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1 Introduction

1.1 Uncertainty and sensitivity analysis and model reduction

Computational models are often used to give a simplified mathematical representation of

reality in many different fields of application. Model input is subjected to many sources

of uncertainty including errors of measurement, inadequate sampling resolution, etc.

Furthermore, the model itself can include conceptual uncertainty, i.e. uncertainty in

model structures, assumptions and specifications. All this imposes a limit on our

confidence in the response, or output, of the model. Good modelling practice requires the

modeller to provide an evaluation of the confidence in the model predictions, possibly

assessing the uncertainties associated with the outcome (response) of the model itself.

Uncertainty Analysis (UA) and sensitivity analysis (SA) are prerequisites for model

building in any field where models are used. UA allows assessing the uncertainty

associated with the model response as a result of uncertainties in the model input. SA is

aimed at establishing how the variation in the model output can be apportioned to

different sources of variation, in order to establish how the given model depends upon the

information fed into it.

SA can be useful in model building for identifying, on one side, the relevant factors, and

on the other those who do not drive significant variation on the output. In this way, SA

can be used to reduce models: unimportant factors can be fixed to their nominal values

and, if factors are clearly connected to particular processes included in the model, entire

parts of the models can also be eliminated or simplified.

The role of UA-SA methods in framework of the IMPACT project is therefore clearly

identified as the intermediate step in the merging of mechanistic models and statistical

procedures, in which the original model is reduced by allowing unimportant factors to be

fixed or eliminated.

1.2 Aims of the report

The present deliverable is focused on model reduction techniques in the presence of time

dependent output. UA and SA are applied with the main objective of identifying

quantitative criteria for model reduction for time series normalisation. The specific



problem of time-dependent model output required the identification of specific

methodologies, with respect to the more 'classical' approach presented in Deliverable 16

(Ratto et al., 2000), regarding the uncertainty assessment. Moreover, the studies carried

out aimed also at conditioning model reduction to the information available from

observation data sets. Hence, the new methodology is based on the study of a

'summarised' model output: the object of the SA is not the time dependent-output, but a

likelihood measure of the model outcome conditioned to observations (essentially a

function of the mean square error of the model with respect to observations).

The methodological approach is carried through the following steps:

1) summarise the time-dependent model output through the definition of a likelihood

measure, conditioning the model predictions to observations.

2) study the empirical distribution of the likelihood measure of model output due to

propagation of the various input factors through the models themselves. This study is

actually an uncertainty assessment, aimed at testing the overall robustness of both the

underlying model and the available data.

3) investigate model performance as far as calibration is concerned. The variance of the

model likelihood can be decomposed according to source by using global sensitivity

analysis (GSA). This study is able to reveal to what extent a model factor affects the

model capability of being a simulator of reality. This investigation aims at trying to

distinguish “live” components of the model, which drive model response and are

hence “relevant”, from “dead” ones, which make no contribution to the variation in

the model predictions. As a consequence, SA is the basis for the elimination of

unneeded complexity from the model and therefore for model reduction.

4) model reduction criteria. Criteria for model reduction are based on the results of the

sensitivity analysis.

The methodological approach is applied in test cases of IMPACT. In particular, the Elbe

River case study applying the WAMPUM model is described in the present deliverable.
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2 The method

2.1 Preliminary considerations

The model reduction problem discussed here considers time-dependent model outputs

and the availability of observations. So, on one hand, the UASA approach is the reference

tool for identifying model reduction criteria, on the other hand, conditioning of the

technique to observations is an additional essential requirement with respect to the

problem defined in Deliverable 16 (Ratto et al., 2000b). In the present report, a technique

using UASA tools, allowing model reduction conditioned to observations is presented

(Ratto et al., 2000a).

