN71-3:1994.                     | 1.9.1.1. How did you store the samples until analysis?                                               |
| 1.1. Please specify which procedure you have followed (which chapter) in EN71-3: | 1.9.1.2. How long have you stored the samples ?                                                      |
| 1.2. Have you sieved the sample?                                                 | 2. If you have deviated from the EN71-3 protocol, please describe briefly how :                      |
| O No                                                                             |                                                                                                      |
| O Yes                                                                            | 3. What are your detection limits (LoD, mg/kg) for:                                                  |
| 1.2.1. If yes, what sieve/mesh size have you used ?                              | 3.1. Antimony:                                                                                       |
| 1.3. State the sample amount used per replicate:                                 | 3.2. Arsenic:                                                                                        |
| 1.4. What shaking device have you used ?                                         | 3.3. Barium :                                                                                        |
| 1.5. Have you applied the temperature recommendation of 37 C?  No                | 3.4. Cadmium:                                                                                        |
| O Yes                                                                            | 3.5. Chromium :                                                                                      |
| 1.5.1. If not, which temperature was applied ?                                   | 3.6. Lead:                                                                                           |
| 1.6. What was the final pH?                                                      | 5.0. 2020                                                                                            |
| 17. Consider the transport of the property of the property of                    | 3.7. Mercury:                                                                                        |
| 1.7. Specify the type and porosity of the membrane filter used:                  | 3.8. Selenium:                                                                                       |
| 1.8. Was a centrifugation step necessary?                                        |                                                                                                      |
| O No                                                                             | 4. What is the level of confidence reflected by coverage factor k reported with your results? (in %) |
| O Yes                                                                            |                                                                                                      |
| - Page 1 of 5 -                                                                  | - Page 2 of 5 -                                                                                      |

- Page 2 of 5 -

|                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ♥ No                                                                                                                       | ○ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.2. Are you accredited ?                                                                                                  | 11. Concerning your reported results, have you applied the analytical correction (EN71-3, Ch. 4.2)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.1.1. If other, please specify:                                                                                           | ( Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other                                                                                                                      | 10.3. Is the material used for the calibration of instruments?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ISO 9000 series                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.1. If yes, which one ?  ISO 17025                                                                                        | O No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                            | 10.2. Is the material used for the validation of procedures ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ○ No ○ Yes                                                                                                                 | 10.1. Tryes, which one !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7. Does your laboratory have a quality system in place ?                                                                   | 10.1. If yes, which one ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                            | 🔀 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ○ Yes                                                                                                                      | © No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. Do you usually provide an uncertainty statement to your customers for this type of analysis?  No                        | 10. Does your laboratory use a reference material for this type of analysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                            | The state of the s |
| 5.1. If other, please specify:                                                                                             | 9.1. Which ILC scheme(s)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                            | 🔀 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| g) other                                                                                                                   | O No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ( f) use of intercomparison data                                                                                           | 9. Does your laboratory take part in similar interlaboratory comparisons on a regular basis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| e) estimation based on judgement                                                                                           | (3) more than 1000 samples per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| d) measurement of replicates (i.e. precision)                                                                              | © c) 250-1000 samples per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| c) uncertainty of the method as determined during in-house validation                                                      | (i) b) 50-250 samples per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| b) known uncertainty of the standard method                                                                                | a) 0-50 samples per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5. What is the basis of your uncertainty estimate? (multiple answers possible)  a) uncertainty budget according to ISO-GUM | 8.1. If yes, please estimate the number of samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5 What is the hards of common action to action to a simple 2 (modified a common activity)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 12.1. Toy Safety Directive 88/378/EEC ?            |
|----------------------------------------------------|
| 🔘 Yes                                              |
| 12.1.1. Explain, why:                              |
|                                                    |
| 12.2. Toy Safety Directive 2009/48/EC ?            |
| ○ No                                               |
| Yes                                                |
| 12.2.1. Explain, why:                              |
|                                                    |
| 12.3. Did you base your decision on                |
| (i) raw results                                    |
| results corrected by analytical correction         |
| 13. How have you heard about this exercise?        |
|                                                    |
| 14. Do you have any comments ? Please, let us know |
| ·                                                  |

- Page 5 of 5 -

# Annex 7: 'Confirmation of receipt' form



# **EUROPEAN COMMISSION**

JOINT RESEARCH CENTRE

Institute for reference materials and measurements Food Safety & Quality

Annex to JRC.DG.D6/IBa/bk/ARES(2011)/

«TITLE» «FIRSTNAME» «SURNAME» «ORGANISATION» «DEPARTMENT» «ADDRESS» «ADDRESS2» «ADDRESS3» «Address4» «ZIP» «TOWN» «COUNTRY»

# **IMEP-34**

Trace metals in toys II

# Confirmation of receipt of the samples

Please return this form at your earliest convenience.
This confirms that the sample package arrived.
In case the package is damaged, please state this on the form and contact us immediately.

| ANY REMARKS             |  |
|-------------------------|--|
|                         |  |
| Date of package arrival |  |
| Signature               |  |

#### Please return this form to:

Dr Fernando Cordeiro Raposo IMEP-34 Coordinator EC-JRC-IRMM Retieseweg 111 B-2440 GEEL, Belgium

Fax : +32-14-571865

e-mail: jrc-irmm-imep@ec.europa.eu

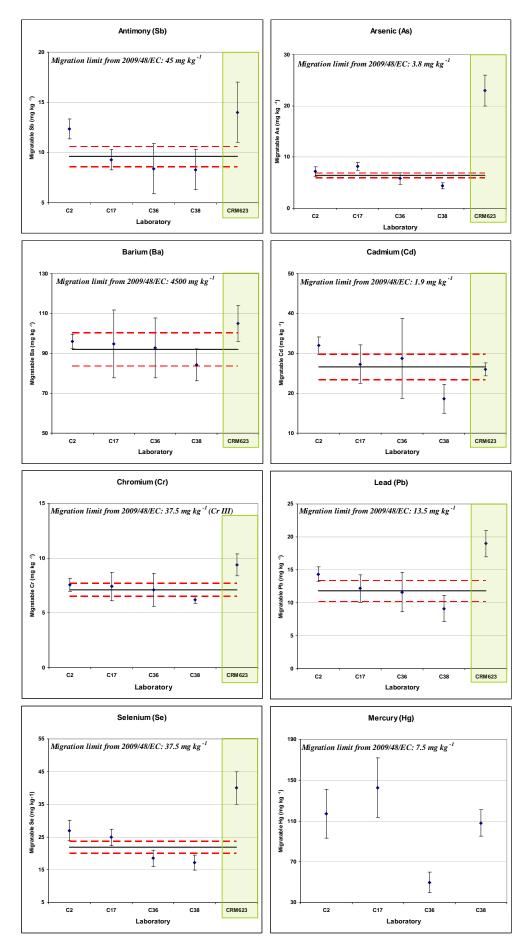
Retieseweg 111, B-2440 Geel - Belgium. Telephone: (32-14) 571 211. http://irmm.jrc.ec.europa.eu Telephone: direct line (32-14) 571 682. Fax: (32-14) 571 865.

<u>IMEP</u>

E-mail: jrc-irmm-imep@ec.europa.eu

**Annex 8: Homogeneity study** 

| Homogeneity                                                    | Sb     |       | As     |       | Ва     |       | Cd      |         | Cr     |      | Pb     |      | Hg           |        | Se     |        |
|----------------------------------------------------------------|--------|-------|--------|-------|--------|-------|---------|---------|--------|------|--------|------|--------------|--------|--------|--------|
| Sample                                                         | R1     | R2    | R1     | R2    | R1     | R2    | R1      | R2      | R1     | R2   | R1     | R2   | R1           | R2     | R1     | R2     |
|                                                                | 626.9  | 626.9 | 150.8  | 146.0 | 511.4  | 528.3 | 11988.9 | 11612.7 | 90.0   | 87.6 | 12.7   | 12.3 | 3559.9       | 3265.0 | 1057.4 | 1028.0 |
|                                                                | 627.3  | 646.5 | 147.9  | 142.6 | 535.8  | 571.4 | 12008.7 | 12276.0 | 88.8   | 91.7 | 10.7   | 11.0 | 3235.0       | 3302.9 | 1035.9 | 1138.8 |
|                                                                | 661.8  | 664.3 | 151.3  | 146.8 | 557.3  | 561.4 | 12978.9 | 12513.6 | 93.4   | 93.2 | 12.0   | 11.6 | 2477.4       | 2513.3 | 1087.8 | 1165.2 |
|                                                                | 654.1  | 664.8 | 152.1  | 145.6 | 570.9  | 534.9 | 12949.2 | 12335.4 | 101.7  | 92.7 | 12.1   | 12.1 | 2447.3       | 2459.0 | 1070.2 | 1162.3 |
|                                                                | 639.6  | 656.8 | 143.6  | 148.7 | 569.4  | 548.1 | 12276.0 | 12870.0 | 89.9   | 90.8 | 12.6   | 11.9 | 3462.9       | 3466.8 | 1041.7 | 1142.7 |
|                                                                | 675.2  | 647.9 | 151.3  | 151.4 | 593.2  | 577.6 | 12860.1 | 12553.2 | 95.5   | 92.7 | 12.1   | 11.5 | 2451.2       | 2356.1 | 1186.8 | 1064.3 |
|                                                                | 675.7  | 654.1 | 148.8  | 155.1 | 567.4  | 576.2 | 12800.7 | 12939.3 | 95.2   | 91.8 | 13.4   | 13.1 | 2577.3       | 2486.1 | 1190.7 | 1076.0 |
|                                                                | 655.1  | 679.8 | 154.2  | 150.2 | 586.8  | 583.1 | 12978.9 | 12830.4 | 91.5   | 96.1 | 12.0   | 11.3 | 2826.6       | 2918.7 | 1067.2 | 1184.8 |
|                                                                | 653.3  | 645.7 | 154.4  | 142.1 | 551.9  | 534.8 | 13008.6 | 12097.8 | 90.2   | 91.2 | 11.6   | 11.2 | 3480.4       | 3450.3 | 1162.3 | 1120.1 |
|                                                                | 657.4  | 685.7 | 148.8  | 151.1 | 536.7  | 567.7 | 12780.9 | 13295.7 | 90.4   | 97.6 |        |      | 3009.9       | 3098.2 | 1065.3 | 1178.0 |
| Mean                                                           | 654.9  |       | 149.1  |       | 558.2  |       | 12597.8 |         | 92.6   |      | 12.0   |      | 2942.2       |        | 1111.3 |        |
| Half Anal Corr [%]                                             | 30     |       | 30     |       | 15     |       | 15      |         | 15     |      | ļ      |      | 15           |        | 15     |        |
| $\hat{\sigma}$ [mg kg $^{	ext{-}1}$ ]                          | 196.5  |       | 44.7   |       | 83.7   |       | 1889.7  |         | 13.9   |      | 2.0    |      | 441.3        |        | 166.7  |        |
| Homogeneity test according to ISO 13528 (mg kg <sup>-1</sup> ) |        |       |        |       |        |       |         |         |        |      |        |      |              |        |        |        |
| 0.3 $\hat{\sigma}$                                             | 58.95  |       | 13.42  |       | 25.12  |       | 566.90  |         | 4.17   |      | 0.61   |      | 132.40       |        | 50.01  |        |
| s <sub>x</sub>                                                 | 14.33  |       | 2.32   |       | 19.49  |       | 371.69  |         | 2.51   |      | 0.64   |      | 445.90       |        | 29.45  |        |
|                                                                | 13.16  |       | 4.19   |       | 15.46  |       | 345.62  |         | 3.08   |      | 0.30   |      | 79.86        |        | 68.04  |        |
| S <sub>w</sub>                                                 |        |       |        |       |        |       |         |         |        |      |        |      |              |        |        |        |
| S <sub>s</sub>                                                 | 10.89  |       | 0.00   |       | 16.04  |       | 280.05  |         | 1.24   |      | 0.60   |      | 442.31       |        | 0.00   |        |
| $s_s \le 0.3 \ \hat{\sigma}$ ?<br>Test                         | Yes    |       | Yes    |       | Yes    |       | Yes     |         | Yes    |      | Yes    |      | No<br>Failed |        | Yes    |        |
| 1631                                                           | Passed |       | Passed |       | Passed |       | Passed  |         | Passed |      | Passed |      | Failed       |        | Passed |        |


Where:  $\hat{\sigma}$  is the standard deviation for the PT assessment,

 $S_{x}$  is the standard deviation of the samples averages,

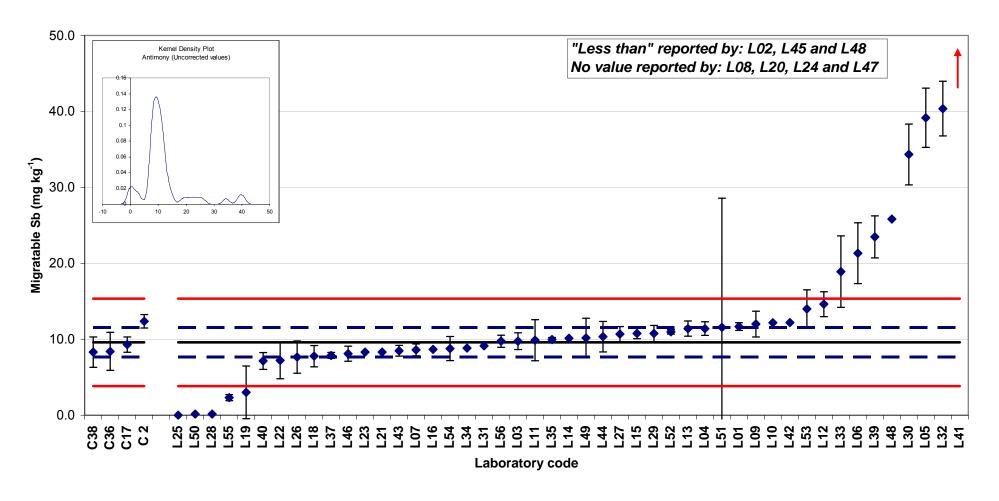
 $S_{\mbox{\tiny W}}$  is the within-samples standard deviation,

 $S_{\text{\scriptsize S}}$  is the between-samples standard deviation

#### Annex 9: Reference values and their associated uncertainties



## **Annex 10: Results for Antimony**


 $X_{ref} = 9.6$  and  $U_{ref} = 1.0$ ; all values are given in (mg kg<sup>-1</sup>)

