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Emissions rise
Record carbon dioxide levels alarm scientists (May 13, 2022, Financial
Times)
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Not only emissions rise but also the amount of

climate-related disclosures!
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We need decision-useful climate risk information
Previous literature

Climate-related risks are priced, particularly transition risk:
Bolton and Kacperczyk (2021a); Monasterolo and De Angelis
(2020); Engle et al. (2020); Kölbel et al. (2022)

However, full risk may not be captured, e.g., for physical
climate risk:

Hong et al. (2019); Baldauf et al. (2020); Bakkensen and
Barrage (2021).

Growing body of literature argues that climate-related
disclosures are an essential prerequisite to managing and
mitigating climate-related financial risks

Grewal et al. (2019); Hong et al. (2019); Krueger et al. (2020);
Bolton and Kacperczyk (2021a); Deng et al. (2022).

Disclosures tend to suffer from greenwashing and severe
inaccuracies

Kim and Lyon (2015); Marquis et al. (2016); Fabrizio and Kim
(2019).
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Do climate initiatives improve the quality of

climate-related disclosures?
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1 Research Design

2 Results
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4 Appendix: Creating ClimateBERT

5 / 28



Data

Using annual reports of all the MSCI World constituents from
2010 to 2020, extract with ClimateBert the dependent vari-
ables:

Commitments and actions related to climate
mitigation measures.

Specificity of commitments.

Define ratio of non-specific to all commitments as the
Cheap Talk Index (CTI).
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Research Questions
1. Ownership and Engagement

Hypothesis 1: Active Engagement

Being part of the Climate Action 100+ active ownership and
engagement target companies is negatively associated with
cheap talk.

Previous literature on ESG:
1 Institutional ownwership is associated with higher ESG

transparency.
2 Targeted engagement strategies and active ownership

enhance corporate sustainability performance and transparency.
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Research Questions
2. Signaling

Hypothesis 2: Signaling

A firms’ public support for the TCFD recommendations is neg-
atively associated with cheap talk.

Pre-commitment mechanism might explain the public TCFD
support. Pre-commitment to disclosures maximizes value
ex-ante and improves risk-sharing (Diamond, 1985).

Signaling (and credibility) is an attempt to reduce information
costs for investors and to reduce climate risk uncertainty
premium Bolton and Kacperczyk (2021b); Chen et al. (2020).
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Research Questions
3. Credibility

Hypothesis 3: Credibility

A firms’ public announcement to set a third party verified
science-based target (SBTi) is negatively associated with
cheap talk.

Firms might be better off if they work towards third-party
verification to differentiate themselves from firms that apply
managerial “cheap talk” (Almazan et al., 2008; Bingler et al.,
2022).
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Classification hierarchy
Task setup for analyzing climate-related disclosures
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Data and Analysis

Sample: 14,584 annual reports of the 1,500 MSCI World
index firms for the fiscal years 2010-2020

ClimateBert-based dependent variable: Cheap talk index

CTIi ,t =
COMMIT ∩ NONSPECi ,t

COMMITi ,t
,

Panel regression setup:

CTIi ,t = α + βTTCFDi ,t + βSSBTi ,t + βCClimAct100i ,t + βOROppRiski ,t

+ βGHGGHGi ,t + βMMateriali

+ βXXi ,t + ηi + δi × νt + ϵi ,t ,

with different financial controls Xt .
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Cheap Talk Index
Across different industries

Panel A: Cheap Talk Index

Energy
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Panel B: Cheap Talk Index

Financials
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Figure: Evolution of the Cheap Talk Index (CTI) for the Energy (Panel A) and the Financials
(Panel B) using the companies that are part of the MSCI World index. We decompose the CTI
into the cheap talk in the four different TCFD categories, i.e., governance, strategy, risk
management, and metrics and targets.
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Cheap Talk Index
Across different countries

Panel A: Cheap Talk Index

Europe
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Panel B: Cheap Talk Index

United States
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Figure: Evolution of the Cheap Talk Index (CTI) for Europe (Panel A) and the US (Panel B)
using the companies that are part of the MSCI World index. We decompose the CTI into the
cheap talk in the four different TCFD categories, i.e., governance, strategy, risk management,
and metrics and targets.
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Panel Regression Results
Full Sample

Main Main with controls Main lagged Mandatory

ClimAct100 -0.0641*** -0.0271** -0.0380***
SBT -0.0014 -0.0101 0.0023
TCFD 0.0336** 0.0371** 0.0745***
Age -0.0002* -0.0002* 0.0001
EDS 0.1293*** 0.1317*** 0.2187***
GHG -0.0170*** -0.0168*** -0.0174***
IOwn 0.0493** 0.0499** -0.1386***
Material -0.0050 -0.0051 -0.0132
OppRisk -0.0164*** -0.0164*** 0.0143***
ClimAct100lag1 -0.0300***
SBTlag1 -0.0186*
TCFDlag1 0.0234**
Mandatory 0.0001
ClimatePolicyGrade -0.0009