In the last decade, a method based on the concept of Bayesian Inference for uncertainty

estimation, has been used in hydrology as the Generalised Likelihood Uncertainty

Estimation Technique (GLUE) (Beven & Binley, 1992; Romanovicz et al., 1994). The

GLUE technique is as an extension of the Generalised Sensitivity Analysis methodology,

which has now come to be called Regional Sensitivity Analysis (RSA), by R.C Spear and

G.M. Hornberger (Hornberger and Spear, 1980, Spear and Hornberger, 1980). GLUE has

been developed from an acceptance of the possible equifinality of models, i.e. different

sets of model factors/structures, later on lumped under the term 'input factors', may be

equally likely as simulators of the real system. It works with multiple sets of factors,

typically via Monte Carlo sampling, and applies likelihood measures to estimate the

predictive uncertainty of the model. Model realisations are weighted and ranked on a

likelihood scale via conditioning on observations and the weights are used to formulate a

cumulative distribution of predictions. Applying the RSA terminology, model

structures/parameter sets with almost zero likelihood can be classified as non-behavioural

and rejected.

In the RSA-GLUE framework, the basic role of SA is also clear. In general, SA is aimed

at establishing how the variation in the model output can be apportioned to different

sources of variation, in order to establish how the given model depends upon the

information fed into it. When one is mainly interested in the predictive uncertainty, a

sensitivity analysis can help in better explaining the model structure and the main sources

of model output uncertainty. Additionally, in a model identification/reduction problem, a



quantitative SA able to account for conditioning on observations, can provide useful

information about the model internal structure and, above all, of the interaction structure

between model factors resulting from the conditioning itself. The determination of an

interaction structure between model factors, in fact, is a typical feature of the RSA-GLUE

classification of model realisations, where (complex) structured parameter subsets having

similar likelihood of being simulators of reality are identified. Spear at al. (1994) found

that the application of conventional multivariate statistics like principal component

analysis to analyse interaction is not very revealing and Spear (1997) showed also that

complex parametric interactions do not become evident from looking at univariate

marginal probability densities. So, the deep inspection of this interaction structure is a

challenging aspect of RSA and the development of suitable methodologies is still an open

problem.

The basic idea for the new methodology presented in Ratto et al. (2000a) consists of a

combination of the GLUE technique with variance based sensitivity analysis (extended

FAST, Importance measures, Sobol' indices). The use of GLUE allows both conditioning

to observation and performing a sensitivity analysis on a scalar function (the likelihood

measure) instead on a time-dependent output, so avoiding the calculation of time-

dependent sensitivity indices. Moreover, GSA allows a quantitative decomposition of the

likelihood variance with respect to the input factors.

In the GLUE approach, factors are never considered independently but as sets of values.

The likelihood measure for each model realisation is associated with a particular set of

factors, conditioned to the observed data. From the methodological point of view, when a

detailed SA has to be performed on such kind of 'output', some peculiar aspects have to

be taken into account:

ü non monotonic input-output mapping;

ü high level of interaction between input factors.

The former aspect is mostly due to the form of likelihood measures, inherently non-

monotonic. The latter is connected to model equifinality or over-parameterisation, i.e.

many different combinations of input factors give the same model performance when

conditioning on observations. These aspects pose severe constraints about the SA

methods to be applied. In particular, it can be expected that MC regression based



methodologies are poor for this kind of study and that global, model independent or

model free techniques should be used.

In the RSA of Spear and Hornberger, a classification algorithm is applied to the model

output, resulting in a classification of each model run as behavioural or non-behavioural.

The parameter sets leading to the result are stored according to the behavioural outcome.

Subsequently all parameter vectors are analysed to determine the degree to which the a

priori distributions separate under the behavioural mapping. The separation, or the lack

thereof, forms the basis of the generalised sensitivity analysis.

Another SA approach applied in the past has been to evaluate the marginal distribution of

likelihood for each parameter by integrating across the parameter space (Romanowicz et

al., 1994). A simplified approach is given by 'visual' SA based on scatter plots of the

likelihood measure vs. single factors. When significant patterns are detected, a

pronounced influence on model predictions can be concluded. Moreover, subsets of

better model performance can be singled out for such influent factors.

Both the RSA and the scatter plots by Romanovicz et al. address well the problem

characteristics, above all as far as the non-monotony is concerned. However, they are

quantitatively poor (both) and are not very efficient in the case of strong interaction. A

possible extension of RSA for the study of parameter interaction has been presented in

Hornberger and Spear, 1981, based on the diagonalisation of the correlation matrix of the

input factor sub-sample under the behaviour classification. More recently, Spear et al.