| Lab ID     | X <sub>mean</sub> | $U_{lab}$ | k <sup>a</sup> | u <sub>lab</sub> | Technique        | z-score <sup>b</sup> | ζ-score <sup>b</sup> | $\mathbf{U}^{\mathbf{c}}$ |
|------------|-------------------|-----------|----------------|------------------|------------------|----------------------|----------------------|---------------------------|
| C 1        | < 10              |           | √3             | 0.00             | ICP-OES          | 2 50010              | 9 55010              | b                         |
| C 2        | 12.36             | 0.89      | √3             | 0.51             | ICP-MS           |                      |                      | а                         |
| C17        | 9.29              | 1         | 2              | 0.50             | ICP-OES          |                      |                      | а                         |
| C36        | 8.40              | 2.5       | 2              | 1.25             | ICP-OES          |                      |                      | а                         |
| C38        | 8.30              | 2         | 2              | 1.00             | ICP-OES          |                      |                      | а                         |
| L01        | 11.67             | 0.5       | 2              | 0.25             | ICP-OES          | 0.7                  | 3.9                  | b                         |
| L02        | < 15              | 0         | √3             | 0.00             | FAAS             |                      |                      | b                         |
| L03        | 9.73              | 1.1       | 2              | 0.55             | ICP-MS           | 0.1                  | 0.2                  | а                         |
| L04        | 11.40             | 0.9       | 2              | 0.45             | ICP-MS           | 0.6                  | 2.8                  | b                         |
| L05        | 39.17             | 3.9       | 2              | 1.95             | ICP-OES          | 10.3                 | 14.7                 | а                         |
| L06        | 21.33             | 4         | 2              | 2.00             | ICP-MS           | 4.1                  | 5.7                  | а                         |
| L07        | 8.60              | 0.79      | 2              | 0.40             | ICP-OES          | -0.3                 | -1.6                 | b                         |
| L09        | 12.00             | 1.7       | 2              | 0.85             | ICP-MS           | 0.8                  | 2.5                  | а                         |
| L10        | 12.17             | 0         | √3             | 0.00             | ICP-OES          | 0.9                  | 5.4                  | b                         |
| L11        | 9.87              | 2.7       | 2              | 1.35             | ICP-OES          | 0.1                  | 0.2                  | а                         |
| L12        | 14.61             | 1.63      | 2              | 0.82             | ICP-OES          | 1.7                  | 5.3                  | а                         |
| L13        | 11.40             | 1         | 2              | 0.50             | ICP-OES          | 0.6                  | 2.6                  | а                         |
| L14        | 10.12             | 0         | 1.96           | 0.00             | ICP-OES          | 0.2                  | 1.1                  | b                         |
| L15        | 10.75             | 0.7       | 2              | 0.35             | ICP-OES          | 0.4                  | 2.0                  | b                         |
| L16        | 8.67              | 0         | √3             | 0.00             | ICP-OES          | -0.3                 | -1.9                 | b                         |
| L18        | 7.77              | 1.4       | 2              | 0.70             | ICP-OES          | -0.6                 | -2.1                 | а                         |
| L19        | 3.00              | 3.46      |                | 1.73             | ETAAS            | -2.3                 | -3.7                 | а                         |
| L21        | 8.31              | 0         | √3             | 0.00             | ICP-OES          | -0.4                 | -2.7                 | b                         |
| L22        | 7.20              | 2.41      | 2              | 1.21             | ICP-OES          | -0.8                 | -1.8                 | а                         |
| L23        | 8.30              | 0         | √3             | 0.00             | ETAAS            | -0.4                 | -2.7                 | b                         |
| L25        | 0.00              | 0         | √3             | 0.00             |                  | -3.3                 | -20.0                | b                         |
| L26        | 7.64              | 2.12      | 2              | 1.06             | ICP-OES          | -0.7                 | -1.7                 | а                         |
| L27        | 10.67             | 1         | 2              | 0.50             | ICP-OES          | 0.4                  | 1.6                  | а                         |
| L28        | 0.15              | 0.0122    | 2              | 0.01             | ICP-MS           | -3.3                 | -19.7                | b                         |
| L29        | 10.75             | 1.07      | 2              | 0.54             | ICP-MS           | 0.4                  | 1.6                  | а                         |
| L30        | 34.33             | 4         | 2              | 2.00             | ICP-OES          | 8.6                  | 12.0                 | а                         |
| L31        | 9.12              | 0         | √3             | 0.00             | ICP-OES          | -0.2                 | -1.0                 | b                         |
| L32        | 40.37             | 3.6       |                | 1.80             | ICP-MS           | 10.7                 | 16.5                 | а                         |
| L33        | 18.90             | 4.7       |                | 2.35             | ICP-OES          | 3.2                  | 3.9                  | a                         |
| L34        | 8.83              |           | √3             | 0.00             | ICP-MS           | -0.3                 | -1.6                 | b                         |
| L35        | 9.95              | 0.288     | 60             | 0.00             | ICP-OES          | 0.1                  | 0.8                  | b                         |
| L37        | 7.87              | 0.39      | 2              | 0.20             | ICP-OES          | -0.6                 | -3.3                 | b                         |
| L39        | 23.47             | 2.77      | 2              | 1.39             | ETAAS            | 4.8                  | 9.5                  | a                         |
| L40        | 7.13              | 1.1       |                | 0.64             | FAAS             | -0.9                 | -3.1                 | a                         |
| L41        | 5824.00           | 36        |                | 18.00            | CV-AAS           | 2021.4               | 322.9                | C                         |
| L42        | 12.19             |           | √3             | 0.00             | ICP-OES<br>ETAAS | 0.9<br>-0.4          | 5.5<br>-1.8          | b                         |
| L43<br>L44 | 8.48              | 0.7       |                | 0.35             |                  | 0.3                  | -1.8<br>0.7          | b                         |
|            | 10.33             | 2         | √3             | 0.00             | ICP-OES<br>FAAS  | 0.3                  | 0.7                  | a<br>b                    |
| L45<br>L46 | < 38.1            |           |                |                  | ICP-MS           | -0.5                 | -2.2                 |                           |
| L48        | 8.09              | 1 0       | 2<br>√3        | 0.50             | ICP-IVIS         | -0.5<br>5.6          | 34.0                 | a<br>b                    |
| L49        | 25.83<br>10.17    | 2.6       |                | 1.30             | ICP-OES          | 0.2                  | 0.4                  |                           |
| L50        | 0.15              | 0.011     |                | 0.01             | ICP-OES          | -3.3                 | -19.7                | a<br>b                    |
| L51        | 11.57             | 17        |                | 8.50             | ICP-OES          | 0.7                  | 0.2                  | C                         |
| L52        | 10.97             | 0.3       |                | 0.10             | ICP-MS           | 0.5                  | 2.8                  | b                         |
| L53        | 14.00             | 2.5       |                | 1.44             | ICP-OES          | 1.5                  | 2.9                  | a                         |
| L54        | 8.77              | 1.58      | 2              | 0.79             | FAAS             | -0.3                 | -0.9                 | a                         |
| L55        | 2.30              | 0.4       |                | 0.20             | ICP-MS           | -2.5                 | -14.0                | b                         |
| L56        | 9.73              | 0.8       |                | 0.40             | ICP-OES          | 0.1                  | 0.2                  | b                         |
| _00        | 9.13              | 0.0       |                | 0.40             | . 5. 525         | V.1                  | VIZ                  | D                         |

a  $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ . b Satisfactory, Questionable, Unsatisfactory

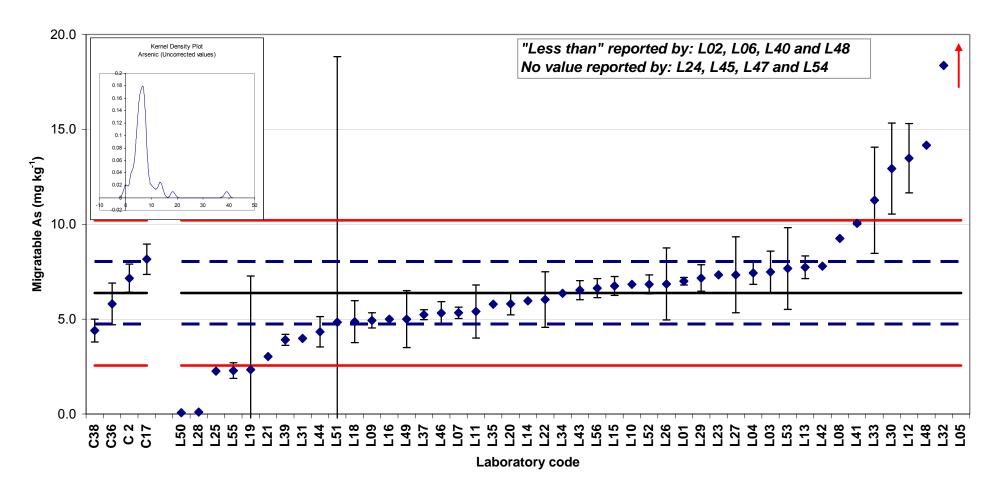
<sup>° &</sup>quot;a":  $u_{ref} \le u_{lab} \le \hat{\sigma}$ ; "b":  $u_{lab} < u_{ref}$ ; "c":  $u_{lab} > \hat{\sigma}$ 

# IMEP-34 (Trace elements in toys): Antimony Assigned value: $X_{ref} = 9.6 \text{ mg kg}^{-1}$ ; $U_{ref} = 1.0 \text{ mg kg}^{-1}$ (k = 2)





### **Annex 11: Results for Arsenic**


 $X_{ref} = 6.4$  and  $U_{ref} = 0.5$ ; all values are given in (mg kg<sup>-1</sup>)

| Lab ID         X <sub>mean</sub> U <sub>lab</sub> k <sup>a</sup> u <sub>lab</sub> Technique         z-score <sup>b</sup> ζ-score <sup>b</sup> C1         <10         0         N³         0.00         ICP-OES         CP-OES           C17         8.16         0.8         2         0.40         ICP-OES         CP-OES           C36         5.80         1.1         2         0.55         ICP-OES         CP-OES           C38         4.40         0.6         2         0.30         ICP-OES         0.3         2.5           L01         7.00         0.2         2         0.10         ICP-OES         0.3         2.5           L02         <5         0         N³         0.00         FAAS         0.6         1.9           L04         7.49         1.1         2         0.55         ICP-MS         0.6         1.9           L05         39.17         2.9         2         1.45         ICP-OES         17.1         22.3           L06         <0.5         0         N³         0.00         HG-AAS         1.5         12.5           L07         5.33         0.3         2         0.15         ICP-OES         -0.5               | b a a a b b a a a               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| C 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a a a a b b a a                 |
| C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a<br>a<br>a<br>b<br>b<br>a<br>a |
| C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a<br>a<br>b<br>b<br>a<br>a      |
| C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a<br>b<br>b<br>a<br>a           |
| L01         7.00         0.2         2         0.10         ICP-OES         0.3         2.5           L02         <5         0         √3         0.00         FAAS         0.6         1.9           L03         7.49         1.1         2         0.55         ICP-MS         0.6         2.8           L04         7.43         0.6         2         0.30         ICP-MS         0.6         2.8           L05         39.17         2.9         2         1.45         ICP-OES         17.1         22.3           L06         <0.5         0         √3         0.00         ICP-MS         1.5         12.5           L07         5.33         0.3         2         0.15         ICP-OES         -0.5         -3.8           L08         9.25         0         √3         0.00         ICP-OES         -0.5         -3.8           L09         4.93         0.4         2         0.20         ICP-MS         -0.8         -4.7           L10         6.83         0         √3         0.00         ICP-OES         -0.2         2.0           L11         5.40         1.4         2         0.70         ICP-OES </td <td>b<br/>b<br/>a<br/>a</td> | b<br>b<br>a<br>a                |
| L02         <5         0         √3         0.00         FAAS           L03         7.49         1.1         2         0.55         ICP-MS         0.6         2.8           L04         7.43         0.6         2         0.30         ICP-MS         0.6         2.8           L05         39.17         2.9         2         1.45         ICP-OES         17.1         22.3           L06         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b<br>a<br>a                     |
| L03         7.49         1.1         2         0.55         ICP-MS         0.6         1.9           L04         7.43         0.6         2         0.30         ICP-MS         0.6         2.8           L05         39.17         2.9         2         1.45         ICP-OES         17.1         22.3           L06         <0.5         0         √3         0.00         ICP-MS         17.1         22.3           L07         5.33         0.3         2         0.15         ICP-OES         -0.5         -3.8           L08         9.25         0         √3         0.00         ICP-OES         -0.5         -3.8           L08         9.25         0         √3         0.00         ICP-OES         -0.5         -3.8           L08         9.25         0         √3         0.00         ICP-OES         -0.5         -3.8           L09         4.93         0.4         2         0.20         ICP-OES         -0.5         -0.8         4.7           L10         6.83         0         √3         0.00         ICP-OES         -0.5         -1.3           L11         5.96         0         1.96 <t< td=""><td>a<br/>a</td></t<>        | a<br>a                          |
| L04         7.43         0.6         2         0.30         ICP-MS         0.6         2.8           L05         39.17         2.9         2         1.45         ICP-OES         17.1         22.3           L06         <0.5         0         √3         0.00         ICP-OES         17.1         22.3           L07         <5.33         0.3         2         0.15         ICP-OES         -0.5         -3.8           L08         9.25         0         √3         0.00         ICP-OES         -0.5         -3.8           L09         4.93         0.4         2         0.20         ICP-MS         -0.8         -4.7           L10         6.83         0         √3         0.00         ICP-OES         -0.5         -1.3           L11         5.40         1.4         2         0.70         ICP-OES         -0.5         -1.3           L12         13.48         1.83         2         0.92         ICP-OES         -0.5         -1.3           L12         13.48         1.83         2         0.92         ICP-OES         0.7         3.6           L14         5.96         0         1.96         0.00                               | а                               |
| L05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| L06         <0.5         0         √3         0.00         ICP-MS           L07         5.33         0.3         2         0.15         ICP-DES         -0.5         -3.8           L08         9.25         0         √3         0.00         ICP-DES         -0.5         -3.8           L09         4.93         0.4         2         0.20         ICP-MS         -0.8         -4.7           L10         6.83         0         √3         0.00         ICP-DES         -0.2         2.0           L11         5.40         1.4         2         0.70         ICP-DES         -0.5         -1.3           L12         13.48         1.83         2         0.92         ICP-DES         -0.5         -1.3           L12         13.48         1.83         2         0.92         ICP-DES         -0.7         -1.3           L12         13.48         1.83         2         0.92         ICP-DES         -0.5         -1.3           L14         5.96         0         1.96         0.00         ICP-DES         -0.2         -1.8           L15         6.75         0.5         2         0.25         ICP-DES         -0.7<                        |                                 |
| LO7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b                               |
| L08         9.25         0 √3         0.00         HG-AAS         1.5         12.5           L09         4.93         0.4         2         0.20         ICP-MS         -0.8         -4.7           L10         6.83         0 √3         0.00         ICP-OES         0.2         2.0           L11         5.40         1.4         2         0.70         ICP-OES         -0.5         -1.3           L12         13.48         1.83         2         0.92         ICP-OES         -0.5         -1.3           L13         7.73         0.6         2         0.30         ICP-OES         0.7         3.6           L14         5.96         0         1.96         0.00         ICP-OES         0.7         3.6           L15         6.75         0.5         2         0.25         ICP-OES         -0.2         -1.8           L16         5.00         0         √3         0.00         ICP-OES         -0.2         -1.8           L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         HG-AAS         -0.3                        | b                               |
| L09         4.93         0.4         2         0.20         ICP-MS         -0.8         -4.7           L10         6.83         0 √3         0.00         ICP-OES         0.2         2.0           L11         5.40         1.4         2         0.70         ICP-OES         -0.5         -1.3           L12         13.48         1.83         2         0.92         ICP-OES         -0.5         -1.3           L13         7.73         0.6         2         0.30         ICP-OES         0.7         3.6           L14         5.96         0         1.96         0.00         ICP-OES         0.2         -1.8           L15         6.75         0.5         2         0.25         ICP-OES         0.2         1.1           L16         5.00         0         √3         0.00         ICP-OES         -0.2         -1.8           L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         ICP-OES         -0.3         -2.5           L21         3.03         0 √3         0.00         ICP-OES         -1                        | b                               |
| L10         6.83         0 √3         0.00         ICP-OES         0.2         2.0           L11         5.40         1.4         2         0.70         ICP-OES         -0.5         -1.3           L12         13.48         1.83         2         0.92         ICP-OES         3.7         7.5           L13         7.73         0.6         2         0.30         ICP-OES         0.7         3.6           L14         5.96         0         1.96         0.00         ICP-OES         -0.2         -1.8           L15         6.75         0.5         2         0.25         ICP-OES         -0.2         -1.1           L16         5.00         0         √3         0.00         ICP-OES         -0.7         -6.0           L18         4.87         1.1         2         0.55         ICP-OES         -0.8         -2.5           L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         IGP-OES         -1.8         -14.6           L21         3.03         0 √3         0.00         ICP-OES <td< td=""><td>b</td></td<>    | b                               |
| L11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b                               |
| L12       13.48       1.83       2       0.92       ICP-OES       3.7       7.5         L13       7.73       0.6       2       0.30       ICP-OES       0.7       3.6         L14       5.96       0       1.96       0.00       ICP-OES       -0.2       -1.8         L15       6.75       0.5       2       0.25       ICP-OES       0.2       1.1         L16       5.00       0       √3       0.00       ICP-OES       -0.7       -6.0         L18       4.87       1.1       2       0.55       ICP-OES       -0.8       -2.5         L19       2.33       4.94       2       2.47       ETAAS       -2.1       -1.6         L20       5.80       0.58       500       0.00       HG-AAS       -2.1       -1.6         L21       3.03       0.√3       0.00       ICP-OES       -1.8       -14.6         L22       6.03       1.46       2       0.73       ICP-MS       -0.2       -0.5         L23       7.33       0       √3       0.00       ICP-OES       0.2       -17.9         L26       6.85       1.9       2       0.95                                                                                                                       | a                               |
| L13         7.73         0.6         2         0.30         ICP-OES         0.7         3.6           L14         5.96         0         1.96         0.00         ICP-OES         -0.2         -1.8           L15         6.75         0.5         2         0.25         ICP-OES         0.2         1.1           L16         5.00         0 √3         0.00         ICP-OES         -0.7         -6.0           L18         4.87         1.1         2         0.55         ICP-OES         -0.8         -2.5           L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         HG-AAS         -0.3         -2.5           L21         3.03         0 √3         0.00         ICP-OES         -1.8         -14.6           L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.2         <                    | a                               |
| L14         5.96         0         1.96         0.00         ICP-OES         -0.2         -1.8           L15         6.75         0.5         2         0.25         ICP-OES         0.2         1.1           L16         5.00         0 √3         0.00         ICP-OES         -0.7         -6.0           L18         4.87         1.1         2         0.55         ICP-OES         -0.8         -2.5           L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         HG-AAS         -0.3         -2.5           L21         3.03         0 √3         0.00         ICP-OES         -1.8         -14.6           L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         0.5         4.1           L24         L24         -1.00         ICP-MS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.2         0.5 <t< td=""><td>a</td></t<>               | a                               |
| L15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b                               |
| L16         5.00         0 √3         0.00         ICP-OES         -0.7         -6.0           L18         4.87         1.1         2         0.55         ICP-OES         -0.8         -2.5           L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         HG-AAS         -0.3         -2.5           L21         3.03         0 √3         0.00         ICP-OES         -1.8         -14.6           L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.5         4.1           L27         7.33         2         2         1.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-OES         0.4 <t< td=""><td>a</td></t<>     | a                               |
| L18         4.87         1.1         2         0.55         ICP-OES         -0.8         -2.5           L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         HG-AAS         -0.3         -2.5           L21         3.03         0 √3         0.00         ICP-OES         -1.8         -14.6           L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         0.5         4.1           L24                 L24                                           .                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b                               |
| L19         2.33         4.94         2         2.47         ETAAS         -2.1         -1.6           L20         5.80         0.58         500         0.00         HG-AAS         -0.3         -2.5           L21         3.03         0 √3         0.00         ICP-OES         -1.8         -14.6           L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         0.5         4.1           L24         2         0.26         0.00         HG-AAS         -2.2         -17.9           L24         2         0.26         0.00         HG-AAS         -2.2         -17.9           L25         2.26         0.006 √3         0.00         HG-AAS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.2         0.5           L27         7.33         2         2         1.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-MS         -3.3         -27.3           <                            | а                               |
| L20         5.80         0.58         500         0.00         HG-AAS         -0.3         -2.5           L21         3.03         0 √3         0.00         ICP-OES         -1.8         -14.6           L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         0.5         4.1           L24         2         0.00         HG-AAS         -2.2         -17.9           L24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                               |
| L21         3.03         0 √3         0.00         ICP-OES         -1.8         -14.6           L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         0.5         4.1           L24         1.24         2         0.00         HG-AAS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.2         0.5           L27         7.33         2         2         1.00         ICP-OES         0.2         0.5           L28         0.10         0.008         2         0.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-OES         0.4         1.9           L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-OES         2.6         3.4           L3                                | b                               |
| L22         6.03         1.46         2         0.73         ICP-MS         -0.2         -0.5           L23         7.33         0 √3         0.00         ETAAS         0.5         4.1           L24         1.9         2         0.00         HG-AAS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.2         0.5           L27         7.33         2         2         1.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-OES         0.5         0.9           L29         7.17         0.7         2         0.35         ICP-MS         0.4         1.9           L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4                                          | b                               |
| L23       7.33       0 √3       0.00       ETAAS       0.5       4.1         L24       0       0.00       HG-AAS       -2.2       -17.9         L26       6.85       1.9       2 0.95       ICP-OES       0.2       0.5         L27       7.33       2       2 1.00       ICP-OES       0.5       0.9         L28       0.10       0.008       2 0.00       ICP-MS       -3.3       -27.3         L29       7.17       0.7       2 0.35       ICP-MS       0.4       1.9         L30       12.93       2.4       2 1.20       ICP-OES       3.4       5.4         L31       3.98       0 √3       0.00       ICP-OES       -1.3       -10.4         L32       18.37       0 √3       0.00       ICP-MS       6.3       52.2         L33       11.27       2.8       2 1.40       ICP-OES       2.6       3.4         L34       6.36       0 √3       0.00       ICP-MS       0.0       -0.1         L35       5.79       0.02       60       0.00       ICP-OES       -0.6       -4.3         L39       3.91       0.29       2       0.15                                                                                                                      | a                               |
| L24         L25         2.26 $0.006$ $√3$ 0.00         HG-AAS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.2         0.5           L27         7.33         2         2         1.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-OES         0.5         0.9           L29         7.17         0.7         2         0.35         ICP-MS         0.4         1.9           L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 $√3$ 0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 $√3$ 0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 $√3$ 0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.6                                                             | b                               |
| L25         2.26         0.006 $\sqrt{3}$ 0.00         HG-AAS         -2.2         -17.9           L26         6.85         1.9         2         0.95         ICP-OES         0.2         0.5           L27         7.33         2         2         1.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-OES         -3.3         -27.3           L29         7.17         0.7         2         0.35         ICP-MS         0.4         1.9           L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.6         -4.3                           |                                 |
| L26         6.85         1.9         2         0.95         ICP-OES         0.2         0.5           L27         7.33         2         2         1.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-MS         -3.3         -27.3           L29         7.17         0.7         2         0.35         ICP-MS         0.4         1.9           L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -                         | b                               |
| L27         7.33         2         2         1.00         ICP-OES         0.5         0.9           L28         0.10         0.008         2         0.00         ICP-MS         -3.3         -27.3           L29         7.17         0.7         2         0.35         ICP-MS         0.4         1.9           L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3                                  | а                               |
| L28         0.10         0.008         2         0.00         ICP-MS         -3.3         -27.3           L29         7.17         0.7         2         0.35         ICP-MS         0.4         1.9           L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3         -9.1                                                                                                                         | а                               |
| L29         7.17 $0.7$ 2 $0.35$ ICP-MS $0.4$ $1.9$ L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98 $0.\sqrt{3}$ $0.00$ ICP-OES         -1.3         -10.4           L32         18.37 $0.\sqrt{3}$ $0.00$ ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36 $0.\sqrt{3}$ $0.00$ ICP-MS $0.0$ $-0.1$ L35         5.79 $0.02$ 60 $0.00$ ICP-OES $-0.3$ $-2.6$ L37         5.23 $0.26$ 2 $0.13$ ICP-OES $-0.6$ $-4.3$ L39         3.91 $0.29$ 2 $0.15$ ETAAS $-1.3$ $-9.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b                               |
| L30         12.93         2.4         2         1.20         ICP-OES         3.4         5.4           L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3         -9.1                                                                                                                                                                                                                                                                                                                                        | а                               |
| L31         3.98         0 √3         0.00         ICP-OES         -1.3         -10.4           L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3         -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                               |
| L32         18.37         0 √3         0.00         ICP-MS         6.3         52.2           L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3         -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b                               |
| L33         11.27         2.8         2         1.40         ICP-OES         2.6         3.4           L34         6.36         0 √3         0.00         ICP-MS         0.0         -0.1           L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3         -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b                               |
| L35         5.79         0.02         60         0.00         ICP-OES         -0.3         -2.6           L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3         -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | а                               |
| L37 5.23 0.26 2 0.13 ICP-OES -0.6 -4.3 L39 3.91 0.29 2 0.15 ETAAS -1.3 -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b                               |
| L37         5.23         0.26         2         0.13         ICP-OES         -0.6         -4.3           L39         3.91         0.29         2         0.15         ETAAS         -1.3         -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b                               |
| L39 3.91 0.29 2 0.15 ETAAS -1.3 -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b                               |
| L41 10.05 0.07 2 0.04 CV-AAS 1.9 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b                               |
| <b>L42</b> 7.79 0 √3 0.00 ICP-OES <b>0.7 6.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b                               |
| L43 6.53 0.5 2 0.25 ETAAS 0.1 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а                               |
| L44 4.33 0.8 2 0.40 ICP-OES -1.1 -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | а                               |
| L45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| <b>L46 5.32</b> 0.6 2 0.30 ICP-MS <b>-0.6 -2.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | а                               |
| L47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| <b>L48 14.17</b> 0 √3 0.00 ICP-OES <b>4.1 33.9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b                               |
| <b>L49 5.00</b> 1.5 2 0.75 ICP-OES <b>-0.7 -1.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | а                               |
| <b>L50 0.07</b> 0.01 2 0.01 ICP-OES <b>-3.3 -27.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b                               |
| L51 4.83 14 2 7.00 ICP-OES -0.8 -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                               |
| <b>L52 6.83</b> 0.5 3 0.17 ICP-MS <b>0.2 1.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b                               |
| <b>L53</b> 7.67 2.15 √3 1.24 ICP-OES <b>0.7 1.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | а                               |
| L54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| L55 2.28 0.41 2 0.21 ICP-MS -2.1 -13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| <b>L56 6.63</b> 0.5 2 0.25 ICP-OES <b>0.1 0.7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b                               |

