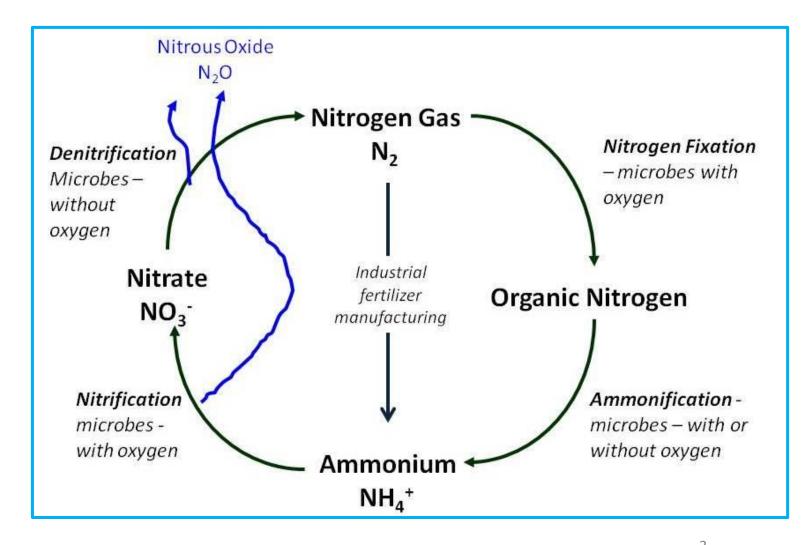
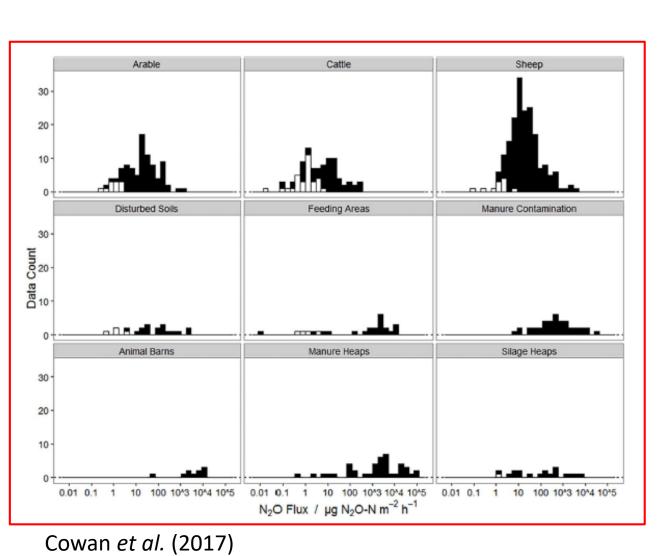

Nitrous oxide emissions determined by eddy covariance and static chamber methods from a grazed grassland

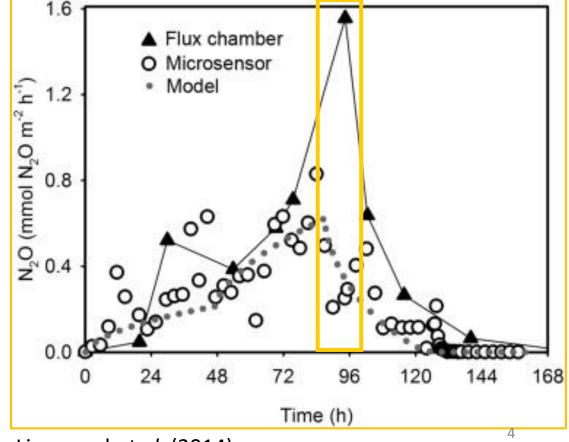
Murphy, R.M. Richards, K.G. Krol, D. Grebremichael, A. Lopez-Sangil, L. Rambaud, J. Cowan, N. Lanigan, G.J. and Saunders, M.


Nitrous oxide emissions in time and space in an intensively managed grassland

- Context
- Methods
- Results
- Conclusions


Nitrous oxide (N_2O)

- N₂O GWP 265
- Climate change
- N cycle
 - **Nitrification**
 - Denitrification



N₂O fluxes vary over space and time

HOTSPOTS + HOT MOMENTS = HETEROGENEOUS EMISSIONS

(big pain to quantify with low uncertainty)

Liengaard et al. (2014)

How best can we estimate N₂O emissions from an intensively grazed pasture?