(1994) provided a further extension of RSA, consisting of a tree-structured density

estimation technique to characterise the complex interaction in the portion of the

parameter space rising successful simulation. As a result, the parameter space can be

partitioned into small, densely populated regions and relatively large, sparsely populated

regions.

In order to improve the sensitivity analysis aspects of model calibration and uncertainty

prediction variance-based Global Sensitivity Analysis methods (GSA) have been applied

(Ratto et al., 2000a). Variance based methods are based on the decomposition of the

model output variance into a sum of terms depending on single factors and on interaction

terms of increasing order. They are quantitative methods and work without any restriction

about monotony or additivity of the model. The only requirement is that all what we



desire to know about the model output is captured by its variance. Application of

variance-based methods allows the determination not only of main effect of input factors

(equivalent to RSA or scatter plots) but also of the total effect of each factor in

combination with all the others. Such a quantification is very useful, since it allows a

classification of factors according to, e.g.:

ü factors with high main effect: such factors affect model output singularly,

independently of interaction;

ü factors with small main effect but high total effect: such factors influence the model

output mainly through interaction;

ü factors with small main and total effect: such factors have a negligible effect on the

model output and can be fixed at a nominal value.

The first class of factors can be detected also with the other methodological approaches

(RSA, scatter plots, regression analysis), while the second class could be qualitatively

evaluated through the extension of the RSA in Hornberger and Spear (1981) [in case of

second order interactions] and in Spear et al. (1994).

2.2 Short description of GLUE

The GLUE procedure is based upon making a large number of runs of a given model with

different sets of factor values, chosen randomly form specified factor distributions.

Different sets of initial, boundary conditions or model structures can also be considered.

On a basis of comparing predicted and observed responses, each set of factor values is

assigned a likelihood of being a simulator of the system. The definition of the likelihood

measure is matter in the GLUE framework and the uncertainty prediction can strongly

depend on that definition. In a Bayesian framework, this is connected to how errors in the

observations and in the model structure are represented by a statistical model. However,

such a differentiation is not particularly relevant as far as the application of GSA is

concerned, which is compatible to any definition of the likelihood measure. Hence, for

the sake of simplicity and without loss of generality, among the different possible

likelihood measures (Beven & Binley, 1992; Romanowicz et al. 1994; Romanowicz et al.

1996; Romanowicz et al. 2000) the following is used here.
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is the mean squared difference between predictions and observations for the i-th factor

set.

Rescaling of the likelihood measures such that the sum of all the likelihood values equals

1 yields a distribution function for the factor sets. From this, the uncertainty estimation

can be performed, by computing the model output cumulative distribution, together with

prediction quantiles.

An interesting feature of this approach, is that correlation between factor values is

reflected implicitly in the likelihood measure associated with the factor sets, so that no

hypothesis about the correlation structure is necessary in defining the a priori

distributions of the model factors. A covariance structure can be obtained a posteriori

when each factors' combination is weighted via the likelihood measures. The GLUE

methodology allows also combining or updating likelihood measures, by applying the

Bayes theorem (Beven & Binley, 1992).

2.3 Short description of variance-based GSA

A thorough description of sensitivity analysis methods, including linear regression,

correlation analysis, importance measures, variance-based and screening methods, can be

found in Saltelli et al. (2000).

When using variance based techniques (see Archer et al., 1997 for a review), the SA is

based on estimating the fractional contribution of each input factor to the variance of the

model output. In order to calculate the sensitivity indices for each factor, the total

variance V of the model output is decomposed as
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and so on. In the above formulas, Y denotes the output variable, iX  denotes an input

factor, )( *
ii xXYE =  denotes the expectation of Y cond itional on iX  having a fixed

value *
ix , and V stands for variance over all the possible values of iX . The same

variance decomposition underlies the theory of experimental design (Box, Hunter and

Hunter, 1978). The decomposition is unique if the iX  are independent from each other.

