

Renewable Hydrogen in Fuel Cell Heavy Duty Trucking - Ramp-up towards 2030

JRC Workshop Decarbonisation of Heavy Duty Vehicle Transport 28 October 2020

Reinhold Wurster · Patrick Schmidt Ludwig-Bölkow-Systemtechnik GmbH (LBST) · Munich · Germany

systemtechnik

- 1. LBST
- 2. Challenging boundary conditions
- 3. Infrastructure implications
- 4. Fuel cell trucks coming to the market a selection
- 5. Take-away

systemtechnik

1 Ludwig-Bölkow-Systemtechnik GmbH – company profile

3

1 Ludwig-Bölkow-Systemtechnik GmbH (LBST)

ludwig bölkow systemtechnik

Company profile

- Cutting edge competence
 - 35 years of continuous expertise
 - Interdisciplinary team
 - Independent expertise
- Bridging technology, markets, and policy
- Global and long term perspective
- Rigorous system approach thinking outside the box
- Serving international clients in industry, finance, politics, and NGOs

German aeronautic engineer and industrialist, co-founder of Airbus Industries and founder of LBST

Selected references

- PRYHDE CGH₂ refuelling protocol for HDV
- JRC Well-to-Tank studies
- Tuck Foundation Future Fuel for Truck Freight
- German Transport Ministry Mobility & Fuels Strategy
- Automotive & energy industry Techno-economics / energy / GHG of fuel pathways
- CertifHy EU-wide Certification System for Hydrogen

1 Selected LBST clients

ludwig bölkow systemtechnik

Mobility

Politics

DAIMLER	BMW
Ford	Hyundai
BOSCH	Valeo
ProtonMotor	AIRBUS

Toyota KEYOU

ALSTOM

Volkswagen

Honda

ALSET

MAN

Nissan

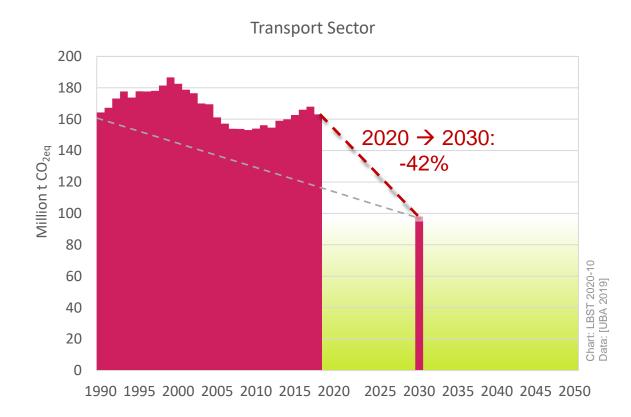
AUDI

Energy

Equinor	SHELL	REPSOL	uniper	Concawe
CAPEX	Innogy	RWE	Amprion	EDF
COFELY	TENNET	АХРО	EnBW	OGE
GAZPROM	Gasunie	Thyssengas		

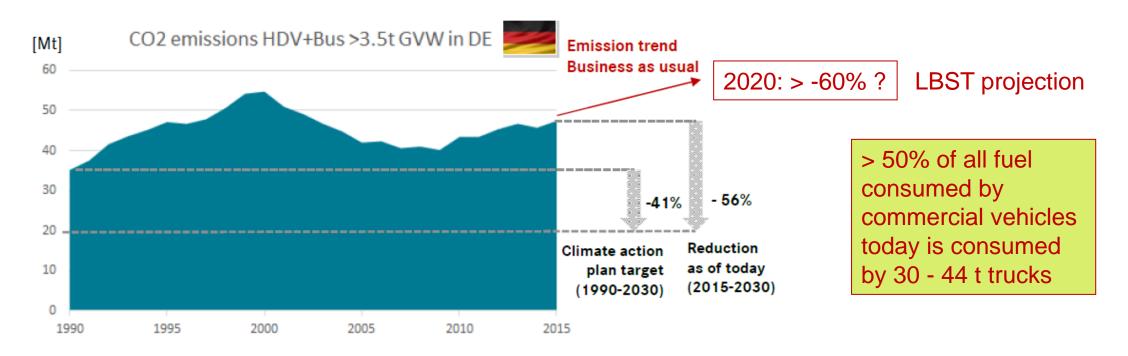
Industry

European Pa	arliament	European Commission	EC JRC	SIEMENS	NEL	here	TÜV SÜD
KfW	BMVI	Landesregierung NRW		LINDE GROUP	REHAU	AngloAmerican	
Landesregie	rung Niedersachs	en Hessen Agentur		Air Liquide	HEXAGON	HYDROGENICS	Marubeni
VDA	FCH JU	Hydrogen Europe	DWV	STILL	H2energy	Technova	