Country FE Yes Yes Yes No
Sector × Year FE Yes Yes Yes Yes
No. Observations 12915 9849 9849 9407
R-squared 0.2572 0.3006 0.3000 0.2197
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Panel Regression Results
After 2017

Main Main with controls Main lagged Mandatory

ClimAct100 -0.0643*** -0.0313** -0.0348**
SBT 0.0017 -0.0088 -0.0033
TCFD 0.0184 0.0218** 0.0653***
Age -0.0002 -0.0002 0.0003*
EDS 0.1554*** 0.1613*** 0.2038***
GHG -0.0144*** -0.0144*** -0.0128***
IOwn 0.0367 0.0367 -0.1268***
Material -0.0045 -0.0047 -0.0153
OppRisk -0.0131** -0.0132** 0.0176***
ClimAct100lag1 -0.0349***
SBTlag1 -0.0212**
TCFDlag1 0.0118
Mandatory 0.0438*
ClimatePolicyGrade 0.0437***

Country FE Yes Yes Yes No
Sector × Year FE Yes Yes Yes Yes
No. Observations 3891 3231 3231 3063
R-squared 0.2932 0.3152 0.3147 0.2423
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Conclusion

Setting of a science-based target is associated with less
cheap talk only when the variable is lagged.

Publicly supporting the TCFD is associated with more
cheap talk.

Active institutional ownership with targeted engagement
strategies through Climate Action 100+ is associated with
less cheap talk.
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Creating a climate-specific language model
Pretrained language models in NLP

Why not use a keyword-based approach?

Cao et al. (2021) show how corporations adjust their wording to
“AI”-based algorithms.
Climate-related wording could vary substantially by source (Kim
and Kang, 2018).
Deep learning techniques that promise higher accuracy are
gradually replacing these approaches (e.g., Kölbel et al., 2022;
Bingler et al., 2022; Callaghan et al., 2021; Wang et al., 2021).
Deep learning in NLP allows for impressive results,
outperforming traditional methods by large margins (Varini
et al., 2020).

We go one step further:

We train climateBERT (Webersinke et al., 2021) on a large
corpus of climate-relevant text (we use DistillRoberta, see
Hershcovich et al. (2022) on efficient NLP methods).
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Collecting climate-specific text data
Pretraining requires a large corpus of data

Sequence of training phases:

News Abstracts ReportsCommon
crawl

Pretraining (general domain) Domain-adaptive pretraining (climate
domain) Training (downstream tasks)

+ +
- Text classification

- Sentiment analysis
- Fact-checking

Corpus used for pretraining:

Dataset Num. of Avg. num. of words
paragraphs Q1 Mean Q3

News 641,095 30 48 57
Abstracts 530,819 165 218 260
Reports 490,292 34 65 79

Total 1,662,206 36 107 168
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How well does ClimateBERT perform?
A comparison with alternative approaches

Using our annotated data, we create a keyword list for our
different classification tasks, following Liu et al. (2019).

To improve the results from a keyword based approach, we use
a weighted dictionary based on a LASSO model.
For each classification task, we generate such a weighted
dictionary.

Instead of rule-based approaches, we also implement some
machine learning approaches:

Näıve Bayes (e.g., Huang et al., 2014; Li, 2010; Das and Chen,
2007).
Support Vector Machine (SVM) with BoW and ELMo
(Embeddings from Language Model) embeddings.
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How well does ClimateBERT perform?
A comparison with keyword-based approaches
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How well does ClimateBERT perform?
Comparison with other machine-learning approaches

Evaluation results for climate-related classification task:

Approach Precision Recall F1 AUROC Support

Näıve Bayes 0.89 0.86 0.87 0.66 400
SVM + BoW 0.88 0.87 0.87 0.76 400
SVM + ELMo 0.91 0.88 0.89 0.70 400
climateBERT 0.97 0.97 0.97 0.91 400

Evaluation results for cross-validation:

Approach Climate-related Sentiment Commitments & actions Specificity TCFD

Näıve Bayes 0.04*** 0.05*** 0.07*** 0.08*** 0.07***
SVM + BoW 0.05*** 0.08*** 0.11*** 0.12*** 0.08***
SVM + ELMo 0.03*** 0.05*** 0.06*** 0.06*** 0.04***

The table shows mean improvement of climateBERT’s F1 scores over baseline models for different downstream tasks
for n = 30 runs on 800 samples for training and 400 samples for testing. By *, **, and *** we denote p-levels below
10%, 5%, and 1%, respectively.
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