The sensitivity index iS  for the factor iX  is defined as VVi / . The reason for that is

intuitive: if the inner mean )( *
ii xXYE =  varies considerably with the selection of a

particular value *
ix  for iX , while all the effects of the jX ’s, ij ≠  are being averaged,

then surely factor iX  is an influential one. Estimation procedures for iS  are the Fourier

Amplitude Sensitivity Test, FAST, (Cukier et al. 1973), the method of Sobol’ (Sobol’

1993), and others (Iman and Hora 1990).

Higher order sensitivity indices, responsible for interaction effects among factors, are

rarely estimated in computational experiments, as in a model with k factors the total

number of indices (including the iS ’s) that should be estimated is as high as 12 −k . This

problem is sometimes referred to as the curse of dimensionality. However interactions

may have a strong impact on the output uncertainty especially when k is large and factors

are varied on a wide scale, as often happens in numerical modelling.

A method, which is able of accounting for interactions and simultaneously coping with

the curse of dimensionality, is the extended FAST (Saltelli et al. 1999). The extended

FAST can yield estimates of the total sensitivity indices. TiS  defined as the sum of all the

indices ( iS  and higher orders) where a given factor iX  is included. This concentrating in

one single term all the effects involving iX . For additive models, iTi SS =  for all the



factors iX . The estimation of the total sensitivity indices TiS  makes the analysis affordable

from a computational point of view, as we only need k total indices for decomposing

quantitatively the output variance V. Furthermore, the extended FAST allows the

simultaneous evaluation of the first and total effect indices. The estimation of the pair

),( Tii SS  is important to appreciate the difference between the impact of factor iX  alone

on Y )( iS  and the overall impact of factor iX  through interactions with the others on Y

)( TiS . For a 3-factor model, the three total sensitivity indices are:
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where now each 
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V

V
siii ,..,, 21 . Clearly the 

siiiV ,..,, 21
 add up to V, and the

corresponding 
siiiS ,..,, 21
 add up to one; this is not true for the TiS ’s, but a normalisation

factor can be introduced.

Variance based methods such as Sobol’ and the extended FAST display a number of

attractive features for SA:

• Model independence: the sensitivity measure is model independent. It works for non-

linear and non-additive models, unlike methods based on linear regression such as the

standardised regression coefficients (Helton 1993).

• The measure captures the influence of the full range of variation of each factor.

• The measure captures interaction effects; this can be a crucial issue for a design

problem, or for a risk analysis study.

• The methods can treat “sets” of factors as one single factor.

The last bullet means that the analysis can be performed by partitioning the k factors in a

few subgroups and work on these rather than on the individual factors. It is sufficient, for

a two-group example, to rewrite ( )XfY =  as ( )ZU,f  where now ZUX U= , and apply to

the two subsets U  and Z  the approach described above. The cost of obtaining TuS , TzS

(and the corresponding first order terms) depends on the number of subgroups and not on

the number of factors.



The added value of performing by an analysis on groups of factors is clear: in complex

models uncertain factors might pertain to different logical levels, and it might be

desirable to decompose the uncertainty according to these levels. For instance, aleatory

and epistemic sources of uncertainty in the model could be appreciated separately1.

2.4 Combined GSA-GLUE approach

The way of combining GSA and GLUE is straightforward. It is necessary that the sample

generated for the GLUE analysis is designed also for the computation of variance-based

sensitivity indices. So a Sobol' sample or a FAST sample should be used. In this way, by

applying the same set of model runs, predictive uncertainty can be estimated, sensitivity

indices computed and bootstrapping performed.

2.5 Model reduction technique

SA allows identifying, on one side, the relevant parameters, and on the other those who

do not drive significant variation on the likelihood measure. As a consequence, SA is the

basis for the elimination of unneeded complexity from the model and therefore for model

reduction. Removing the unimportant factors/model structures, quantification of

uncertainty can be performed with a reduced model. A big problem in this framework is

usually given by the interaction structure of the model. The more complex is the

structure, the more difficult is the decomposition of effects of input factors into

elementary subsets. So, as already described in the preliminary considerations, the in-

depth analysis of the interaction structure is a challenging task of our problem.