 $<sup>^{</sup>a}$   $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ . <sup>b</sup> Satisfactory, Questionable, Unsatisfactory

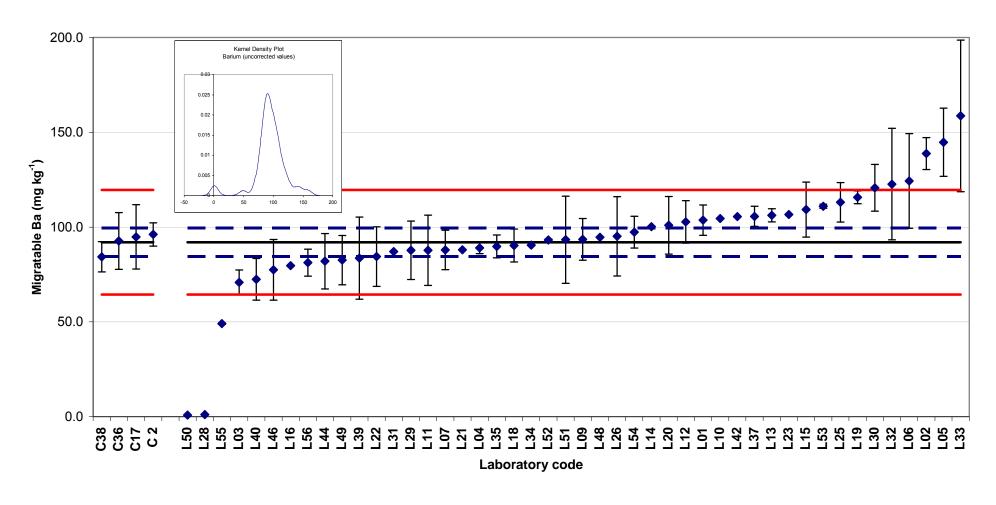
<sup>° &</sup>quot;a":  $u_{ref} \le u_{lab} \le \hat{\sigma}$ ; "b":  $u_{lab} < u_{ref}$ ; "c":  $u_{lab} > \hat{\sigma}$ 

IMEP-34 (Trace elements in toys): Arsenic Assigned value:  $X_{ref} = 6.4 \text{ mg kg}^{-1}$ ;  $U_{ref} = 0.5 \text{ mg kg}^{-1}$  (k = 2)





#### **Annex 12: Results for Barium**


 $X_{ref} = 92.0$  and  $U_{ref} = 8.2$ ; all values are given in (mg kg<sup>-1</sup>)

| Lab ID     | X <sub>mean</sub> | $U_{lab}$ | k <sup>a</sup> | u <sub>lab</sub> | Technique          | z-score <sup>b</sup> | ζ-score <sup>b</sup> | $\mathbf{U}^{\mathbf{c}}$ |
|------------|-------------------|-----------|----------------|------------------|--------------------|----------------------|----------------------|---------------------------|
| C 1        | 80.37             |           | √3             | 0.00             | ICP-OES            |                      | 9                    | b                         |
| C 2        | 96.11             | 6.11      |                | 3.53             | ICP-MS             |                      |                      | b                         |
| C17        | 94.83             | 17        | 2              | 8.50             | ICP-OES            |                      |                      | a                         |
| C36        | 92.70             | 15        |                | 7.50             | ICP-OES            |                      |                      | a                         |
| C38        | 84.33             | 8         |                | 4.00             | ICP-OES            |                      |                      | b                         |
| L01        | 103.67            | 8         |                | 4.00             | ICP-OES            | 0.8                  | 2.0                  | b                         |
| L02        | 138.77            | 8.4       |                | 4.85             | FAAS               | 3.4                  | 7.4                  | a                         |
| L02        | 70.82             | 6.5       |                | 3.25             | ICP-MS             | -1.5                 | -4.0                 | b                         |
| L03        | 89.00             | 3         |                | 1.50             | ICP-MS             | -0.2                 | -0.7                 | b                         |
| L05        | 144.76            | 18        |                | 9.00             | ICP-OES            | 3.8                  | 5.3                  | a                         |
| L06        | 124.33            | 25        | 2              | 12.50            | ICP-MS             | 2.3                  | 2.5                  | a                         |
| L07        | 87.97             | 10.4      | 2              | 5.20             | ICP-OES            | -0.3                 | -0.6                 | a                         |
| L08        | 07.57             | 10.4      |                | 3.20             | 101 -020           | -0.5                 | -0.0                 | u                         |
| L09        | 93.53             | 11        | 2              | 5.50             | ICP-MS             | 0.1                  | 0.2                  | 2                         |
| L10        |                   |           | √3             | 0.00             | ICP-OES            | 0.1                  | 3.0                  | a<br>b                    |
| L10<br>L11 | 104.50            | 18.5      |                |                  | ICP-OES            | -0.3                 | -0.4                 |                           |
| L11<br>L12 | 87.77             |           |                | 9.25             | ICP-OES            | -0.3<br>0.8          | 1.5                  | a                         |
|            | 102.72            | 11.16     |                | 5.58             |                    |                      |                      | a<br>b                    |
| L13<br>L14 | 106.23            | 3.5       |                | 1.75             | ICP-OES<br>ICP-OES | 1.0<br>0.6           | 3.2<br>2.0           | b                         |
|            | 100.21            | 0         |                | 0.00             |                    |                      |                      |                           |
| L15        | 109.24            | 14.5      |                | 7.25             | ICP-OES            | 1.2                  | 2.1                  | a                         |
| L16        | 79.67             |           | √3             | 0.00             | ICP-OES            | -0.9                 | -3.0                 | b                         |
| L18        | 90.27             | 8.7       |                | 4.35             | ICP-OES            | -0.1                 | -0.3                 | a                         |
| L19        | 115.71            | 3.4       |                | 1.70             | ETAAS              | 1.7                  | 5.3                  | b                         |
| L20        | 100.93            | 15.2      |                | 0.03             | ICP-MS             | 0.6                  | 2.2                  | b                         |
| L21        | 88.01             | 1         | √3             | 0.00             | ICP-OES            | -0.3                 | -1.0                 | b                         |
| L22        | 84.47             | 15.7      | 2              | 7.85             | ICP-OES            | -0.5                 | -0.8                 | a                         |
| L23        | 106.67            | 0         | √3             | 0.00             | ETAAS              | 1.1                  | 3.6                  | b                         |
| L24        |                   |           | 10             |                  |                    | 4.5                  | 0.0                  |                           |
| L25        | 113.09            | 10.38     |                | 5.99             | FAAS               | 1.5                  | 2.9                  | а                         |
| L26        | 95.14             | 20.87     | 2              | 10.44            | ICP-OES            | 0.2                  | 0.3                  | a                         |
| L27        | <100              |           | √3             | 0.00             | ICP-OES            | 0.0                  | 00.4                 | b                         |
| L28        | 1.09              | 0.1532    |                | 0.08             | ICP-MS             | -6.6                 | -22.1                | b                         |
| L29        | 87.76             | 15.37     |                | 7.69             | ICP-MS             | -0.3                 | -0.5                 | а                         |
| L30        | 120.73            | 12.3      |                | 6.15             | ICP-OES            | 2.1                  | 3.9                  | a                         |
| L31        | 87.13             |           | √3             | 0.00             | ICP-OES            | -0.4                 | -1.2                 | b                         |
| L32        | 122.67            | 29.4      |                | 14.70            | ICP-MS             | 2.2                  | 2.0                  | С                         |
| L33        | 158.67            | 40        |                | 20.00            | ICP-OES            | 4.8                  | 3.3                  | C                         |
| L34        | 90.44             |           | √3             | 0.00             | ICP-MS             | -0.1                 | -0.4                 | b                         |
| L35        | 89.82             | 6         |                | 0.20             | ICP-OES            | -0.2                 | -0.5                 | b                         |
| L37        | 105.67            | 5.3       |                | 2.65             | ICP-OES            | 1.0                  | 2.8                  | b                         |
| L39        | 83.60             | 21.69     |                | 10.85            | ETAAS              | -0.6                 | -0.7                 | а                         |
| L40        | 72.47             |           | √3             | 6.35             | FAAS               | -1.4                 | -2.6                 | a                         |
| L41        | <8                |           | √3             | 0.00             | FAAS               |                      |                      | b                         |
| L42        | 105.56            | 0         | √3             | 0.00             | ICP-OES            | 1.0                  | 3.3                  | b                         |
| L43        |                   |           |                |                  |                    |                      |                      |                           |
| L44        | 82.00             | 14.6      |                | 7.30             | ICP-OES            | -0.7                 | -1.2                 | a                         |
| L45        | <157              |           | √3             | 0.00             | FAAS               |                      |                      | b                         |
| L46        | 77.48             | 16        | 2              | 8.00             | ICP-MS             | -1.1                 | -1.6                 | а                         |
| L47        |                   |           |                |                  |                    |                      |                      |                           |
| L48        | 94.67             | 0         | √3             | 0.00             | ICP-OES            | 0.2                  | 0.7                  | b                         |
| L49        | 82.57             | 13        | 2              | 6.50             | ICP-OES            | -0.7                 | -1.2                 | а                         |
| L50        | 0.86              | 0.113     | 2              | 0.06             | ICP-OES            | -6.6                 | -22.1                | b                         |
| L51        | 93.33             | 23        | 2              | 11.50            | ICP-OES            | 0.1                  | 0.1                  | а                         |
| L52        | 93.17             | 0.5       | 3              | 0.17             | ICP-MS             | 0.1                  | 0.3                  | b                         |
| L53        | 111.00            | 1.05      | √3             | 0.61             | ICP-OES            | 1.4                  | 4.6                  | b                         |
| L54        | 97.33             | 8.34      | 2              | 4.17             | FAAS               | 0.4                  | 0.9                  | а                         |
| L55        | 49.05             | 0.38      | 2              | 0.19             | ICP-MS             | -3.1                 | -10.4                | b                         |
| L56        | 81.23             | 7.1       | 2              | 3.55             | ICP-OES            | -0.8                 | -2.0                 | b                         |
|            |                   |           |                |                  |                    |                      |                      |                           |