2 Challenging boundary conditions

6

Since 30 years net GHG emissions from entire transport sector not reduced in Germany:



2 GHG reduction requirements for commercial vehicles > 3.5 t

ludwig bölkow systemtechnik

Official CO₂ emission inventory data, submitted to UNFCCC

¹ KBA statistics on total traffic on German territory does not account HDV <6t GVW, were added separately under the assumption that in this case only vehicles with German registration have to be considered

² HDV with 2 axles subtracted for stringency due to changes in toll legislation

³ Assuming 46% less fuel consumption for HDV 3.5-12t GVW

Sources: DIW 2015, EEA 2016, KBA, BAG, UNFCCC Emission Inventory Data

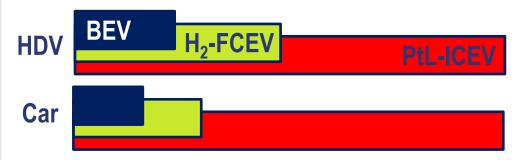
© Ludwig-Bölkow-Systemtechnik GmbH

Source: Manfred Schuckert.

Daimler Trucks, Berlin, 24 May 2018

8 _

2 Renewable electricity-based truck and car fuel/powertrain combinations

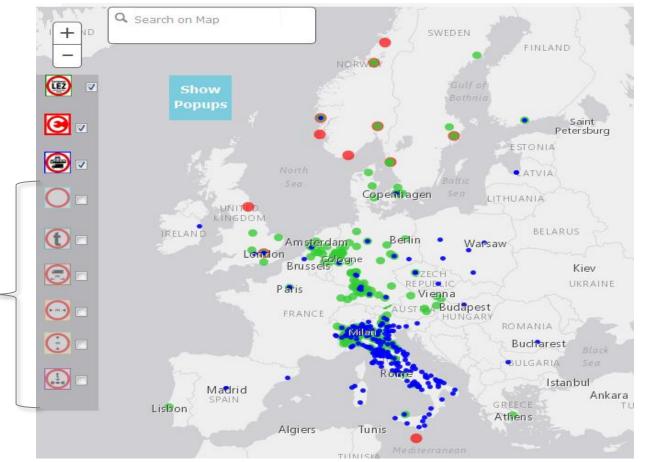


ludwig bölkow systemtechnik

Renewable electricity demand for several fuel/powertrain combinations (per 100 km) 12t Truck 84 kWh 192 kWh 407 kWh 380 kWh Car 15 kWh 31 kWh 93 kWh 103 kWh 20 *) FCEV and ICE vehicle and ICE vehicle and BEV and direct electricity use Power-to-Methane Power-to-Liquid hydrogen use Source: Agora Verkehrswende 2017 auf Basis von DLR/ ifeu/ LBST/ DFZ 2015

Green Electricity Demand:

2 Existing access limits for urban centers in Europe

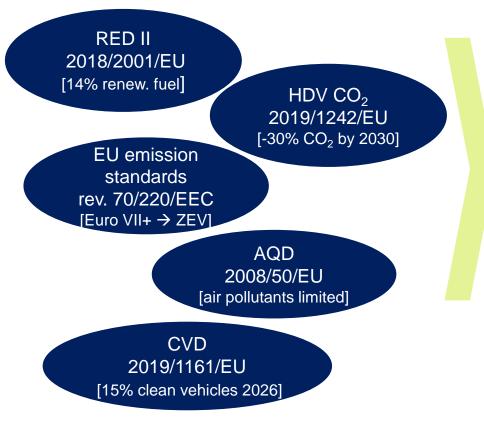

Low Emission Zones (LEZs) implemented in areas where air pollution levels are dangerous to health (e.g. Central Europe)

• • •

Key Access Regulation Schemes (Key-ARS) (e.g. Southern Europe)

Source: http://urbanaccessregulations.eu

Diesel drives will increasingly be banned from urban areas – in Paris as early as from 2025