                                                
1 Examples: aleatory (time to the next earthquake) and epistemic (earthquake frequent for a given severity
and area). See Helton and Burmaster 1996.



3 Case study. WAMPUM model

3.1 Description of the WAMPUM model

A simple zero-dimensional model has been applied which describes the oxygen

concentrations and major nutrient processes in the Elbe River at the Weir Geestacht

(Schroeder, 1997). Period of study is 120 days (May 1 to August 28 1997). The model is

run with a time step of 30 minutes.

A data set of daily data is available for model calibration (Petersen et al., 1999). Input

data are meteorological time series and initial conditions for concentrations. Model

outputs are time series of chlorophyll (CHL), phosphates (PO4), oxygen (O2). The Algal

Biomass module of WAMPUM is analysed in the present study. Six input factors are

considered:

ü X1 = depth: Water depth;

ü X2 = T_ref: Reference temperature;

ü X3 = k_light: Critical light intensity;

ü X4 = tendency_scale_factor: (for experimental purpose);

ü X5 = k_att_min: Non-algal light extinction coefficient;

ü X6 = k_att_shade: Algal self-shading coefficient.

Balance equation is expressed as:
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and fct(T,N,P) is the temperature dependence and growth limitation due to lack of

nutrients (N,P).



2. Algal Loss(sedimentation) term

( )...)(......)(... 2144 +×−×+=++=
∂

∂
ALGXTfctCXLOSSX

t
ALG

3. Algal Respiration term

( )ALGXTfctCXNRESPIRATIOX
t

ALG
×−×+=+=

∂
∂

)(...)(... 2344

The reference model time series is shown in the continuous line of Figure 3.1 (parameter

values of the reference curve are shown in the last column of Table 3.1). The measured

data are the dots. A more detailed discussion of the observed data and their representation

applying the WAMPUM model can be found in a companion report (Callies et al., 2000).

3.2 Description of the analysis

Factors

Six factors have been selected for the analysis, sampled from uniform distribution as

shown in Table 3.1. The factors are statistically independent. Three samples have been

generated: a FAST sample (dimension 3990), a Sobol' sample (256 for single factor, for a

total of 3584 runs) and a pure Monte Carlo sample (dimension 4000).

Model output

The model considers three outputs: chlorophyll concentration, oxygen concentration and

phosphate concentration. The model is run with a time step of 30 minutes for a total

simulated time interval of 120 days (May 1 to August 28 1997). Two outputs are

analysed: a time series (at 10 equally spaced times) and a likelihood measure. The

likelihood measure is the same as defined in eq. (1) and is computed by considering

available observed chlorophyll concentration time series.

3.3 GLUE analysis

Time dependent output

The confidence band for the prediction of the chlorophyll time series has been computed,

based on the likelihood measures considered, with N=1, 4. This is shown in Figure 3.2.



With N=1, the low confidence bound remains quite distant from the lower bound of the

observations, while the upper bound is very close to the observations. By considering

N=4, the lower bound is translated closer to observed data, while the upper bound is

below observations (i.e. inaccuracy for upper bound is increased) with a higher frequency

than with N=1.

3.4 Sensitivity analysis

Sensitivity analysis has been done for both the time series and the likelihood measures.

Time series

FAST sensitivity indices for the time series of chlorophyll concentration are shown in

Table 3.2-3 and Figure 3.3-4.

Parameter X4 (tend_sc) is the most important parameter. It is the highest 1st order

sensitivity index and also its total effect doubles the total effect of any other parameter.

Among the remaining factors, X1,  X3,  X5 (depth, k_light_sm, k_att_min)

are the most influent, X6 (k_att_sh) has a slight importance, while X2 (T_ref) is not

important. It is interesting to note that the trend of the sensitivity indices mimics the trend

of the time series (Fig. 3.1-3.2).