 $<sup>^{</sup>a}$   $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ . <sup>b</sup> Satisfactory, Questionable, Unsatisfactory

 $<sup>^{\</sup>text{c}}$  "a":  $u_{\text{ref}} \leq u_{\text{lab}} \leq \hat{\sigma}$  ; "b":  $u_{\text{lab}} < u_{\text{ref}}$ ; "c":  $u_{\text{lab}} > \hat{\sigma}$ 

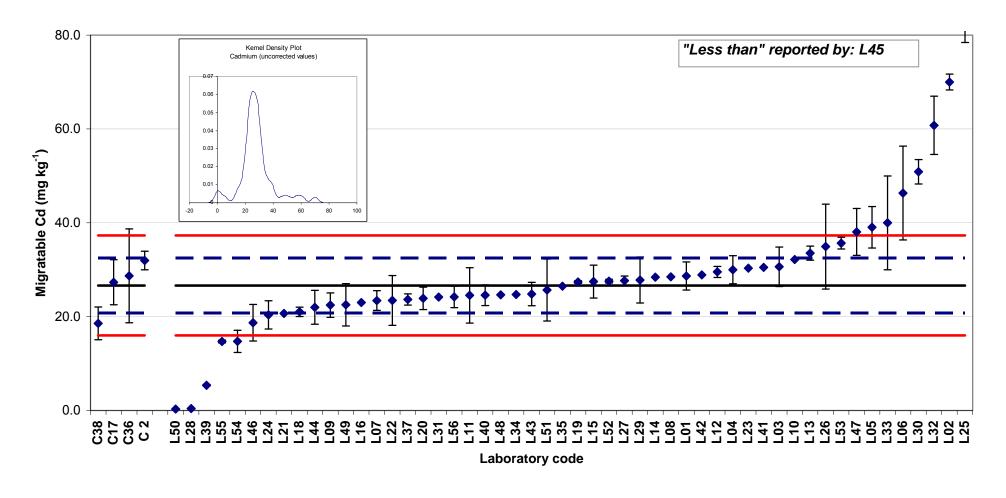
IMEP-34 (Trace elements in toys): Barium Assigned value:  $X_{ref} = 92.0 \text{ mg kg}^{-1}$ ;  $U_{ref} = 8.2 \text{ mg kg}^{-1}$  (k = 2)





### **Annex 13: Results for Cadmium**

 $X_{ref} = 26.6$  and  $U_{ref} = 3.2$ ; all values are given in (mg kg<sup>-1</sup>)


| Lab ID     | X <sub>mean</sub> | $\mathrm{U_{lab}}$ | $\mathbf{k}^{\mathbf{a}}$ | u <sub>lab</sub> | Technique          | z-score <sup>b</sup> | ζ-score <sup>b</sup> | $\mathbf{U}^{\mathbf{c}}$ |
|------------|-------------------|--------------------|---------------------------|------------------|--------------------|----------------------|----------------------|---------------------------|
| C 1        | 25.20             | - Iab              | ,                         | 0.00             | ICP-OES            | Z-SCOI C             | 5-30010              | b                         |
| C 2        | 31.96             | 1.98               | √3                        | 1.14             | ICP-MS             |                      |                      | b                         |
| C17        |                   |                    |                           | 2.40             | ICP-OES            |                      |                      |                           |
| C36        | 27.33             | 4.8                | 2                         |                  |                    |                      |                      | a                         |
| C38        | 28.70             | 10                 |                           | 5.00             | ICP-OES            |                      |                      | С                         |
| L01        | 18.57             | 3.5                | 2                         | 1.75             | ICP-OES            | 0.5                  | 0.0                  | a                         |
|            | 28.67             | 3                  | 2                         | 1.50             | ICP-OES            | 0.5                  | 0.9                  | b                         |
| L02<br>L03 | 27.43             | 1.7                |                           | 0.98             | FAAS               | 0.2                  | 0.4                  | b                         |
| L03        | 30.64             | 4.2                | 2                         | 2.10             | ICP-MS             | 1.0<br>0.9           | 1.5                  | a                         |
| L04<br>L05 | 30.00             | 3                  | 2                         | 1.50             | ICP-MS<br>ICP-OES  | 3.1                  | 1.6<br>4.6           | b                         |
| L05        | 39.05             | 4.4                | 2                         | 2.20             |                    | 4.9                  | 3.8                  | a                         |
| L07        | 46.33             | 10<br>2.1          | 2                         | 5.00             | ICP-MS<br>ICP-OES  | -0.8                 | -1.7                 | c<br>b                    |
| L07<br>L08 | 23.43             | 0                  | ,                         | 1.05             | FAAS               | 0.5                  | 1.2                  | b                         |
| L09        | 28.48<br>22.47    | 2.6                | 2                         | 0.00<br>1.30     | ICP-MS             | -1.0                 | -2.0                 | b                         |
| L10        |                   |                    | √3                        |                  |                    | 1.4                  | 3.5                  | b                         |
| L10<br>L11 | 32.17             | 5.9                |                           | 0.00             | ICP-OES<br>ICP-OES | -0.5                 | -0.6                 |                           |
| L11<br>L12 | 24.53             |                    | 2                         | 2.95             | ICP-OES            | 0.7                  | 1.7                  | a<br>b                    |
| L12<br>L13 | 29.53<br>33.53    | 1.19<br>1.5        | 2                         | 0.60<br>0.75     | ICP-OES            | 1.7                  | 3.9                  | b                         |
| L13<br>L14 |                   |                    |                           |                  |                    | 0.5                  | 1.1                  | b                         |
| L14<br>L15 | 28.42             | 0<br>3.5           | 1.96<br>2                 | 0.00             | ICP-OES<br>ICP-OES | 0.5                  | 0.4                  |                           |
| L15<br>L16 | 27.48<br>23.00    | 3.5                |                           | 1.75             | ICP-OES            | -0.9                 | -2.3                 | a<br>b                    |
| L18        |                   |                    |                           | 0.00             | ICP-OES            | -1.4                 | -3.3                 | b                         |
| L10<br>L19 | 21.03             | 0.20               | 2                         | 0.50             |                    | 0.2                  | 0.5                  | b                         |
| L19<br>L20 | 27.38             | 0.28               | 2                         | 0.14             | ETAAS<br>ICP-MS    | -0.7                 | -1.7                 | b                         |
| L20<br>L21 | 23.90             | 2.39               | 500<br>√3                 | 0.00             | ICP-IVIS           | -0.7<br>-1.5         | -3.7                 | b                         |
| L21<br>L22 | 20.68             | 0<br>5.3           |                           | 0.00             | ICP-OES            | -0.8                 | -1.0                 |                           |
| L22<br>L23 | 23.47             |                    | 2<br>√3                   | 2.65             |                    | 0.9                  | 2.3                  | a<br>b                    |
| L23<br>L24 | 30.33             | 3                  | √3                        | 0.00             | ETAAS<br>ETAAS     | -1.6                 | -2.6                 | a                         |
| L24<br>L25 | 20.37             |                    | ,                         | 1.73             | FAAS               | 13.6                 | 25.9                 | b                         |
| L25<br>L26 | 80.78             | 2.337              |                           | 1.35             | ICP-OES            | 2.1                  | 1.7                  | C                         |
| L27        | 34.92             | 9.04               | 2                         | 4.52             | ICP-OES            | 0.3                  | 0.6                  | b                         |
| L28        | 27.67             | 0.0569             | 2                         | 0.50             | ICP-MS             | -6.6                 | -16.4                | b                         |
| L29        | 0.41              | 0.0568             | 2                         | 0.03             | ICP-MS             | 0.3                  | 0.4                  | a                         |
| L30        | 27.81<br>50.87    | 4.9                | 2                         | 2.45<br>1.30     | ICP-OES            | 6.1                  | 11.8                 | a<br>b                    |
| L30        | 24.17             | 2.6<br>0           | 1.                        | 0.00             | ICP-OES            | -0.6                 | -1.5                 | b                         |
| L32        |                   | 6.2                |                           | 3.10             | ICP-MS             | 8.6                  | 9.8                  | a                         |
| L33        | 60.77<br>40.00    | 10                 | 2                         | 5.00             | ICP-OES            | 3.4                  | 2.6                  | C                         |
| L34        | 24.70             |                    | √3                        | 0.00             | ICP-MS             | -0.5                 | -1.2                 | b                         |
| L35        | 26.50             | 0.004              | 30                        | 0.00             | ICP-OES            | 0.0                  | -0.1                 | b                         |
| L37        | 23.67             | 1.2                | 2                         | 0.60             | ICP-OES            | -0.7                 | -1.7                 | b                         |
| L37        | 5.38              | 0.16               |                           | 0.00             | ETAAS              | -5.3                 | -13.3                | b                         |
| L40        | 24.57             | 2.2                |                           | 1.27             | FAAS               | -0.5                 | -1.0                 | <u>b</u>                  |
| L40<br>L41 | 30.51             | 0.01               |                           | 0.01             | FAAS               | 1.0                  | 2.5                  | b                         |
| L41<br>L42 | 28.89             |                    | √3                        | 0.00             | ICP-OES            | 0.6                  | 1.4                  | b                         |
| L42<br>L43 | 24.83             | 2.5                |                           | 1.25             | ETAAS              | -0.4                 | -0.9                 | b                         |
| L43        | 22.00             | 3.6                |                           | 1.80             | ICP-OES            | -1.2                 | -1.9                 | a                         |
| L45        | <55.5             |                    | √3                        | 0.00             | FAAS               | 116                  | 1.0                  | b                         |
| L46        | 18.71             | 3.9                | 2                         | 1.95             | ICP-MS             | -2.0                 | -3.1                 | a                         |
| L47        | 38.05             | 5.5                |                           | 2.50             | ETAAS              | 2.9                  | 3.9                  | a                         |
| L48        | 24.67             |                    | √3                        | 0.00             | ICP-OES            | -0.5                 | -1.2                 | b                         |
| L49        | 22.53             | 4.5                | 2                         | 2.25             | ICP-OES            | -1.0                 | -1.5                 | a                         |
| L50        | 0.30              | 0.045              | 2                         | 0.02             | ICP-OES            | -6.6                 | -16.5                | b                         |
| L51        | 25.67             | 6.6                |                           | 3.30             | ICP-OES            | -0.2                 | -0.3                 | a                         |
| L52        | 27.57             | 0.0                |                           | 0.13             | ICP-MS             | 0.2                  | 0.6                  | b                         |
| L53        | 35.67             | 1.25               |                           | 0.72             | ICP-OES            | 2.3                  | 5.2                  | b                         |
| L54        | 14.73             | 2.36               | 2                         | 1.18             | FAAS               | -3.0                 | -6.0                 | b                         |
| L55        | 14.73             | 0.31               | 2                         | 0.16             | ICP-MS             | -3.0                 | -7.4                 | b                         |
| L56        | 24.20             | 2.3                | 2                         | 1.15             | ICP-OES            | -0.6                 | -1.2                 | b                         |
|            | 27.20             | 2.0                |                           | 1.10             |                    | 0.0                  |                      | ~                         |

<sup>&</sup>lt;sup>a</sup>  $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ .

<sup>b</sup> Satisfactory, Questionable, Unsatisfactory

<sup>° &</sup>quot;a":  $u_{ref} \le u_{lab} \le \hat{\sigma}$ ; "b":  $u_{lab} < u_{ref}$ ; "c":  $u_{lab} > \hat{\sigma}$ 

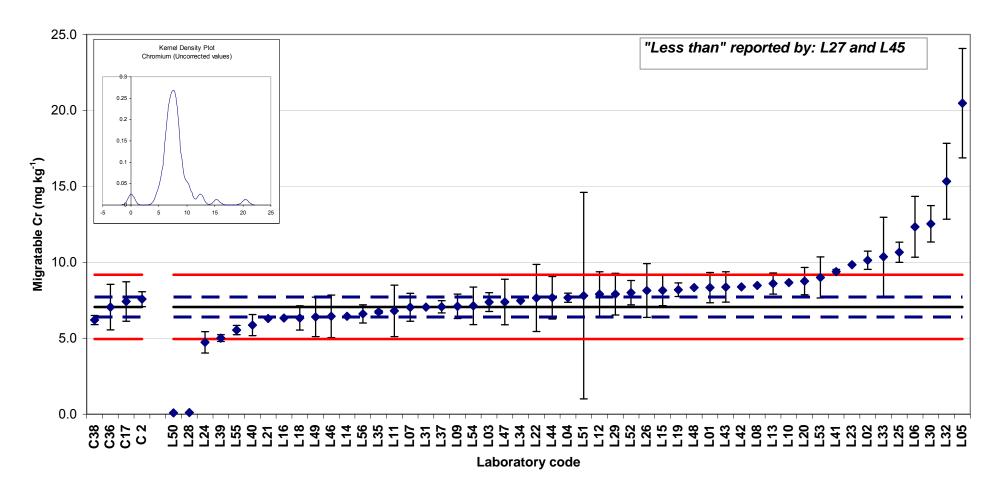
IMEP-34 (Trace elements in toys): Cadmium Assigned value:  $X_{ref} = 26.6 \text{ mg kg}^{-1}$ ;  $U_{ref} = 3.2 \text{ mg kg}^{-1}$  (k = 2)





### **Annex 14: Results for Chromium**

 $X_{ref} = 7.1$  and  $U_{ref} = 0.6$ ; all values are given in (mg kg<sup>-1</sup>)