How best can we estimate N₂O emissions from an intensively grazed pasture?

Eddy Covariance

Integrates high frequency field scale N₂O fluxes over a large area and multiple sources ☺

BUT

Can't disaggregate between sources (8)

How best can we estimate N₂O emissions from an intensively grazed pasture?

Eddy Covariance

Integrates high frequency field scale N₂O fluxes over a large area and multiple sources [©]

BUT

Can't disaggregate between sources (8)

Static chambers

OR

Investigating treatment effects on N₂O emissions ©

BUT

Limited spatial and temporal resolution which means high uncertainties 😕

How best can we estimate N₂O emissions from an intensively grazed pasture?

Eddy Covariance

Integrates high frequency field scale N₂O fluxes over a large area and multiple sources ©

BUT

Can't disaggregate between sources (8)

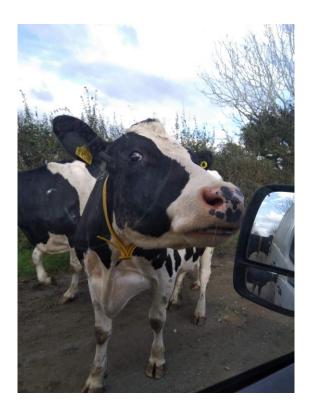
Static chambers

OR


Investigating treatment effects on N₂O emissions [©]

BUT

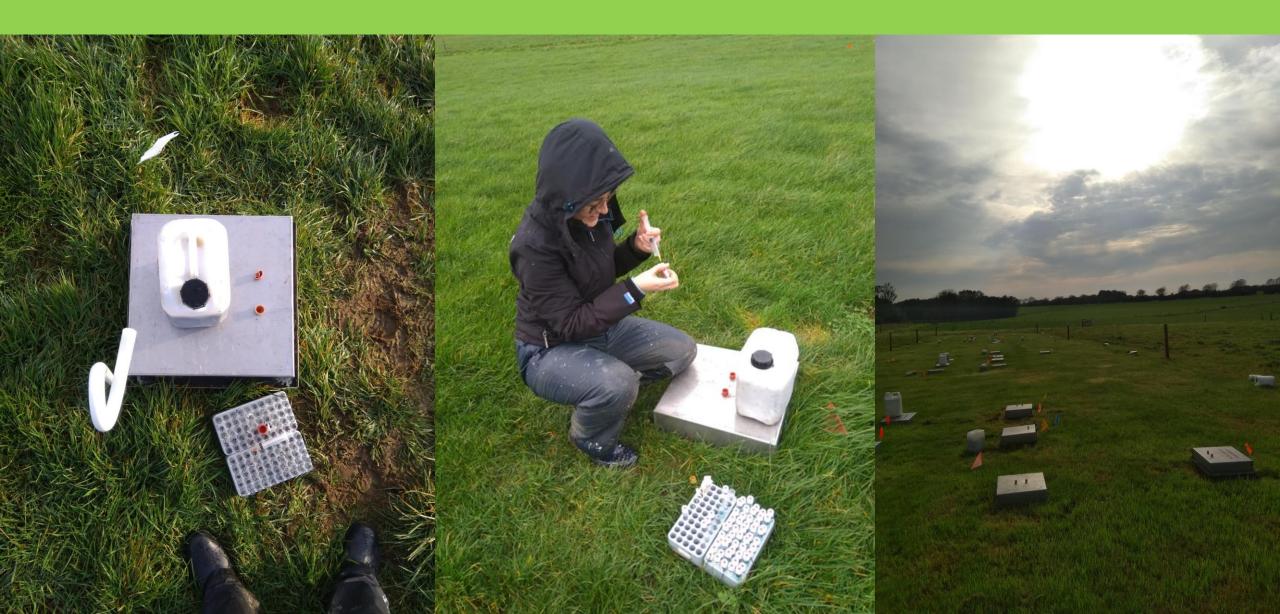
Limited spatial and temporal resolution which means high uncertainties 😕