Likelihood measures

The dotty plots are given in Figure 3.5-6. A significant pattern can be identified for

tend_sc. It has to be expected that only tend_sc has a significant 1st order sensitivity

coefficient and that interaction is mainly important. Following the results of the previous

case study, this kind of portrait indicates that the model is over-parameterised and that the

estimation problem is under-determined.

The sensitivity indices for the likelihood measure with N=1 are shown in Figure 3.7 and

Figure 3.8. As expected, the only significant main effect is detected for tend_sc, while a

big interaction is obtained for all factors except T_ref (5 out of 6). This means that good

runs (behavioural runs) are not driven by a particular factor, but by combinations of them.

Moreover, T_ref is not important in all cases and can be surely fixed at a nominal value.



By increasing N (not shown here), the portrait is very similar, but the interaction structure

is emphasised: the 1st order effect of tend_sc is smaller, while the difference between

1st order and total effect is increased.

Another interesting aspect is the difference between SA on raw data and on their

likelihood. In particular, factors depth, k_light_sm, k_att_min, k_att_sh,

have an almost zero effect for the likelihood measure, while for the physical output the

effect is more significant. This is due to the fact that they induce a non-negligible

increase in the variance of the algae concentration, but for most of such runs the

likelihood is null. So a small variance in the likelihood can correspond to a large variance

in the raw data. In this sense the GSA-GLUE analysis is much more informative about

the model with respect to the analysis of raw data only.

3.5 Analysis of the correlation structure of the joint posterior distribution

This analysis aims at studying in more detail the properties of the posterior joint pdf of

the input factors. This will show how any tool applied to represent in more detail the

interaction structure confirms the basic features identified by the GSA. The basic idea is

to study the covariance structure of the posterior distribution of the input factors obtained

by applying the likelihood measure.

By normalising likelihood measures we obtain weights such as:
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the correlation coefficients can be estimated as:
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Such correlation coefficients would allow evaluating the pair-wise interaction structure,

which is usually not observable from the total sensitivity indices. This analysis is similar

to the approach presented by Hornberger and Spear (1981) but with a major difference: in

RSA, correlation structure is analysed on the behavioural subset, while here all runs are

used by applying different weights. This allows using the whole information.

Bootstrapping

Further inspection in the posterior joint pdf can be obtained by a bootstrapping procedure.

Each parameter set can be sampled with a frequency proportional to the weight assigned

by applying the likelihood measure (Russian roulette). As a result, a sample of the

posterior joint pdf is obtained by using the same runs of the previous analyses.

The correlation coefficients of the posterior distribution have been evaluated via the

bootstrapping procedure (sample size 4000), for N=1, 4. Values are shown in Table 3.5

and Table 3.6 respectively.

The correlation coefficients do not reflect any particular main interaction structure, other

that T_ref is not correlated to the other variables. For N=4, the more selective

classification procedure induces a higher correlation between X1, X3, X5, X6.

This kind of result implies some consequences about the analysis of the interaction

structure of the WAMPUM model:

1. since coupled effects are not relevant, the interaction structure will be dominated by

higher order effects;

2. hence, the interaction structure has a very high degree of complexity;

3. the application of conventional multivariate statistics like principal components

analysis for analysing the posterior distribution will not be useful.

So, the analysis of the interaction structure of the present test case does not allow to

'summarise' into a simple scheme the interaction structure of 4 out of 6 factors (X1,  X3,

X5, X6). The only possible assessments are:



ü unimportance of X2 (T_ref): the role of GSA (total index) was essential, since first

order effects (or scatter plots) alone could not allow this conclusion (who could

distinguish between X2 and [X1, X3, X5, X6] from scatter plots or 1st order sensitivity

indices?);

ü the relevance of X4 (tendency scale factor), being the only factor directly affected by

the conditioning on observations;

ü model over-parameterisation and under-determination of the estimation/optimisation

problem;

ü very strong degree of interaction, of a degree higher than 2nd order.

A deeper comprehension of the interaction structure needs more powerful techniques.

One possibility is the tree-structured density estimation technique by Spear. Another

approach is to apply Bayesian networks (Pearl 1988). An example of this can be found in

a companion report (Callies et al., 2000), where Bayesian networks are applied to

describe the interaction structure of the six input factors of WAMPUM.