| Lab ID     | X <sub>mean</sub> | $\rm U_{lab}$ | k <sup>a</sup> | u <sub>lab</sub> | Technique | z-score <sup>b</sup> | ζ-score <sup>b</sup> | $\mathbf{U^c}$ |
|------------|-------------------|---------------|----------------|------------------|-----------|----------------------|----------------------|----------------|
| C 1        | <10               |               | √3             | 0.00             | ICP-OES   | _ ~~~~               | 3 ~ ~ ~ ~            | b              |
| C 2        | 7.57              | 0.49          |                | 0.28             | ICP-MS    |                      |                      | b              |
| C17        | 7.42              | 1.3           | 2              | 0.65             | ICP-OES   |                      |                      | a              |
| C36        | 7.05              | 1.5           | 2              | 0.75             | ICP-OES   |                      |                      | a              |
| C38        | 6.20              | 0.3           | 2              | 0.15             | ICP-OES   |                      |                      | b              |
| L01        | 8.33              | 1             | 2              | 0.50             | ICP-OES   | 1.2                  | 2.2                  | a              |
| L02        | 10.13             | 0.6           |                | 0.35             | FAAS      | 2.9                  | 6.9                  | а              |
| L03        | 7.38              | 0.62          | 2              | 0.31             | ICP-MS    | 0.3                  | 0.8                  | a              |
| L04        | 7.67              | 0.02          | 2              | 0.15             | ICP-MS    | 0.6                  | 1.9                  | b              |
| L05        | 20.48             | 3.6           | 2              | 1.80             | ICP-OES   | 12.7                 | 7.4                  | C              |
| L06        | 12.33             | 2             | 2              | 1.00             | ICP-MS    | 5.0                  | 5.1                  | a              |
| L07        | 7.03              | 0.92          | 2              | 0.46             | ICP-OES   | 0.0                  | 0.0                  | a              |
| L08        | 8.48              |               | √3             | 0.00             | FAAS      | 1.3                  | 5.0                  | b              |
| L09        | 7.10              | 0.8           |                | 0.40             | ICP-MS    | 0.0                  | 0.1                  | a              |
| L10        | 8.67              |               | √3             | 0.00             | ICP-OES   | 1.5                  | 5.7                  | b              |
| L11        |                   | 1.7           | 2              |                  | ICP-OES   | -0.2                 | -0.3                 | a              |
| L11<br>L12 | 6.80<br>7.90      | 1.7           | 2              | 0.85<br>0.74     | ICP-OES   | 0.8                  | 1.1                  | a              |
| L12<br>L13 | 7.90<br>8.60      | 0.7           | 2              | 0.74             | ICP-OES   | 1.5                  | 3.4                  | a              |
| L13<br>L14 |                   |               |                |                  |           | -0.6                 | -2.2                 | b              |
| L14<br>L15 | 6.44              | 0             | 1.96<br>2      | 0.00             | ICP-OES   | 1.0                  | 1.9                  |                |
| L15<br>L16 | 8.14              | -             | √3             | 0.50             | ICP-OES   | -0.7                 | -2.6                 | a<br>b         |
|            | 6.33              |               |                | 0.00             |           |                      |                      |                |
| L18        | 6.33              | 0.8           | 2              | 0.40             | ICP-OES   | -0.7                 | -1.5                 | a              |
| L19        | 8.19              | 0.449         | 2              | 0.22             | ETAAS     | 1.1                  | 3.1                  | b              |
| L20        | 8.76              | 0.9           | 500            | 0.00             | ICP-MS    | 1.6                  | 6.0                  | b              |
| L21        | 6.30              |               | √3             | 0.00             | ICP-OES   | -0.7                 | -2.7                 | b              |
| L22        | 7.65              | 2.21          | 2              | 1.11             | ICP-OES   | 0.6                  | 0.5                  | С              |
| L23        | 9.83              |               | √3             | 0.00             | ETAAS     | 2.6                  | 9.8                  | b              |
| L24        | 4.73              | 0.7           |                | 0.40             | ETAAS     | -2.2                 | -4.7                 | а              |
| L25        | 10.66             | 0.67          |                | 0.39             | FAAS      | 3.4                  | 7.5                  | а              |
| L26        | 8.14              | 1.77          | 2              | 0.89             | ICP-OES   | 1.0                  | 1.2                  | a              |
| L27        | <10               |               | √3             | 0.00             | ICP-OES   | 0.0                  | 04.5                 | <u>b</u>       |
| L28        | 0.10              | 0.015         | 2              | 0.01             | ICP-MS    | -6.6                 | -24.5                | b              |
| L29        | 7.90              | 1.37          | 2              | 0.69             | ICP-MS    | 0.8                  | 1.1                  | а              |
| L30        | 12.53             | 1.2           | 2              | 0.60             | ICP-OES   | 5.2                  | 8.2                  | a              |
| L31        | 7.04              |               | √3             | 0.00             | ICP-OES   | 0.0                  | -0.1                 | b              |
| L32        | 15.33             | 2.5           | 2              | 1.25             | ICP-MS    | 7.8                  | 6.5                  | С              |
| L33        | 10.37             | 2.6           | 2              | 1.30             | ICP-OES   | 3.1                  | 2.5                  | C              |
| L34        | 7.47              |               | √3             | 0.00             | ICP-MS    | 0.4                  | 1.4                  | b              |
| L35        | 6.73              | 0.094         | 30             | 0.00             | ICP-OES   | -0.3                 | -1.2                 | b              |
| L37        | 7.07              | 0.4           | 2              | 0.20             | ICP-OES   | 0.0                  | 0.0                  | b              |
| L39        | 3.51              | 0.22          |                | 0.11             | ETAAS     | -3.4                 | -11.7                | b              |
| L40        | 5.87              | 0.7           |                | 0.40             | FAAS      | -1.1                 | -2.4                 | a              |
| L41        | 9.38              | 0.142         |                | 0.07             | FAAS      | 2.2                  | 7.9                  | b              |
| L42        | 8.38              |               | √3             | 0.00             | ICP-OES   | 1.2                  | 4.6                  | b              |
| L43        | 8.37              | 1             |                | 0.50             | ETAAS     | 1.2                  | 2.3                  | а              |
| L44        | 7.67              | 1.4           |                | 0.70             | ICP-OES   | 0.6                  | 0.8                  | а              |
| L45        | <44.4             |               | √3             | 0.00             | FAAS      |                      |                      | b              |
| L46        | 6.44              | 1.4           |                | 0.70             | ICP-MS    | -0.6                 | -0.8                 | а              |
| L47        | 7.39              | 1.5           |                | 0.75             | ETAAS     | 0.3                  | 0.4                  | а              |
| L48        | 8.33              | 0             | √3             | 0.00             | ICP-OES   | 1.2                  | 4.5                  | b              |
| L49        | 6.40              | 1.3           | 2              | 0.65             | ICP-OES   | -0.6                 | -0.9                 | а              |
| L50        | 0.09              | 0.009         | 2              | 0.00             | ICP-OES   | -6.6                 | -24.5                | b              |
| L51        | 7.80              | 6.8           | 2              | 3.40             | ICP-OES   | 0.7                  | 0.2                  | С              |
| L52        | 8.00              | 0.8           |                | 0.27             | ICP-MS    | 0.9                  | 2.4                  | b              |
| L53        | 9.00              | 1.35          | √3             | 0.78             | ICP-OES   | 1.8                  | 2.3                  | а              |
| L54        | 7.13              | 1.24          | 2              | 0.62             | FAAS      | 0.1                  | 0.1                  | а              |
| L55        | 3.88              | 0.31          | 2              | 0.16             | ICP-MS    | -3.0                 | -9.8                 | b              |
| L56        | 6.60              | 0.6           | 2              | 0.30             | ICP-OES   | -0.4                 | -1.1                 | а              |
|            |                   |               |                |                  | -         |                      |                      |                |

<sup>&</sup>lt;sup>a</sup>  $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ .

<sup>b</sup> Satisfactory, Questionable, Unsatisfactory

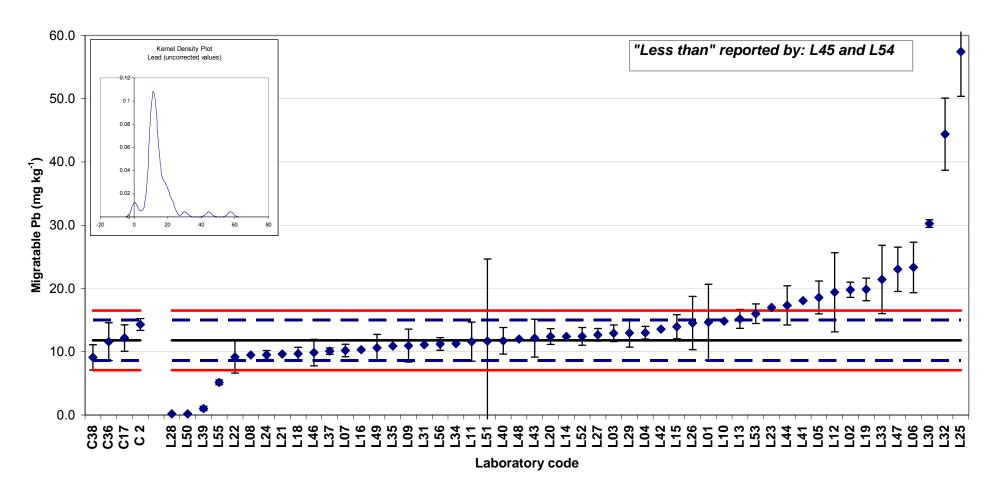
<sup>° &</sup>quot;a":  $u_{ref} \le u_{lab} \le \hat{\sigma}$ ; "b":  $u_{lab} < u_{ref}$ ; "c":  $u_{lab} > \hat{\sigma}$ 

## IMEP-34 (Trace elements in toys): Chromium Assigned value: $X_{ref} = 7.1 \text{ mg kg}^{-1}$ ; $U_{ref} = 0.6 \text{ mg kg}^{-1}$ (k = 2)





### **Annex 15: Results for Lead**


 $X_{ref} = 11.8$  and  $U_{ref} = 1.6$ ; all values are given in (mg kg<sup>-1</sup>)

| Lah ID | Lab ID X <sub>mean</sub> |                  | $\mathbf{k}^{\mathbf{a}}$ | u <sub>lab</sub> | Technique | 7-score <sup>b</sup> | ζ-score <sup>b</sup> | U <sup>c</sup> |
|--------|--------------------------|------------------|---------------------------|------------------|-----------|----------------------|----------------------|----------------|
| C1     | 7.77                     | U <sub>lab</sub> | <b>X</b> √3               | 0.00             | ICP-OES   | Z-SCOI C             | 5-30016              | b              |
| C 2    | 14.32                    | 0.94             |                           | 0.00             | ICP-MS    |                      |                      | b              |
| C17    | 12.17                    | 2.1              | 2                         | 1.05             | ICP-OES   |                      |                      | а              |
| C36    | 11.60                    | 3                | 2                         | 1.50             | ICP-OES   |                      |                      | a              |
| C38    | 9.10                     | 2                |                           | 1.00             | ICP-OES   |                      |                      | a              |
| L01    | 14.67                    | 6                | 2                         | 3.00             | ICP-OES   | 1.4                  | 0.9                  | C              |
| L02    | 19.80                    | 1.2              |                           | 0.69             | FAAS      | 4.0                  | 7.6                  | b              |
| L03    | 12.92                    | 1.3              | 2                         | 0.65             | ICP-MS    | 0.6                  | 1.1                  | b              |
| L04    | 13.00                    | 1                | 2                         | 0.50             | ICP-MS    | 0.6                  | 1.3                  | b              |
| L05    | 18.57                    | 2.6              | 2                         | 1.30             | ICP-OES   | 3.4                  | 4.4                  | a              |
| L06    | 23.33                    | 4                |                           | 2.00             | ICP-MS    | 5.7                  | 5.4                  | a              |
| L07    | 10.20                    | 1                |                           | 0.50             | ICP-OES   | -0.8                 | -1.7                 | b              |
| L08    | 9.48                     |                  | √3                        | 0.00             | FAAS      | -1.2                 | -2.9                 | b              |
| L09    | 10.97                    | 2.6              | 2                         | 1.30             | ICP-MS    | -0.4                 | -0.5                 | а              |
| L10    | 14.83                    |                  | √3                        | 0.00             | ICP-OES   | 1.5                  | 3.8                  | b              |
| L11    | 11.60                    | 3.1              | 2                         | 1.55             | ICP-OES   | -0.1                 | -0.1                 | а              |
| L12    | 19.40                    | 6.25             | 2                         | 3.13             | ICP-OES   | 3.8                  | 2.4                  | С              |
| L13    | 15.20                    | 1.5              | 2                         | 0.75             | ICP-OES   | 1.7                  | 3.1                  | b              |
| L14    | 12.41                    | 0                | 1.96                      | 0.00             | ICP-OES   | 0.3                  | 0.8                  | b              |
| L15    | 13.95                    | 1.9              | 2                         | 0.95             | ICP-OES   | 1.1                  | 1.7                  | а              |
| L16    | 10.33                    | 0                | √3                        | 0.00             | ICP-OES   | -0.7                 | -1.8                 | b              |
| L18    | 9.70                     | 1                | 2                         | 0.50             | ICP-OES   | -1.0                 | -2.2                 | b              |
| L19    | 19.86                    | 1.79             | 2                         | 0.90             | ETAAS     | 4.0                  | 6.7                  | а              |
| L20    | 12.40                    | 1.24             | 500                       | 0.00             | ICP-MS    | 0.3                  | 0.7                  | b              |
| L21    | 9.65                     | 0                | √3                        | 0.00             | ICP-OES   | -1.1                 | -2.7                 | b              |
| L22    | 9.17                     | 2.55             | 2                         | 1.28             | ICP-OES   | -1.3                 | -1.7                 | а              |
| L23    | 17.00                    |                  | √3                        | 0.00             | ETAAS     | 2.6                  | 6.5                  | b              |
| L24    | 9.51                     | 0.7              |                           | 0.40             | ETAAS     | -1.1                 | -2.6                 | b              |
| L25    | 57.43                    | 7.053            | √3                        | 4.07             | FAAS      | 22.7                 | 11.0                 | С              |
| L26    | 14.53                    | 4.21             | 2                         | 2.11             | ICP-OES   | 1.4                  | 1.2                  | С              |
| L27    | 12.67                    | 1                | 2                         | 0.50             | ICP-OES   | 0.4                  | 0.9                  | b              |
| L28    | 0.17                     | 0.0244           | 2                         | 0.01             | ICP-MS    | -5.8                 | -14.5                | b              |
| L29    | 12.95                    | 2.23             | 2                         | 1.12             | ICP-MS    | 0.6                  | 8.0                  | а              |
| L30    | 30.27                    | 0.6              | 2                         | 0.30             | ICP-OES   | 9.2                  | 21.6                 | b              |
| L31    | 11.10                    | 0                | √3                        | 0.00             | ICP-OES   | -0.3                 | -0.9                 | b              |
| L32    | 44.40                    | 5.7              | 2                         | 2.85             | ICP-MS    | 16.2                 | 11.0                 | С              |
| L33    | 21.43                    | 5.4              |                           | 2.70             | ICP-OES   | 4.8                  | 3.4                  | С              |
| L34    | 11.28                    |                  | √3                        | 0.00             | ICP-MS    | -0.3                 | -0.7                 | b              |
| L35    | 10.91                    | 0.034            | 30                        | 0.00             | ICP-OES   | -0.4                 | -1.1                 | b              |
| L37    | 10.10                    | 0.5              | 2                         | 0.25             | ICP-OES   | -0.8                 | -2.0                 | b              |
| L39    | 1.03                     | 0.35             |                           | 0.18             | ETAAS     | -5.4                 | -13.2                | b              |
| L40    | 11.73                    | 2.1              |                           | 1.21             | FAAS      | 0.0                  | 0.0                  | a              |
| L41    | 18.08                    | 0.075            |                           | 0.04             | FAAS      | 3.1                  | 7.8                  | b              |
| L42    | 13.58                    |                  | √3                        | 0.00             | ICP-OES   | 0.9                  | 2.2                  | b              |
| L43    | 12.15                    | 3                |                           | 1.50             | ETAAS     | 0.2                  | 0.2                  | a              |
| L44    | 17.33                    | 3.1              |                           | 1.55             | ICP-OES   | 2.8                  | 3.2                  | a              |
| L45    | <44.4                    |                  | √3                        | 0.00             | FAAS      | 4.0                  | 4.5                  | b              |
| L46    | 9.86                     | 2.1              |                           | 1.05             | ICP-MS    | -1.0                 | -1.5                 | a              |
| L47    | 23.04                    | 3.5              |                           | 1.75             | ETAAS     | 5.6                  | 5.8                  | a              |
| L48    | 12.00                    |                  | √3                        | 0.00             | ICP-OES   | 0.1                  | 0.2                  | b              |
| L49    | 10.63                    | 2.1              |                           | 1.05             | ICP-OES   | -0.6                 | -0.9                 | a              |
| L50    | 0.18                     | 0.021            |                           | 0.01             | ICP-OES   | -5.8<br>0.1          | -14.5                | b              |
| L51    | 11.67                    | 13               |                           | 6.50             | ICP-OES   | -0.1                 | 0.0                  | C              |
| L52    | 12.43                    | 1.4              |                           | 0.47             | ICP-MS    | 0.3                  | 0.7                  | b              |
| L53    | 16.00                    | 1.55             |                           | 0.89             | ICP-OES   | 2.1                  | 3.5                  | a              |
| L54    | <20                      |                  | √3                        | 0.00             | FAAS      | 2.2                  | 0.4                  | b              |
| L55    | 5.16                     | 0.4              |                           | 0.20             | ICP-MS    | -3.3                 | -8.1                 | b              |
| L56    | 11.23                    | 1                | 2                         | 0.50             | ICP-OES   | -0.3                 | -0.6                 | b              |

 $<sup>^{\</sup>rm a}$   $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ . <sup>b</sup> Satisfactory, Questionable, Unsatisfactory

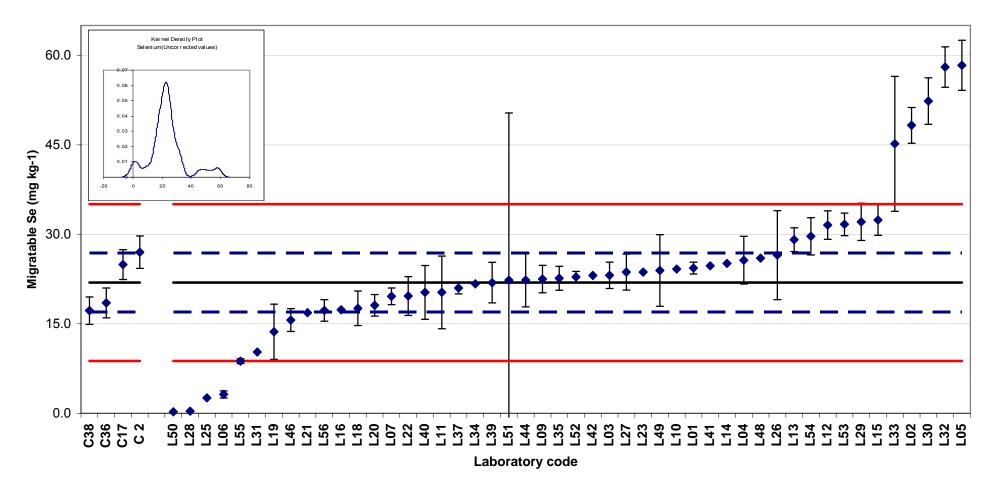
<sup>° &</sup>quot;a":  $u_{ref} \le u_{lab} \le \hat{\sigma}$  ; "b":  $u_{lab} < u_{ref}$ ; "c":  $u_{lab} > \hat{\sigma}$ 

IMEP-34 (Trace elements in toys): Lead Assigned value:  $X_{ref} = 11.8 \text{ mg kg}^{-1}$ ;  $U_{ref} = 1.6 \text{ mg kg}^{-1}$  (k = 2)