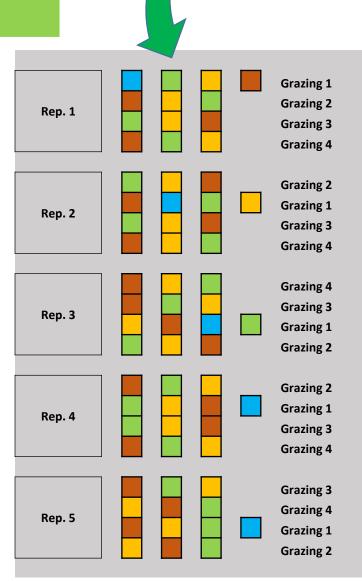


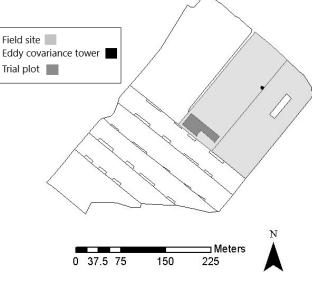
Management

6 fertilizer events9 grazing events

Date	Management	Application date	Application rate		rate
		-	k	g N ha ⁻¹	L
		-	CAN	SU	Dung
04/02/2020 - 10/02/2020	Grazing	-	-	-	-
03/03/2020 - 20/03/2020	Grazing×	03/03/2020	-	517	551
02/04/2020	Fertilizer [×]	02/04/2020	50	-	-
10/04/2020 - 18/04/2020	Grazing	-	-	-	-
03/05/2020-10/05/2020	Grazing×	04/05/2020	-	517	559
11/05/2020	Fertilizer [×]	11/05/2020	40	-	-
25/05/2020-03/06/2020	Grazing×	25/05/2020	-	517	405
03/06/2020	Fertilizer [×]	03/06/2020	27	-	-
17/06/2020 - 24/06/2020	Grazing	-	-	-	-
29/06/2020	Fertilizer	-	20	-	-
09/07/2020 - 18/07/2020	Grazing	-	-	-	-
01/08/2020 -12/08/2020	Grazing	-	-	-	-
14/08/2020	Fertilizer	-	27	-	-
31/08/2020 - 21/09/2020	Grazing×	01/09/2020	-	542	355
14/09/2020	Fertilizer [×]	14/09/2020	27	-	-

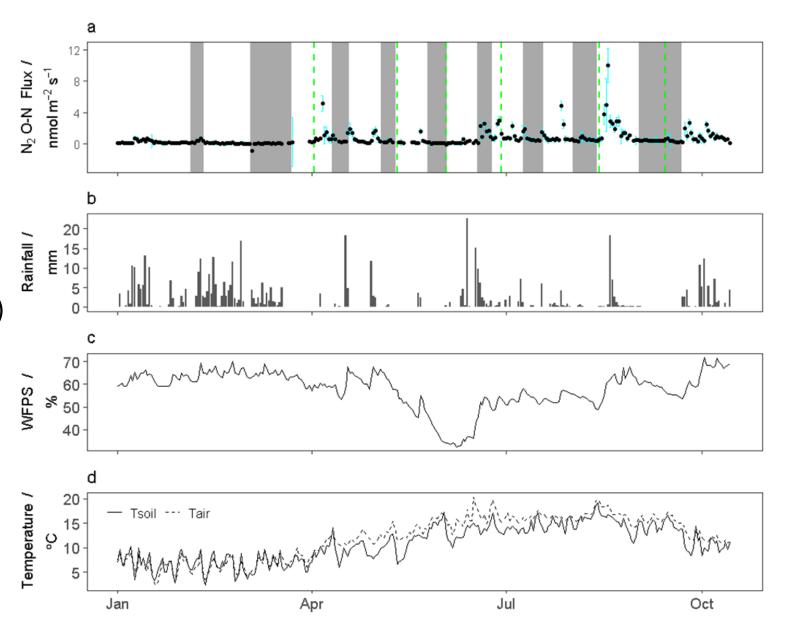





Methods: Static Chambers

Treatments

- 5 replicates per treatment per grazing
 - Control (5 reps/exp)
 - Calcium ammonium nitrate (CAN)
 - Dung + CAN
 - Dung was applied at 2 kg within a 30 cm diameter area
 - Synthetic urine (SU) + CAN
 - SU applied at 1.8 L
- Randomized block design
 - 1.5 m between treatments
 - SU and dung applied when cows were in the SW of paddock
 - CAN applied following field application



Management:

- Grey blocks grazing
- Green dashed line fertilizer

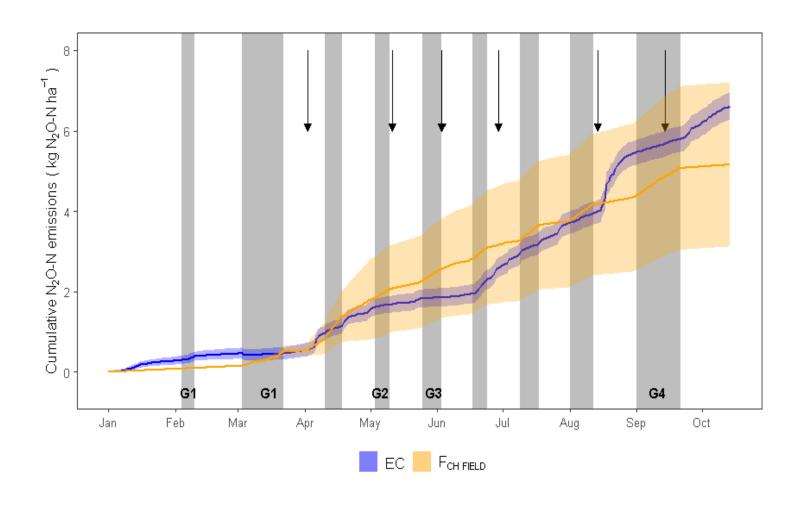
Significant correlations with N_2O (p < 0.05)

- WFPS
 - Feb, March, April, June, July
- Rainfall
 - Feb, March, May, July
- Soil temperature
 - Feb, March

	Partial N ₂ O-N EF							
Grazing	Grazing CAN		SU+CAN		Dung+CAN			
	%	95% C.I.	%	95% C.I.	%	95% C.I.		
1	5.58	2.70	1.28	0.31	0.38	0.14		
2	1.60	0.14	0.28	0.06	1.01	0.24		
3	2.22	0.57	0.30	0.04	0.30	0.06		
4	1.73	0.18	0.49	0.06	0.87	0.16		
Mean	2.78	0.90	0.59	0.12	0.64	0.15		

CAN > dung+CAN > SU+CAN

Management:

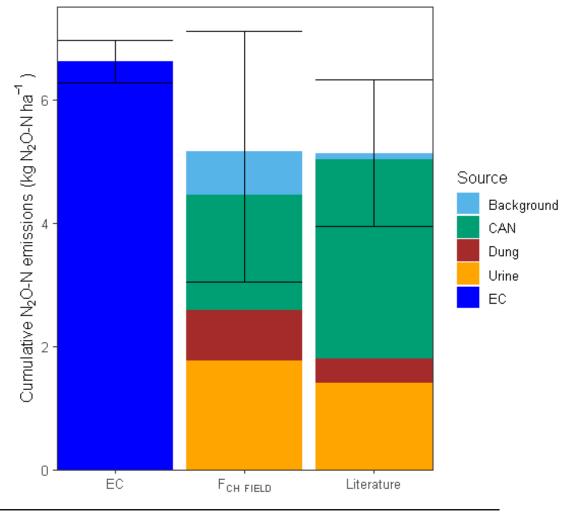

- Grey blocks grazing
- **I** fertilizer

EC

- $6.62 \pm 0.33 \text{ kg N ha}^{-1}$
- 0.96 %

EF-derived chamber field flux (FCH_FIELD)

- $5.16 \pm 2.04 \text{kg N ha}^{-1}$
- 0.72%



Background: 14%

CAN: 36%

Dung: 16%

Urine: 34%



Author	Treatment	EF		N applied to field	Cumulative N ₂ O-N flux		
		%	95%.CI	kg N ha ⁻¹	kg N ha ⁻¹	95% C.I.	
Krol et al. 2017	Background	-	-	-	0.11	-	_
Harty et al. 2016	CAN	1.49	0.71	191	2.85	1.36	
Krol et al. 2016	Dung	0.38	0.31	125	0.39	0.31	
Marie et al. 2020	Urine	0.47	0.10	299	1.41	0.50	3

Conclusions

- The EC technique provided spatially and temporally robust annual estimates of N₂O emissions while high uncertainties in emission factor derived chamber cumulative flux estimates were observed.
- Using EC and static chambers in a complimentary fashion can provide more certain and informative estimates of N₂O-N fluxes at the field scale
- By disaggregating field N₂O-N emissions by source, appropriate mitigation strategies for grazing systems can be developed and implemented

Thank you for your attention!

Email: murphr32@tcd.ie / <u>Rachael.murphy@teagasc.ie</u>
Twitter: @Botanist_Rach