An example of soil erosion monitoring in Flanders

EUSO Stakeholder Forum

Petra Deproost 20 October 2021

DEPARTEMENT OMGEVING

Soil erosion monitoring: what's in a name?

IN FLANDERS:

- No 'field measurements' of soil erosion
- Monitoring by modelling
- EVOLUTION in time?
- Important factors:
 - \rightarrow Rain erosivity (R)
 - \rightarrow Soil erodibility (K)
 - \rightarrow Topography (LS)
 - × Upstream area / landuse / connectivity
 - X Slope
 - $\rightarrow\,$ Crops and crop management (C)

RUSLE-based modelling

Mean annual soil loss: A = R. K. LS. C. P

R : rain erosivity factor => 1250 MJ.mm.ha⁻¹.h⁻¹.year⁻¹

- → Royal Meteorological Institute (Ukkel, Brussels), 1898-2020
 × 30 year mean average (climatic reference period)
- \rightarrow Confirmed by mean R of 50 meteorological stations, 2001-2020
- → No year-dependent R-factor in our erosion monitoring!

RUSLE-based modelling

Mean annual soil loss: A = R. K. LS. C. P

K : soil erodibility factor => soil texture (Belgian Soil Map)

LS : topographical factor

- → 2-dimensional flux decomposition algorithm (Desmet & Govers, 1996)
- \rightarrow high resolution DTM based on LIDAR elevation data (16 points/m²)
 - × Converted to 5 m grid cells
- \rightarrow roads, parcel borders and land use are considered

• C : crop management factor

→ depends on the application: potential erosion (general C-factor), erosion risk indicator (specific C-factor)

P : erosion control practice factor => 1

 \rightarrow erosion control measures: C-factor

Potential soil erosion

Soil erosion risk

- Based on the potential soil erosion on parcel level
- Incorporation of crop and crop management information (CAP registration and conditionnality)

Specific C-factor, based on

- → Main crop (MC): look-up table of C-factors
- → Cover crops (CC1, CC2): before and/or after main crop
 × max. reduction 10% (in function of C-factor cover crop)

\rightarrow Agri-environment-climate measures (AECM):

- × Grass buffer strips, grassed waterways
 - → C-factor 0,01
- × Reduced tillage
 - \rightarrow 40% or 85% reduction (in function of soil cover)
- × Bird feed management
 - \rightarrow 10% reduction

Soil erosion risk

Specific C-factor, based on

- → **Obligatory measures GAEC (CAP):** conditions for income support
 - × Depending on potential erosion class and crop choice
 - × Farmers have the choice between different measures, but no general registration of chosen measures
 - × Measures are controlled in the field and monitored by questionnaires
 - → Farmers' choices and degree of adaptation
 - × Measures are linked to agricultural parcels through randomisation
 - $\rightarrow~$ Taking into account potential erosion class and crop choice
 - X Reductions, e.g.
 - → Reduced tillage: 40% or 85% reduction (in function of soil cover)
 - → Micro-dams between ridges: 60% reduction
 - → Contour sowing: 10% reduction

$\bullet \quad \mathbf{C} = \mathbf{C}_{\mathsf{MC}} * \mathbf{C}_{\mathsf{CC1}} * \mathbf{C}_{\mathsf{CC2}} * \mathbf{C}_{\mathsf{AECM}} * \mathbf{C}_{\mathsf{CAP}}$

Soil erosion risk indicator

- Evolution 2008-2019
- Official regional statistic since 2020
 - \rightarrow https://www.statistiekvlaanderen.be/nl/erosierisico
- Indicator = total area of agricultural parcels (ha) in the highest erosion risk categories

Soil erosion risk indicator

- Types of crops in highest soil erosion risk category
 - $\rightarrow 57\%$ corn
 - ightarrow 10% onions
 - \rightarrow 6% potatoes

Situation 2019

145.000 ha potential erosion risk

- \rightarrow 38.117 ha > 10 ton/ha/year
- \rightarrow 4.677 ha > 20 ton/ha/year
- Obvious influence of more stringent GAEC obligations since 2016

Crops in the highest risk category (> 25 ton/ha/year)

Sediment delivery indicator

- In preparation (expected: spring 2022)
- Sediment delivery to watercourses, ditches and sewage system
- Modified version WaTEM/SEDEM (KULeuven) => CN-WS model
 - $\rightarrow\,$ RUSLE equation combined with Transport Capacity (TC)
 - \rightarrow Incorporation of buffering measures, ditches, sewage system,...
 - → Higher impact of upstream landuse/crop choices and connectivity elements
- Opportunity for calculating net erosion risk
 - \rightarrow Sediment_{IN} + gross erosion < TC
 - X net erosion = gross erosion
 - \rightarrow Sediment_{IN} + gross erosion > TC
 - × net erosion < gross erosion
 - × if sediment_{IN} > TC: net sedimentation

 \rightarrow net erosion = 0

Conclusion

Soil erosion monitoring in Flanders = modelling approach

RUSLE-based soil erosion risk indicator

- $\rightarrow\,$ Derived from the calculation of potential erosion on field parcel level
- $\rightarrow\,$ Specific C-factor for crop and crop management choices
- \rightarrow Opportunities for improvement
 - × More detailed registration of erosion control practices
 - × Refined calculation of the C-factor
 - × Influence of organic carbon on soil erodibility
- Sediment transport modelling => net soil erosion risk indicator
 - $\rightarrow\,$ Higher focus of soil erosion and sedimentation at landscape level
- No indicator for actual soil erosion
 - $\rightarrow\,$ Actual rain erosivity cannot be used
 - \times due to the high spatial variability of amounts and intensities of rainfall
 - \rightarrow Advantage long term mean R-factor: indicators reflect the human impact

Petra Deproost GOVERNMENT OF FLANDERS Department of Environment and Spatial Development

petra.deproost@vlaanderen.be

DEPARTEMENT OMGEVING