### **Annex 16: Results for Selenium**


 $X_{ref} = 21.9$  and  $U_{ref} = 1.8$ ; all values are given in (mg kg<sup>-1</sup>)

| Lab ID | X <sub>mean</sub> | $U_{lab}$ | k <sup>a</sup> | u <sub>lab</sub> | Technique | 7-score <sup>b</sup> | 7-score <sup>b</sup> | $U^{c}$ |
|--------|-------------------|-----------|----------------|------------------|-----------|----------------------|----------------------|---------|
| C1     | <10               | - Iab     | ,              | 0.00             | ICP-OES   | Z-SCOI C             | 5-30010              | b       |
| C 2    | 27.00             | 2.72      | √3             | 1.57             | ICP-MS    |                      |                      | а       |
| C17    | 24.93             | 2.72      | 2              | 1.25             | ICP-OES   |                      |                      | a       |
| C36    | 18.50             | 2.5       | 2              | 1.25             | ICP-OES   |                      |                      | a       |
| C38    | 17.20             | 2.3       | 2              | 1.15             | ICP-OES   |                      |                      | a       |
| L01    | 24.33             | 1         | 2              | 0.50             | ICP-OES   | 0.4                  | 2.3                  | b       |
| L02    | 48.27             | 3         |                | 1.73             | FAAS      | 4.0                  | 13.5                 | а       |
| L03    | 23.13             | 2.2       | 2              | 1.10             | ICP-MS    | 0.2                  | 0.9                  | a       |
| L04    | 25.67             | 4         | 2              | 2.00             | ICP-MS    | 0.6                  | 1.7                  | a       |
| L05    | 58.33             | 4.2       | 2              | 2.10             | ICP-OES   | 5.5                  | 15.9                 | a       |
| L06    | 3.17              | 0.6       | 2              | 0.30             | HG-AAS    | -2.9                 | -19.5                | b       |
| L07    | 19.60             | 1.4       | 2              | 0.70             | ICP-OES   | -0.4                 | -2.0                 | b       |
| L08    | 13.00             | 1         |                | 0.70             | 101 020   | 0.4                  | 2.0                  |         |
| L09    | 22.50             | 2.3       | 2              | 1.15             | ICP-MS    | 0.1                  | 0.4                  | а       |
| L10    | 24.17             |           | √3             | 0.00             | ICP-OES   | 0.3                  | 2.5                  | b       |
| L11    | 20.27             | 6.1       | 2              | 3.05             | ICP-OES   | -0.3                 | -0.5                 | a       |
| L12    | 31.55             | 2.39      | 2              | 1.20             | ICP-OES   | 1.5                  | 6.4                  | a       |
| L13    | 29.10             | 2.59      | 2              | 1.00             | ICP-OES   | 1.1                  | 5.3                  | a       |
| L14    | 25.13             | 0         | 1.96           | 0.00             | ICP-OES   | 0.5                  | 3.5                  | b       |
| L15    | 32.42             | 2.6       | 2              | 1.30             | ICP-OES   | 1.6                  | 6.6                  | a       |
| L16    | 17.33             |           | √3             | 0.00             | ICP-OES   | -0.7                 | -5.0                 | b       |
| L18    | 17.60             | 2.9       | 2              | 1.45             | ICP-OES   | -0.7                 | -2.5                 | a       |
| L19    | 13.67             | 4.62      | 2              | 2.31             | ETAAS     | -1.3                 | -3.3                 | a       |
| L20    | 18.10             | 1.8       | 500            | 0.00             | HG-AAS    | -0.6                 | -4.2                 | b       |
| L21    | 16.85             | 0         | √3             | 0.00             | ICP-OES   | -0.8                 | -5.5                 | b       |
| L22    | 19.67             | 3.25      |                | 1.88             | ICP-OES   | -0.3                 | -1.1                 | a       |
| L23    | 23.67             | 0         | ,              | 0.00             | ETAAS     | 0.3                  | 1.9                  | b       |
| L24    |                   |           |                | 0.00             |           |                      | _                    |         |
| L25    | 2.59              | 0.003     | √3             | 0.00             | HG-AAS    | -2.9                 | -21.1                | b       |
| L26    | 26.51             | 7.46      | 2              | 3.73             | ICP-OES   | 0.7                  | 1.2                  | а       |
| L27    | 23.67             | 3         | 2              | 1.50             | ICP-OES   | 0.3                  | 1.0                  | а       |
| L28    | 0.34              | 0.0274    | 2              | 0.01             | ICP-MS    | -3.3                 | -23.6                | b       |
| L29    | 32.08             | 3.13      | 2              | 1.57             | ICP-MS    | 1.5                  | 5.6                  | а       |
| L30    | 52.33             | 3.9       | 2              | 1.95             | ICP-OES   | 4.6                  | 14.1                 | а       |
| L31    | 10.27             |           | √3             | 0.00             | ICP-OES   | -1.8                 | -12.7                | b       |
| L32    | 58.03             | 3.4       | 2              | 1.70             | ICP-MS    | 5.5                  | 18.7                 | а       |
| L33    | 45.17             | 11.3      | 2              | 5.65             | ICP-OES   | 3.5                  | 4.1                  | а       |
| L34    | 21.71             |           | √3             | 0.00             | ICP-MS    | 0.0                  | -0.2                 | b       |
| L35    | 22.64             | 2         | 60             | 0.03             | ICP-OES   | 0.1                  | 0.8                  | b       |
| L37    | 21.00             | 1         | 2              | 0.50             | ICP-OES   | -0.1                 | -0.9                 | b       |
| L39    | 21.90             | 3.41      |                | 1.71             | ETAAS     | 0.0                  | 0.0                  | а       |
| L40    | 20.27             | 4.5       |                | 2.60             | FAAS      | -0.3                 | -0.6                 | а       |
| L41    | 24.72             | 0.014     |                | 0.01             | CV-AAS    | 0.4                  | 3.1                  | b       |
| L42    | 23.10             |           | √3             | 0.00             | ICP-OES   | 0.2                  | 1.3                  | b       |
| L43    |                   |           |                |                  |           |                      |                      |         |
| L44    | 22.33             | 4.5       | 2              | 2.25             | ICP-OES   | 0.1                  | 0.2                  | а       |
| L45    | <253.8            |           | √3             | 0.00             | FAAS      |                      |                      | b       |
| L46    | 15.63             | 1.9       | 2              | 0.95             | ICP-MS    | -1.0                 | -4.8                 | а       |
| L47    |                   |           |                |                  |           |                      |                      |         |
| L48    | 26.00             | 0         | √3             | 0.00             | ICP-OES   | 0.6                  | 4.5                  | b       |
| L49    | 23.93             | 6         | 2              | 3.00             | ICP-OES   | 0.3                  | 0.6                  | а       |
| L50    | 0.24              | 0.031     | 2              | 0.02             | ICP-OES   | -3.3                 | -23.7                | b       |
| L51    | 22.33             | 28        |                | 14.00            | ICP-OES   | 0.1                  | 0.0                  | С       |
| L52    | 22.87             | 0.9       |                | 0.30             | ICP-MS    | 0.1                  | 1.0                  | b       |
| L53    | 31.67             | 1.9       |                | 1.10             | ICP-OES   | 1.5                  | 6.8                  | а       |
| L54    | 29.67             | 3.12      | 2              | 1.56             | FAAS      | 1.2                  | 4.3                  | а       |
| L55    | 8.73              | 0.41      | 2              | 0.21             | ICP-MS    | -2.0                 | -14.1                | b       |
| L56    | 17.23             | 1.8       | 2              | 0.90             | ICP-OES   | -0.7                 | -3.6                 | b       |
|        |                   |           |                |                  | •         |                      |                      |         |

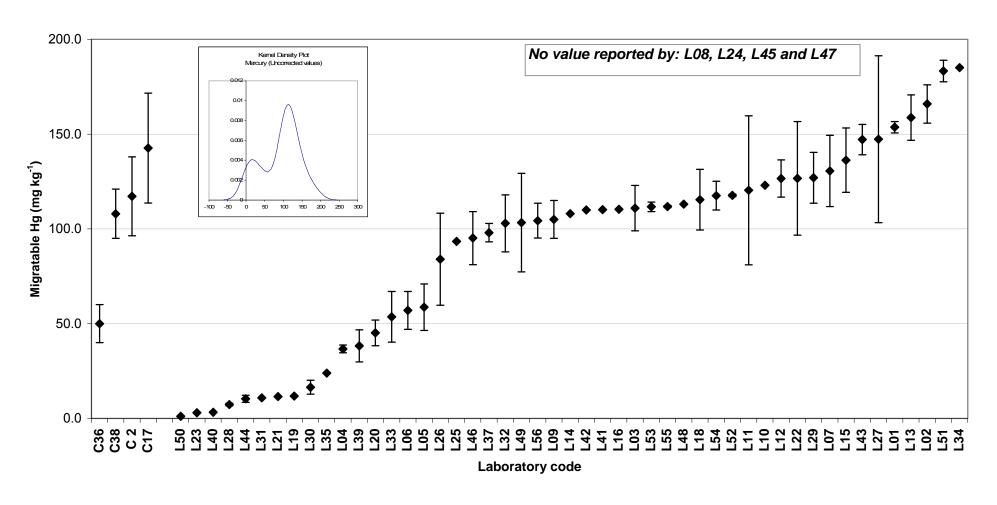
 $<sup>^{\</sup>rm a}$   $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ . <sup>b</sup> Satisfactory, Questionable, Unsatisfactory

<sup>° &</sup>quot;a":  $u_{ref} \le u_{lab} \le \hat{\sigma}$  ; "b":  $u_{lab} < u_{ref}$ ; "c":  $u_{lab} > \hat{\sigma}$ 

# IMEP-34 (Trace elements in toys): Selenium Assigned value: $X_{ref} = 21.9 \text{ mg kg}^{-1}$ ; $U_{ref} = 1.8 \text{ mg kg}^{-1}$ (k = 2)






## **Annex 17: Results for Mercury**

 $X_{ref}$  = No scoring; all values are given in (mg kg<sup>-1</sup>)

| Lab ID | X <sub>mean</sub> | U <sub>lab</sub> | k    | u <sub>lab</sub> | Technique              |
|--------|-------------------|------------------|------|------------------|------------------------|
| C 2    | 117.18            | 20.81            | √3   | 12.01            | ICP-MS                 |
| C17    | 142.67            | 29               | 2    | 14.50            | ICP-OES                |
| C36    | 50.00             | 10               | 2    | 5.00             | ICP-OES                |
| C38    | 108.00            | 13               | 2    | 6.50             | ICP-OES                |
| L01    | 153.67            | 3                | 2    | 1.50             | ICP-OES                |
| L02    | 165.93            | 10.1             | √3   | 5.83             | FAAS                   |
| L03    | 110.96            | 12               | 2    | 6.00             | ICP-MS                 |
| L04    | 36.67             | 2                | 2    | 1.00             | FIMS                   |
| L05    | 58.67             | 12.3             | 2    | 6.15             | ICP-OES                |
| L06    | 57.00             | 10               | 2    | 5.00             | CV-AAS                 |
| L07    | 130.53            | 18.8             | 2    | 9.40             | ICP-OES                |
| L09    | 105.00            | 10               | 2    | 5.00             | ICP-MS                 |
| L10    | 123.00            | 0                | √3   | 0.00             | ICP-OES                |
| L11    | 120.37            | 39.3             | 2    | 19.65            | ICP-OES                |
| L12    | 126.58            | 9.83             | 2    | 4.92             | ICP-OES                |
| L13    | 158.73            | 12               | 2    | 6.00             | ICP-OES                |
| L14    | 108.08            | 0                | 1.96 | 0.00             |                        |
| L15    | 136.27            | 17               | 2    | 8.50             | ICP-OES                |
| L16    | 110.33            | 0                | √3   | 0.00             | ICP-OES                |
| L18    | 115.40            | 16               | 2    | 8.00             | ICP-OES                |
| L19    | 11.80             | 0.26             | 2    | 0.13             | FIMS                   |
| L20    | 45.10             | 6.77             | 500  | 0.01             | FIMS                   |
| L21    | 11.49             | 0.77             | √3   | 0.00             | FIMS                   |
| L22    | 126.67            | 30               | 2    | 15.00            | ICP-OES                |
| L23    | 2.93              | 0                | √3   | 0.00             | CV-AAS                 |
| L25    | 93.35             | 0.087            | √3   | 0.05             | HG-AAS                 |
| L26    | 84.03             | 24.31            | 2    | 12.16            | ICP-OES                |
| L27    | 147.33            | 44               | 2    | 22.00            | ICP-OES                |
| L28    | 7.30              | 0.7304           | 2    | 0.37             | ICP-MS                 |
| L29    | 127.00            | 13.43            | 2    | 6.72             | ICP-MS                 |
| L30    | 16.47             | 3.7              | 2    | 1.85             | CV-AAS                 |
| L31    | 10.82             | 0                | √3   | 0.00             | HG-AAS                 |
| L32    | 102.93            | 15               | 2    | 7.50             | ICP-MS                 |
| L33    | 53.60             | 13.4             | 2    | 6.70             | FIMS                   |
| L34    | 185.12            | 0                | √3   | 0.00             | ICP-MS                 |
| L35    | 23.87             | 0.004            | 50   | 0.00             | HG-ICP-OES             |
| L37    | 98.00             | 4.9              | 2    | 2.45             | ICP-OES                |
| L39    | 38.26             | 8.49             | 2    | 4.25             | ETAAS                  |
| L40    | 3.23              | 0.3              |      | 0.17             | FIMS                   |
| L41    | 110.17            | 0.055            | 2    | 0.03             | CV-AAS                 |
| L42    | 110.00            |                  | √3   | 0.00             | ICP-OES                |
| L43    | 147.13            | 8                | 2    | 4.00             | AAS - mercury analysis |
| L44    | 10.33             | 1.9              | 2    | 0.95             | ICP-OES                |
| L46    | 95.13             | 14               | 2    | 7.00             | ICP-MS                 |
| L48    | 113.00            | 0                | √3   | 0.00             | ICP-OES                |
| L49    | 103.30            | 26               | 2    | 13.00            | ICP-OES                |
| L50    | 1.08              | 0.287            | 2    | 0.14             | ICP-OES                |
| L51    | 183.33            | 5.7              | 2    | 2.85             | ICP-OES                |
| L52    | 117.67            | 0.7              | 3    | 0.23             | ICP-MS                 |
| L53    | 111.67            | 2.5              |      | 1.44             | ICP-OES                |
| L54    | 117.53            | 7.58             | 2    | 3.79             | CV-AAS                 |
| L55    | 111.74            | 0.59             | 2    | 0.30             | ICP-MS                 |
| L56    | 104.33            | 9.2              | 2    | 4.60             | ICP-OES                |
|        | 104.00            | 9.2              |      | 7.00             |                        |

<sup>&</sup>lt;sup>a</sup>  $\sqrt{3}$  is set by the ILC coordinator when no expansion factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with  $k=\sqrt{3}$ .