Another possibility lies always in framework of GSA and consists of computing the

whole variance decomposition, in order to evaluate the importance of high order

interaction terms.

Conclusions about the representation of the interaction structure

GSA allows a general, quantitative, model free identification of basic features of the

interaction structure. On the other hand, it does not allow a complete representation of

such a structure. Such a representation can be drawn applying other tools, which, on the

other hand, require the introduction of more stringent assumptions about the interaction

structure and have a less general applicability. In all cases, such representations confirm

GSA results (in this case the interaction between the kinetic factors) and GSA, therefore,

is a 'common denominator' to them.

In particular, the application of a GSA provides a quantitative evaluation about

fundamental aspects of the calibration problem, such as:

ü which factors are important for calibration, i.e. are somehow conditioned by

observations;



ü the degree of complexity of the interaction structure;

ü which factors are involved in the interaction structure.

Such information has a general validity, since it is obtained without assumptions about

the model structure and/or the error structure. So, even if it does not provide a complete

representation of the interaction structure, GSA reveals some general and basic properties

of such a structure, which are common to any more detailed representation and which are

not affected by any "modeller's prejudice".

3.6 Complete GSA

In this section, the complete variance decomposition of the likelihood measure is

considered, in order to verify the existence of privileged interaction structure of high

order. This has been done computing the Sobol' indices of all orders, considering a

sample size of about 32,000 runs. The elements in the variance decomposition, which are

significant, are shown in Figure 3.7. The largest contribution is given by S4 (i.e. the main

effect of X4). Moreover, interaction terms of 3rd/4th/5th order between all factors except X2

are present. No particular interaction term is prevailing, confirming the extreme

difficulty, in the present test case, of identifying a clear structure for the set of factors

[X1, X3, X5, X6].



Variable Name Minimum Maximum Reference

X1 depth 1.2 4 2.5

X2 T_ref 0 30 14

X3 k_light 2 50 20

X4 tendency_scale_factor 0.1 3 1

X5 k_att_min 0.1 1.5 1

X6 k_att_shade 0.002 0.01 0.005

Table 3.1. Factors of the analysis of the WAMPUM model.

Time (days) 10.4 20.8 31.2 41.6 52 62.4 72.8 83.2 93.6 104

X1 0.29 0.09 0.11 0.06 0.08 0.09 0.06 0.11 0.13 0.10

X2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

X3 0.08 0.14 0.03 0.02 0.09 0.03 0.02 0.05 0.15 0.03

X4 0.17 0.29 0.31 0.42 0.44 0.39 0.49 0.31 0.30 0.43

X5 0.09 0.09 0.06 0.03 0.06 0.05 0.02 0.06 0.10 0.04

X6 0.02 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01

SUM 0.65 0.62 0.50 0.55 0.68 0.56 0.60 0.54 0.70 0.61

Table 3.2. Fast first order indexes for the Chlorophyll time series.

Time (days) 10.4 20.8 31.2 41.6 52 62.4 72.8 83.2 93.6 104

X1 0.40 0.25 0.38 0.38 0.27 0.34 0.36 0.34 0.28 0.35

X2 0.01 0.01 0.03 0.03 0.02 0.02 0.04 0.02 0.01 0.02

X3 0.26 0.28 0.30 0.25 0.21 0.25 0.20 0.28 0.26 0.21

X4 0.48 0.59 0.74 0.83 0.73 0.75 0.85 0.67 0.57 0.79

X5 0.22 0.18 0.29 0.23 0.17 0.23 0.21 0.25 0.19 0.21

X6 0.12 0.12 0.13 0.15 0.10 0.10 0.14 0.09 0.08 0.10

Table 3.3. Fast total order indexes for the Chlorophyll time series.



1st order Tot order

X1 0.0147 0.623755

X2 3.16E-05 0.020224

X3 0.0321 0.501673

X4 0.1562 0.725596

X5 0.0227 0.634868

X6 0.0026 0.290804

Table 3.4. FAST sensitivity indices for the likelihood measure with N=1.