IMEP-34 (Trace elements in toys): Mercury No assigned value for this element



## Annex 18: Summary of scorings

|            | Arsen   | ic (As) | Antimo       | ny (Sb)       | Bariu   | m (Ba)       | Cadmir       | ım (Cd)      | Chrom   | ium (Cr)     | Lead        | (Pb)        | Selenii     | um (Se)      |
|------------|---------|---------|--------------|---------------|---------|--------------|--------------|--------------|---------|--------------|-------------|-------------|-------------|--------------|
| Lab ID     | z-score | ζ-score | z-score      | ζ-score       | z-score | ζ-score      | z-score      | ζ-score      | z-score | ζ-score      | z-score     | ζ-score     | z-score     | ζ-score      |
| L01        | 0.3     | 2.5     | 0.7          | 3.9           | 0.8     | 2.0          | 0.5          | 0.9          | 1.2     | 2.2          | 1.4         | 0.9         | 0.4         | 2.3          |
| L02        | 0.0     | 2.0     | 0            | 0.0           | 3.4     | 7.4          | 0.2          | 0.4          | 2.9     | 6.9          | 4.0         | 7.6         | 4.0         | 13.5         |
| L03        | 0.6     | 1.9     | 0.1          | 0.2           | -1.5    | -4.0         | 1.0          | 1.5          | 0.3     | 0.8          | 0.6         | 1.1         | 0.2         | 0.9          |
| L04        | 0.6     | 2.8     | 0.6          | 2.8           | -0.2    | -0.7         | 0.9          | 1.6          | 0.6     | 1.9          | 0.6         | 1.3         | 0.6         | 1.7          |
| L05        | 17.1    | 22.3    | 10.3         | 14.7          | 3.8     | 5.3          | 3.1          | 4.6          | 12.7    | 7.4          | 3.4         | 4.4         | 5.5         | 15.9         |
| L06        |         |         | 4.1          | 5.7           | 2.3     | 2.5          | 4.9          | 3.8          | 5.0     | 5.1          | 5.7         | 5.4         | -2.9        | -19.5        |
| L07        | -0.5    | -3.8    | -0.3         | -1.6          | -0.3    | -0.6         | -0.8         | -1.7         | 0.0     | 0.0          | -0.8        | -1.7        | -0.4        | -2.0         |
| L08        | 1.5     | 12.5    |              |               |         |              | 0.5          | 1.2          | 1.3     | 5.0          | -1.2        | -2.9        |             |              |
| L09        | -0.8    | -4.7    | 0.8          | 2.5           | 0.1     | 0.2          | -1.0         | -2.0         | 0.0     | 0.1          | -0.4        | -0.5        | 0.1         | 0.4          |
| L10        | 0.2     | 2.0     | 0.9          | 5.4           | 0.9     | 3.0          | 1.4          | 3.5          | 1.5     | 5.7          | 1.5         | 3.8         | 0.3         | 2.5          |
| L11        | -0.5    | -1.3    | 0.1          | 0.2           | -0.3    | -0.4         | -0.5         | -0.6         | -0.2    | -0.3         | -0.1        | -0.1        | -0.3        | -0.5         |
| L12        | 3.7     | 7.5     | 1.7          | 5.3           | 0.8     | 1.5          | 0.7          | 1.7          | 0.8     | 1.1          | 3.8         | 2.4         | 1.5         | 6.4          |
| L13        | 0.7     | 3.6     | 0.6          | 2.6           | 1.0     | 3.2          | 1.7          | 3.9          | 1.5     | 3.4          | 1.7         | 3.1         | 1.1         | 5.3          |
| L14        | -0.2    | -1.8    | 0.2          | 1.1           | 0.6     | 2.0          | 0.5          | 1.1          | -0.6    | -2.2         | 0.3         | 0.8         | 0.5         | 3.5          |
| L15        | 0.2     | 1.1     | 0.4          | 2.0           | 1.2     | 2.1          | 0.2          | 0.4          | 1.0     | 1.9          | 1.1         | 1.7         | 1.6         | 6.6          |
| L16        | -0.7    | -6.0    | -0.3         | -1.9          | -0.9    | -3.0         | -0.9         | -2.3         | -0.7    | -2.6         | -0.7        | -1.8        | -0.7        | -5.0         |
| L18        | -0.8    | -2.5    | -0.6         | -2.1          | -0.1    | -0.3         | -1.4         | -3.3         | -0.7    | -1.5         | -1.0        | -2.2        | -0.7        | -2.5         |
| L19        | -2.1    | -1.6    | -2.3         | -3.7          | 1.7     | 5.3          | 0.2          | 0.5          | 1.1     | 3.1          | 4.0         | 6.7         | -1.3        | -3.3         |
| L20        | -0.3    | -2.5    |              |               | 0.6     | 2.2          | -0.7         | -1.7         | 1.6     | 6.0          | 0.3         | 0.7         | -0.6        | -4.2         |
| L21        | -1.8    | -14.6   | -0.4         | -2.7          | -0.3    | -1.0         | -1.5         | -3.7         | -0.7    | -2.7         | -1.1        | -2.7        | -0.8        | -5.5         |
| L22        | -0.2    | -0.5    | -0.8         | -1.8          | -0.5    | -0.8         | -0.8         | -1.0         | 0.6     | 0.5          | -1.3        | -1.7        | -0.3        | -1.1         |
| L23        | 0.5     | 4.1     | -0.4         | -2.7          | 1.1     | 3.6          | 0.9          | 2.3          | 2.6     | 9.8          | 2.6         | 6.5         | 0.3         | 1.9          |
| L24        |         |         |              |               |         |              | -1.6         | -2.6         | -2.2    | -4.7         | -1.1        | -2.6        |             |              |
| L25        | -2.2    | -17.9   | -3.3         | -20.0         | 1.5     | 2.9          | 7.5          | 14.3         | 3.4     | 7.5          | 22.7        | 11.0        | -2.9        | -21.1        |
| L26        | 0.2     | 0.5     | -0.7         | -1.7          | 0.2     | 0.3          | 2.1          | 1.7          | 1.0     | 1.2          | 1.4         | 1.2         | 0.7         | 1.2          |
| L27        | 0.5     | 0.9     | 0.4          | 1.6           |         |              | 0.3          | 0.6          |         |              | 0.4         | 0.9         | 0.3         | 1.0          |
| L28        | -3.3    | -27.3   | -3.3         | -19.7         | -6.6    | -22.1        | -6.6         | -16.4        | -6.6    | -24.5        | -5.8        | -14.5       | -3.3        | -23.6        |
| L29        | 0.4     | 1.9     | 0.4          | 1.6           | -0.3    | -0.5         | 0.3          | 0.4          | 0.8     | 1.1          | 0.6         | 0.8         | 1.5         | 5.6          |
| L30        | 3.4     | 5.4     | 8.6          | 12.0          | 2.1     | 3.9          | 6.1          | 11.8         | 5.2     | 8.2          | 9.2         | 21.6        | 4.6         | 14.1         |
| L31        | -1.3    | -10.4   | -0.2         | -1.0          | -0.4    | -1.2         | -0.6         | -1.5         | 0.0     | -0.1         | -0.3        | -0.9        | -1.8        | -12.7        |
| L32        | 6.3     | 52.2    | 10.7         | 16.5          | 2.2     | 2.0          | 8.6          | 9.8          | 7.8     | 6.5          | 16.2        | 11.0        | 5.5         | 18.7         |
| L33        | 2.6     | 3.4     | 3.2          | 3.9           | 4.8     | 3.3          | 3.4          | 2.6          | 3.1     | 2.5          | 4.8         | 3.4         | 3.5         | 4.1          |
| L34        | 0.0     | -0.1    | -0.3         | -1.6          | -0.1    | -0.4         | -0.5         | -1.2         | 0.4     | 1.4          | -0.3        | -0.7        | 0.0         | -0.2         |
| L35        | -0.3    | -2.6    | 0.1          | 0.8           | -0.2    | -0.5         | 0.0          | -0.1         | -0.3    | -1.2         | -0.4        | -1.1        | 0.1         | 0.8          |
| L37        | -0.6    | -4.3    | -0.6         | -3.3          | 1.0     | 2.8          | -0.7         | -1.7         | 0.0     | 0.0          | -0.8        | -2.0        | -0.1        | -0.9         |
| L39        | -1.3    | -9.1    | 4.8          | 9.5           | -0.6    | -0.7         | -5.3         | -13.3        | -3.4    | -11.7        | -5.4        | -13.2       | 0.0         | 0.0          |
| L40        |         | 45.0    | -0.9         | -3.1          | -1.4    | -2.6         | -0.5         | -1.0         | -1.1    | -2.4         | 0.0         | 0.0         | -0.3        | -0.6         |
| L41        | 1.9     | 15.8    | 2021.4       | 322.9         | 4.0     | 0.0          | -1.3         | -3.3         | 2.2     | 7.9          | 3.1         | 7.8         | 0.4         | 3.1          |
| L42        | 0.7     | 6.1     | 0.9          | 5.5           | 1.0     | 3.3          | 0.6          | 1.4          | 1.2     | 4.6          | 0.9         | 2.2         | 0.2         | 1.3          |
| L43        | 0.1     | 0.4     | -0.4         | -1.8          |         | 4.0          | -0.4         | -0.9         | 1.2     | 2.3          | 0.2         | 0.2         | 0.4         |              |
| L44        | -1.1    | -4.4    | 0.3          | 0.7           | -0.7    | -1.2         | -1.2         | -1.9         | 0.6     | 0.8          | 2.8         | 3.2         | 0.1         | 0.2          |
| L45        | 0.0     | 0.0     | 0.5          | 2.2           | 4.4     | 4.0          | 2.0          | 2.4          | 0.0     | 0.0          | 10          | 4.5         | 4.0         | 4.0          |
| L46        | -0.6    | -2.8    | -0.5         | -2.2          | -1.1    | -1.6         | -2.0         | -3.1         | -0.6    | -0.8         | -1.0<br>5.6 | -1.5<br>5 o | -1.0        | -4.8         |
| L47        | 4.4     | 22.0    | F.C.         | 24.0          | 0.0     | 0.7          | 0.0          | 0.0          | 0.3     | 0.4          | 5.6         | 5.8         | 0.0         | 4.5          |
| L48        | 4.1     | 33.9    | 5.6          | 34.0          | 0.2     | 0.7          | -0.5         | -1.2         | 1.2     | 4.5          | 0.1         | 0.2         | 0.6         | 4.5          |
| L49        | -0.7    | -1.8    | 0.2          | 0.4           | -0.7    | -1.2         | -1.0         | -1.5         | -0.6    | -0.9         | -0.6        | -0.9        | 0.3         | 0.6          |
| L50        | -3.3    | -27.5   | -3.3         | -19.7         | -6.6    | -22.1        | -6.6         | -16.5        | -6.6    | -24.5        | -5.8        | -14.5       | -3.3        | -23.7        |
| L51        | -0.8    | -0.2    | 0.7          | 0.2           | 0.1     | 0.1          | -0.2         | -0.3         | 0.7     | 0.2          | -0.1        | 0.0         | 0.1         | 0.0          |
| L52        | 0.2     | 1.6     | 0.5          | 2.8           | 0.1     | 0.3          | 0.2          | 0.6          | 0.9     | 2.4          | 0.3         | 0.7         | 0.1         | 1.0          |
| L53        | 0.7     | 1.0     | 1.5          | -0.9          | 1.4     | 4.6          | 2.3          | 5.2          | 1.8     | 2.3          | 2.1         | 3.5         | 1.5         | 6.8          |
| L54        | -2.1    | -13.3   | -0.3<br>-2.5 | -0.9<br>-14.0 | -3.1    | 0.9<br>-10.4 | -3.0<br>-3.0 | -6.0<br>-7.4 | -3.0    | 0.1<br>-9.8  | -3.3        | -8.1        | 1.2<br>-2.0 | 4.3<br>-14.1 |
| L55<br>L56 | 0.1     | 0.7     | 0.1          | 0.2           | -0.8    | -2.0         | -0.6         | -1.2         | -0.4    | -9.8<br>-1.1 | -0.3        | -0.6        | -2.0        | -3.6         |

## Annex 19 A: Compliance assessment to Directive 88/378/EEC

| LCode      |            | Directive 88/378/EEC (migration limits as set in EN 71-3:1994)                                                                                                          |
|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |            | Explain why:                                                                                                                                                            |
| C 1        | Yes        |                                                                                                                                                                         |
| C17        | No         | Migration of mercury (with analytical correction) is over the limit of 60 mg/kg.                                                                                        |
| C36        | Yes        |                                                                                                                                                                         |
| C38        | Yes        | -                                                                                                                                                                       |
| L02        | No         | The concentration of the metals analysed is out of the specification given on the EN 71-3.                                                                              |
| L05        | Yes        | All results below max permitted.                                                                                                                                        |
| L06        | Yes        | in accordance with EN-71/3:2005                                                                                                                                         |
| L07        | No         | Corrected Mercury value is 65.25 mg/kg. Limit after correction is 60 mg/kg                                                                                              |
| L08        | Yes        |                                                                                                                                                                         |
| L09        | No         | the corrected value for Mercury is above the limit (60 mg/kg)                                                                                                           |
| L10        | No         | The soluble mercury content of the material has exceeded the Toy Safety Directive 88/378/EEC limit.                                                                     |
| L11        | No         | Adjusted result of Hg exceeds the limit of 60 mg/kg.                                                                                                                    |
| L12        | No         | the limit for mercury is exceeded                                                                                                                                       |
| L13        | Yes        |                                                                                                                                                                         |
| L15        | No         | mercury (Hg) content is too high                                                                                                                                        |
| L16        | No         | High Mercury, uncertain even if 50% analytical correction was applied                                                                                                   |
| L18        | Yes        | Affer applying correction factor, all results are below limits of EN 71 Part 3:1994 + A1:2000/AC:2002                                                                   |
| L19        | Yes        | all elements keep the limits                                                                                                                                            |
| L20        | No         |                                                                                                                                                                         |
| L21        |            |                                                                                                                                                                         |
| L22        | No         | Hg > 60mg/kg                                                                                                                                                            |
| L23<br>L24 | Yes        | All elements are < migration limit before correction                                                                                                                    |
| L24<br>L25 | No         |                                                                                                                                                                         |
|            | No         |                                                                                                                                                                         |
| L26        | Yes        | The consentration of the averaged the limit is the attendard                                                                                                            |
| L27<br>L28 | No<br>Yes  | The concentration of Hg exceed the limit in the standard  Below the limits of element migration (EN71-3:1994)                                                           |
| L29        | No         | Because of the high level of migration of Mercury                                                                                                                       |
| L30        |            |                                                                                                                                                                         |
| L31        | No         |                                                                                                                                                                         |
|            |            | In this directive only the total amount of metals per day is stated not the maximum levels in mg/kg as in EN71-3. Whit that information you can not                     |
| L32        | No         | decide if the material is safe on the market.                                                                                                                           |
| L33        | Yes        | Measured values below limits                                                                                                                                            |
| L34        | No         | migration limit Pb to high                                                                                                                                              |
| L35        | No         | no opinion                                                                                                                                                              |
| L37        | Yes        | Directive corresponds to the limit values of EN 71-3. All limit values are met by the sample.                                                                           |
| L39<br>L40 | Yes<br>Yes | DIFFORM CONTROPORTION TO THE WAITES OF LITTER OF MITTIE VALUES ATE THELDY THE SAMPLE.                                                                                   |
|            |            | in case of results below the limit in accordance EN 71-3                                                                                                                |
| L41        | Yes        | According to 88/378/CE directive, the EN 71-3 (december 1994) + A1 April 2000 standard gives presumption of conformity to the essential safety                          |
|            | v          | requirements given in Annex II - II - 3. 2 biodisponibility. The corrected analytical results show that for all the elements the amount of heavy metals                 |
| L42<br>L43 | Yes<br>Yes | quantified are under the limits given in EN 71-3 (december 1994) + A1 April 2000 - clause 4.1 - table 1.  normative document for EU member States for migration EN 71-3 |
| L43<br>L44 | Yes        | Because all the results are below the maximum allowed limits                                                                                                            |
|            | 168        | Received values the migrated concentrations of Sb, Ba, Cd, Cr, Pb, Se don't exceed safety limits specified in the harmonised European Standard EN                       |
| L45        | Yes        | 71-3:1994                                                                                                                                                               |
| L46        |            | This judgement is not done by our laboratory, but by the costumers themself                                                                                             |
| L47        | Yes        |                                                                                                                                                                         |
| L48        | Yes        | the results are under the limits stated in the EN71/3                                                                                                                   |
| L49        | No         | Hg                                                                                                                                                                      |
| L50        | Yes        | it is very importat for health of children                                                                                                                              |
| L51        | Yes        |                                                                                                                                                                         |
| L52        | No         | Several elements with applied correction are above the limits (based on a 0.1 g sample) (i.e. As, Cd, Sb, Hg)                                                           |
| L53        | Yes        | Every values except Hg are below limits. For Hg (112 mg/kg) we apply AC 50% and the new result (56mg/kg) is below the limit too.                                        |
| L55        | Yes        | We still use the test method of EN 71-3 and requirement from this direction.                                                                                            |
| L56        | Yes        | All results are passed                                                                                                                                                  |