X1 X2 X3 X4 X5 X6

X1  1.0000 -0.0007 -0.1016 -0.0918 -0.1303 -0.0759

X2 -0.0007  1.0000 -0.0163 -0.0261  0.0113 -0.0159

X3 -0.1016 -0.0163  1.0000 -0.0642 -0.0902  0.0252

X4 -0.0918 -0.0261 -0.0642  1.0000  0.0070 -0.0780

X5 -0.1303  0.0113 -0.0902  0.0070  1.0000 -0.0432

X6 -0.0759 -0.0159  0.0252 -0.0780 -0.0432  1.0000

Table 3.5: Correlation matrix of the posterior pdf for N=1 (estimated via
bootstrapping).

X1 X2 X3 X4 X5 X6

X1 1.0000  0.0626 -0.3422 -0.0343 -0.3894 -0.3220

X2 0.0626  1.0000 -0.0960 -0.0264 -0.0104  0.0199

X3 -0.3422 -0.0960  1.0000 -0.1756 -0.3513  0.0810

X4 -0.0343 -0.0264 -0.1756  1.0000 -0.0860 -0.0070

X5 -0.3894 -0.0104 -0.3513 -0.0860  1.0000 -0.2544

X6 -0.3220  0.0199  0.0810 -0.0070 -0.2544  1.0000

Table 3.6. Correlation matrix of the posterior joint pdf for N=4 (estimated via
bootstrapping).



Figure 3.1: Model reference run and observations.
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Figure 3.2. Confidence bands applying GLUE with N=1 and N=4.
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Figure 3.3: FAST first order sensitivity indices for chlorophyll concentration.
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Figure 3.4: FAST total order sensitivity indices for chlorophyll concentration.



Figure 3.5. Scatter plots for the weights with N=1.

Figure 3.6. Scatter plots for the weights with N=4.
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Figure 3.7. FAST sensitivity indices for the likelihood measure with N=1.
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4 Concluding remarks
In the present report, a methodological approach is presented for the reduction of models

of time-dependent output. The methodology consists of a combination of the GLUE and

GSA methodologies. The use of GLUE allows both conditioning to observation and

performing a sensitivity analysis on a scalar function (the likelihood measure) instead on

a time-dependent output, so avoiding the calculation of time-dependent sensitivity

indices. Moreover, GSA allows a quantitative decomposition of the likelihood variance

with respect to the input factors, including high order terms. Factors providing negligible

contributions to the likelihood variation can be clearly identified, allowing the modeller

to exclude them from the calibration procedure and to fix them at a nominal value. On the

other hand, factors having a significant impact on the likelihood measure (either as a

main effect or as a total effect in interaction with all the other factors) have to be

accounted in calibration, since they are able to drive behavioural runs of the model.

The model reduction technique is based on the results of the GSA. GSA allows

partitioning the variation of the likelihood measure to the different input factors. So,

factors providing negligible contributions to the likelihood variation are clearly identified

and model reduction criteria are easily defined accordingly.

Model over-parameterisation usually implies that factors important for calibration hardly

have an effect identifiable through elementary structures. On the other hand, a highly

complex interaction structure is usually present. The analysis of the interaction structure

is a challenging problem and a general method for assessing the posterior joint pdf is

hardly to be identified. Some degree of arbitrariness in the construction of such tree-

structures (Spear et al., 1994) or Bayesian networks (Pearl, 1988) cannot be avoided.

Global SA can be very useful in this context, since it provides quantitative criteria for

choosing 'leading' factors based on main and total effect. Such criteria do no necessarily

provide a direct, complete representation of the interaction structure. However, the

advantage of variance based GSA is that it makes few assumptions on the structure of the

errors and of the input-output mapping. So, GSA results can be taken as a common

denominator to all other tools applied to represent the interaction structure.



Applying the methodology to the Elbe River case study of IMPACT, enabled to assess

the unimportant factors (T_ref) of the model. Moreover, the main features of the

interaction structure of the remaining factors have been highlighted.

The methodological approaches identified will be applied in the further activities of the

IMPACT project, where applicable.
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