## Annex 19 B: Compliance assessment to Directive 2009/48/EC

| LCode      |     | Directive 2009/48/EC                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |     | Explain why:                                                                                                                                                                                                                                                                                                                                                                                          |
| C 1        | No  |                                                                                                                                                                                                                                                                                                                                                                                                       |
| C17        | Yes | Based on the limits of scraped-off toy material this test material would agree with the limits of the toy safety directive when analytical corrections from 71-1:1994 are used.                                                                                                                                                                                                                       |
| C36        | No  | Not all elements have been determined the positive evaluation is based only on the elements requested and if the actual analytical tollerance for Hg will be confirmed by the NEW EN 71-3                                                                                                                                                                                                             |
| C38        | Yes | and does not consider the Cr VI requirement due to there is not a validated method                                                                                                                                                                                                                                                                                                                    |
| L02        | No  | The concentration of the metals analysed is out of the specification given on the EN 71-3.                                                                                                                                                                                                                                                                                                            |
| L05        | Yes | All results below max permitted.                                                                                                                                                                                                                                                                                                                                                                      |
| L06        | No  | No results for Cr VI and org. tin compounds. Pb,Hg above the limit                                                                                                                                                                                                                                                                                                                                    |
| L07        | No  | Uncorrected values for (Cd 23.4 mg/kg, Hg 130.5 mg/kg) are over limit (Cd 23 mg/kg, Hg 94 mg/kg)                                                                                                                                                                                                                                                                                                      |
| L08<br>L09 | Yes | I don't know because we don't have a standard for all the metals descrived in this directive and if the correction factor remains the same for the elements.                                                                                                                                                                                                                                          |
| L10        | No  | The soluble mercury content of the material has exceeded the Toy Safety Directive 2009/48/EC limit.                                                                                                                                                                                                                                                                                                   |
| L11        | Yes | All 8 adjusted results are less than the limits of "scraped-off toy material".                                                                                                                                                                                                                                                                                                                        |
| L12        | No  | the limits for arsenic, mercury, lead and cadmium are exceeded (considering the limits for powder-like material)                                                                                                                                                                                                                                                                                      |
| L13        |     |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L15        | No  | Cadmium (Cd)-Mercury(Hg) content are too high                                                                                                                                                                                                                                                                                                                                                         |
| L16        | No  | Scrapeable Material contains excess mercury. Cadmium is on the limit.                                                                                                                                                                                                                                                                                                                                 |
| L18        | No  | Result exceed regulatory limit (Decision based on tested 8 elements). No analytical correction factor was mentioned in 2009/48/EC.                                                                                                                                                                                                                                                                    |
| L19        | No  | not all elements claimed in 2009/48/EC were tested                                                                                                                                                                                                                                                                                                                                                    |
| L20        |     |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L21        |     |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L22        | No  | As > 3.8, Cd > 1.9, Hg > 7.5 mg/kg                                                                                                                                                                                                                                                                                                                                                                    |
| L23<br>L24 | No  | Cd >migration limit ( 1,9 mg/kg) after correction                                                                                                                                                                                                                                                                                                                                                     |
| L25        | Yes | In Chile there is no legislation to control toys, this is only done when they are exported, no control is performed for toys importand is why it is very interesting work, implement and test the toys under the Directive 2009/48/EC on the safety of toys                                                                                                                                           |
| L26        |     |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L27        | No  | The concentration of Hg exceed the limit in the standard                                                                                                                                                                                                                                                                                                                                              |
| L28        | Yes | Below the limits of element migration (EN71-3:1994)                                                                                                                                                                                                                                                                                                                                                   |
| L29        | No  | There isn't an harmonized standard for 2009/48/EC yet                                                                                                                                                                                                                                                                                                                                                 |
| L30        | No  | Because the values of lead, cadmium, mercury, selenium and arsenic are exceeded the migration limits from the Directive.                                                                                                                                                                                                                                                                              |
| L31<br>L32 | No  | The As, Cd, Pb and Hg level exceeds the maximum level allowed in toys according to 2009/48/EEC. See Annex II, III Chemical properties, part 13 in column 1 (in dry, brittle, powder-like or pliable toy materials) in the table.                                                                                                                                                                      |
| L33        | Yes | Measured values below limits                                                                                                                                                                                                                                                                                                                                                                          |
| L34        | Yes | complies all limits                                                                                                                                                                                                                                                                                                                                                                                   |
| L35        | No  | no opinion                                                                                                                                                                                                                                                                                                                                                                                            |
| L37        | Yes |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L39        | No  | Limit values for Cadmium and Mercury are exceded even by the corrected mean values. Arsenic is exceded by the raw value.                                                                                                                                                                                                                                                                              |
| L40        | No  |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L41        | Yes | in case of results below the limit in accordance EN 71-3  The pour discretive 2000/48/EC deals with 10 elements and has differents limits against the nature of the material (courder limit) at a The current                                                                                                                                                                                         |
| L42        | No  | The new directive 2009/48/EC deals with 19 elements and has differents limits againts the nature of the material (powder, liquid, etc). The current EN 71-3 (december 1994)+A1 April 2000 deals with only 8 elements. This standard is under revision to update the list of elements and tests methods. For this reason we can not conclude on the conformity in regards of the 2009/48/CE directive. |
| L43        | Yes | normative document for EU member States                                                                                                                                                                                                                                                                                                                                                               |
| L44        | Yes |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L45        | Yes | Received values the migrated concentrations of Sb,Pb, Se, Ba don't exceed safety limits specified in the harmonised European Standard EN 71-3:1994. For elements Cr, Cd we can't state it.                                                                                                                                                                                                            |
| L46        |     | This judgement is not done by our laboratory, but by the costumers themself                                                                                                                                                                                                                                                                                                                           |
| L47        | No  | the limits for metals are too permisive                                                                                                                                                                                                                                                                                                                                                               |
| L48        |     |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L49        | No  | Hg, As, Cd                                                                                                                                                                                                                                                                                                                                                                                            |
| L50        | No  | it is not nesesary at this time                                                                                                                                                                                                                                                                                                                                                                       |
| L51        | Yes |                                                                                                                                                                                                                                                                                                                                                                                                       |
| L52        | Yes | The higher requirement limits for material 'scraped off toys' allows a passing rating for all elements  For Cd the limit is 23 mg/kg and our result is 36 and for Hg limit is 94 and our result is 112 mg/kg.Our results are only based of the result of                                                                                                                                              |
| L53        | No  | 8 heavy metals out of 17.                                                                                                                                                                                                                                                                                                                                                                             |
| L55        | Yes | New chemical requirement is not enforced yet.                                                                                                                                                                                                                                                                                                                                                         |
| L56        | No  | Cd>1.9 mg/kg, Hg>7.5 mg/kg, As>3.8 mg/kg                                                                                                                                                                                                                                                                                                                                                              |

## Annex 20: Experimental details extracted from the questionnaire

| Lab ID     | Sieved    | Mesh            | Sample                           | Shaking                                | 37 °C      | Centri-  | Analyse on day  |
|------------|-----------|-----------------|----------------------------------|----------------------------------------|------------|----------|-----------------|
| Lab ID     |           |                 | •                                | · ·                                    |            |          |                 |
|            | sample?   | size            | amount                           | device<br>multi magnetic stirrers      | used?      | fugation | of preparation? |
| C 1        | No        |                 | 0,2g                             | plancha                                | Yes        | No       | No              |
| C 2        | No        |                 | 0.50 g                           | Shaking water bath                     | Yes        | No       | Yes             |
|            |           |                 |                                  | water bath with a                      |            | -        |                 |
| C17        | No        |                 | 0,5 g                            | shaker                                 | Yes        | No       | Yes             |
|            |           |                 |                                  | Th                                     |            |          |                 |
| C36        | No        |                 | 0.2 a                            | Thermostatted waterbath with shaking   | Yes        | No       | Yes             |
| C36        | INO       |                 | 0.2 g                            | waterbath with Shaking                 | res        | INO      | res             |
| C38        | Yes       | 0.5 mm          | 200 mg                           | orbital shaker                         | Yes        | No       | Yes             |
|            |           | 010 11111       |                                  |                                        |            |          | 100             |
| L01        |           |                 |                                  |                                        | +          |          |                 |
|            | Vaa       | 0.05            | Rep2: 2.0407g;                   | a water-bath with a                    | V          | Nie      | Vaa             |
| L02<br>L03 | Yes<br>No | 0,05            | Rep3: 1.9758g<br>0.5 g           | shaking device<br>magnetic stirring    | Yes<br>Yes | No<br>No | Yes<br>No       |
| L03        | No        |                 | 0.5 g                            | Magnetrührer                           | Yes        | No       | Yes             |
|            | 110       |                 | 0.5 g                            | A shaking                              | 103        | 110      | 103             |
|            |           |                 |                                  | thermostated water                     |            |          |                 |
| L05        | Yes       | 0.5 mm          | 0.2g                             | bath.                                  | Yes        | No       | No              |
| L06        | No        |                 | 0.5                              | magnetic stirring bar                  | Yes        | No       | Yes             |
| L07        | Yes       | 0.5 mm          | 0.5 g                            | Orbital Shaker                         | Yes        | No       | Yes             |
| L08        | No        |                 | 0.5 g                            | incubating shaker                      | Yes        | No       | No              |
|            | NI-       |                 | 0 5 ~                            | water bath with linear                 | V          | Na       | Vaa             |
| L09<br>L10 | No<br>No  | N/A             | 0,5 g<br>0,5 g                   | agitation (150 rpm) Shaking water bath | Yes<br>Yes | No<br>No | Yes<br>Yes      |
| LIU        | INO       | a metal sieve   | 0,5 g                            | Shaking water bath                     | 165        | INO      | 165             |
|            |           | with an         |                                  |                                        |            |          |                 |
|            |           | aperture of 0,5 |                                  | Constant Temperature                   |            |          |                 |
| L11        | Yes       | mm              | 0.2 g                            | Water Bath Shaker                      | Yes        | No       | Yes             |
|            |           |                 | Rep1 = 0.5016g;                  |                                        |            |          |                 |
| L12        | No        |                 | Rep2 = 0.5016g; $Rep3 = 0.5023g$ | manual stirring                        | Yes        | No       | No              |
| LIZ        | INO       |                 | керэ – 0.30239                   |                                        | 163        | NO       | INO             |
|            |           |                 | 0.5                              | Thermostatic Shake                     | .,         | N.       | V               |
| L13<br>L14 | No<br>Yes | whatman 41      | 0.5 g<br>0.31 g                  | bath shaking water bath                | Yes<br>Yes | No<br>No | Yes<br>Yes      |
| L14        | res       | Wildtillali 41  | 0.31 g                           | shaking water bath                     | res        | INO      | res             |
| L15        | No        | _               | solid                            | dub0ff                                 | Yes        | No       | Yes             |
|            | 110       |                 | 50114                            | Reciprocating (shaking)                | 100        | 110      | 1.65            |
|            |           |                 |                                  | water bath (Grant                      |            |          |                 |
| L16        | No        |                 | 100 mg                           | SS40)                                  | Yes        | No       | Yes             |
| L18        | Yes       | 0.5mm           | 0.5g                             | shaking water bath                     | Yes        | No       | Yes             |
|            | N         |                 | 4 -                              | heated water bath                      | \/         | NI -     | V               |
| L19<br>L20 | No        |                 | 1 g                              | shaker                                 | Yes<br>Yes | No       | Yes<br>No       |
| L20<br>L21 | No        |                 | 2.5 ml                           |                                        | Yes        | No       | No              |
| L22        | No        |                 | 0.5 g                            | orbital shaker                         | Yes        | No       | No              |
|            |           |                 | <del>-</del>                     |                                        |            | ·-       |                 |
| L23        | Yes       | 0,5 mm          | 0,5 g                            | Lateral oscillating bath               | Yes        | No       | No              |
| L24        |           |                 |                                  |                                        |            |          |                 |
|            |           |                 |                                  | HEAT-                                  |            |          |                 |
| 1.25       | Ma        |                 | 0 F anoma                        | STIR/STUART/SERIAL:R                   |            | NI.      | No              |
| L25        | No        |                 | 0.5 grams                        | 00106763<br>shaked thermostatic        | Yes        | No       | No              |
| L26        | No        |                 | 0.5 g                            | bath                                   | Yes        | Yes      | Yes             |
|            |           |                 | 0.5011 gr; 0.5011                | Ducii                                  | . 00       |          | 100             |
| L27        | No        |                 | gr; 0.5025 gr                    | Magnetic                               | Yes        | No       | Yes             |
| L28        | No        |                 | 50mg                             | Magnetic stirrer                       | Yes        | No       | Yes             |
|            |           |                 |                                  | automatic shaker                       |            |          |                 |
| L29        | No        |                 | 1 g                              | OXYTOP                                 | Yes        | No       | No              |
|            |           |                 | Rep1:1.0045g;                    |                                        |            |          |                 |
|            |           |                 | rep2:1.0034g;                    |                                        |            |          |                 |
| L30        | No        |                 | rep3:1.0032g                     | magnetic stirrer                       | No         | No       | Yes             |
|            |           |                 | 0.5 g in 25 ml                   | forwards and backwards                 |            |          |                 |
| L31        | No        |                 | 0.07N HCl                        | movement                               | Yes        | No       | No              |
|            | 110       | <u>I</u>        | 0.07111101                       | Movement                               | . 03       | 110      | INO             |

IMEP-34: Heavy metals in toys according to EN 71-3:1994

| Lab ID | Sieved  | Mesh                | Sample                                                 | Shaking                                                             | 37 °C | Centri-  | Analyse on day  |
|--------|---------|---------------------|--------------------------------------------------------|---------------------------------------------------------------------|-------|----------|-----------------|
|        | sample? | size                | amount                                                 | device                                                              | used? | fugation | of preparation? |
|        |         |                     |                                                        |                                                                     |       |          |                 |
| L32    | No      |                     | 0.5 g                                                  | Shaking Water bath.                                                 | Yes   | No       | Yes             |
| L33    | No      |                     | 0.5 g                                                  |                                                                     | Yes   | No       | No              |
| L34    | No      |                     | 500 mg                                                 | waterbath                                                           | Yes   | No       | Yes             |
| L35    | No      |                     | 0,5 g                                                  | magnetic stirrer                                                    | Yes   | No       | Yes             |
| L37    | No      |                     | 500 mg                                                 | Shaking waterbath                                                   | Yes   | No       | Yes             |
|        |         |                     |                                                        | waterbath with shaking                                              |       |          |                 |
|        |         |                     |                                                        | device for bottles,                                                 |       |          |                 |
| L39    | No      | -                   | 500 mg                                                 | drying oven                                                         | Yes   | No       | Yes             |
|        |         |                     |                                                        | shaking device Julabo                                               |       |          |                 |
| L40    | Yes     | 0.5 mm              | 0.6 g                                                  | SW-20C                                                              | Yes   | No       | Yes             |
|        |         |                     | -                                                      | shaker laboratory                                                   |       |          |                 |
| L41    | No      |                     | 0,5 g                                                  | equipment                                                           | Yes   | No       | No              |
| L42    | No      |                     | 200 mg                                                 | Orbital shaker                                                      | Yes   | No       | Yes             |
| L43    | No      | -                   | 0,5 g                                                  | shaking device LT-2                                                 | Yes   | No       | No              |
| L44    | No      |                     | 1 gram                                                 | swinging shaker                                                     | Yes   | No       | Yes             |
|        |         |                     |                                                        | water bath with shaking<br>device Type WB-14,<br>Memmert GmbH + CO. |       |          |                 |
| L45    | No      | -                   | 0,5 g                                                  | KG, Germany                                                         | Yes   | No       | No              |
| L46    | No      |                     | 0.5 g                                                  | shaking table                                                       | Yes   | No       | Yes             |
| L47    | No      |                     | 0.05 a                                                 | ultrasonic method                                                   | Yes   | No       | Yes             |
| L48    | Yes     | mesh size:<br>0.5mm | rep.1: 0.5013 g,<br>rep.2: 0.5179g, rep.<br>3: 0.5146g | water shaker bath<br>150rpm                                         | Yes   | No       | Yes             |
| L49    | No      |                     | 0.5 g                                                  | Enviromental Shaker ES<br>20                                        | Yes   | No       | Yes             |
| L50    | No      | Not applicable      | at least 0.5g                                          | Thermoshake Gerhardt                                                | Yes   | No       | Yes             |
| L51    | No      | с аррисавіс         | 0.5 g                                                  | end over end shaker                                                 | Yes   | No       | Yes             |
| L52    | Yes     | 500 μm              | 0.10 g                                                 | shaking water bath                                                  | Yes   | No       | Yes             |
| L53    | Yes     | 0.5 mm              | 0.15g                                                  | shaking water bath                                                  | Yes   | No       | Yes             |
|        | 100     | 010 111111          | 01109                                                  | Magnetic stirred with                                               | . 00  | 110      | 100             |
| L54    | No      |                     | 0.5 g                                                  | heating                                                             | Yes   | No       | Yes             |
| L55    | No      |                     | 0.5 g                                                  | Water Shaker bath                                                   | Yes   | No       | Yes             |
| L56    | Yes     | 500 μm              | 0.2g                                                   | water bath with shaking                                             |       | No       | Yes             |

**European Commission** 

EUR 25380 - Joint Research Centre - Institute for Reference Materials and Measurements

Title: Heavy metals in toys according to EN 71-3:1994

Author(s): Fernando Cordeiro, Ines Baer, Piotr Robouch, Håkan Emteborg, Jean Charoud-Got, Bibi Kortsen, Beatriz de la Calle

Luxembourg: Publications Office of the European Union

2012 - 54 pp. - 21.0 x 29.7 cm

EUR - Scientific and Technical Research series - ISSN 1831-9424

ISBN 978-92-79-25309-6

doi:10.2787/63196

#### **Abstract**

The Institute for Reference Materials and Measurements (IRMM) of the Joint Research Centre (JRC), a Directorate-General of the European Commission, operates the International Measurement Evaluation Programme (IMEP). It organises interlaboratory comparisons (ILC's) in support to EU policies. This report presents the results of an ILC which focussed on the determination of soluble antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) according to European Standard EN 71-3:1994.

The principle of the procedure in EN 71-3:1994 consists in the extraction of soluble elements from toy material under the conditions simulating the material remaining in contact with stomach acid for a period of time after swallowing. Fifty eight participants from twenty six countries registered to the exercise, of which 54 reported results for As, Sb, Ba, Se and Hg and 58 for Cr, Pb, and Cd, respectively.

The test item used was a certified reference material (CRM 623, comminuted paint flakes from alkyd resin paint), certified in 1998, which is not included anymore in the CRM catalogue. The validity of the certified values was assessed using some expert laboratories in the field. In most of the cases the results reported by the certifiers were not in agreement with the CRM reference values. The mean of the means reported by the expert laboratories was used as assigned value for the different measurands. The results reported by the expert laboratories for mercury were very scattered (RSD = 37.5%). No assigned value could be attributed for mercury and therefore no scores were provided to the participants for this measurand.

The associated uncertainties of the assigned values were obtained following the ISO GUM. Furthermore, participants were invited to report their measurement uncertainties. This was done by all laboratories having submitted results in this exercise.

Laboratory results were rated with z- and zeta ( $\zeta$ -) scores in accordance with ISO 13528. The standard deviations for proficiency assessment were based on the analytical correction laid down in EN 71-3:1994.

The outcome of the exercise shows an improvement on the overall performance of the participants when compared to IMEP-24 (a proficiency test for heavy metals in toys run in 2009 in which the same European standard was followed), particularly for cadmium, lead and to a lesser extent, for selenium and chromium. The share of satisfactory *z*-scores ranged from 65 to 81 %.

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new standards, methods and tools, and sharing and transferring its know-how to the Member States and international community.

Key policy areas include: environment and climate change; energy and transport; agriculture and food security; health and consumer protection; information society and digital agenda; safety and security including nuclear; all supported through a cross-cutting and multi-disciplinary approach.