Following pollutant emissions, limiting noise emissions is the next big issue for urban agglomerations \rightarrow the end of the combustion engine is foreseeable (of the >100 C40 cities [www.c40.org], for example, Paris will ban diesel from 2025, and e.g. Paris, Mexico City, Madrid and Athens, a total of 12 cities, will only use zero-emission buses from 2025)

Others

BST.de

2 Regulatory requirements favoring ZEVs incl. FCEVs

Requirements (push)

Enablers (pull)

AFID 2014/94/EU [H₂ infra mandatory]

Eurovignette rev. 1999/62/EU [-75% toll for ZEVs]

> Extended urban delivery times [noise → ZEVs]

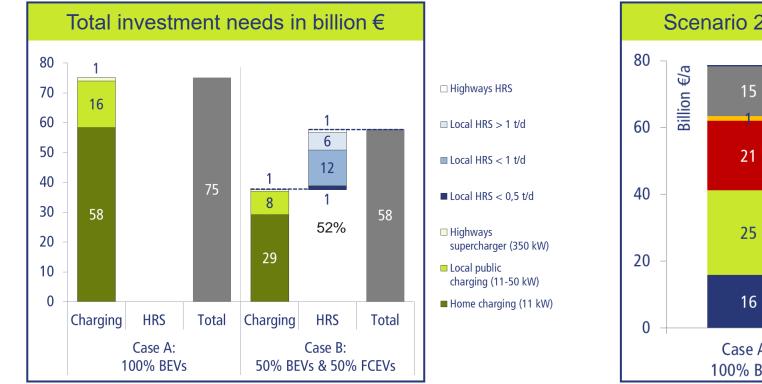
> > 11

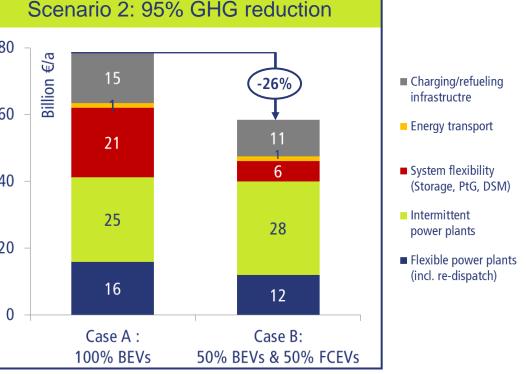
BST.de

ludwig bölkow systemtechnik

C40 CITIES www.c40.org [stepwise ICE ban by cities}

2 Lower cumulated investments already for a BEV+FCEV mix compared to BEV-only infrastructure

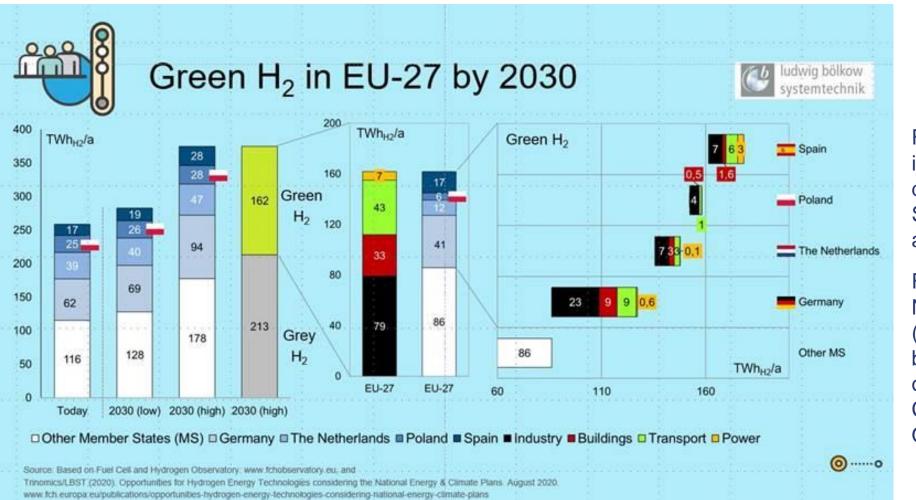



ludwig bölkow systemtechnik

12

BST.de

Case A: 45.8 million BEVs in 2050 | Case B: 22.9 million BEVs and 22.9 million FCEVs in 2050



Source: The impact of electro-mobility on energy supply in a future energy system dominated by renewable electricity | World Hydrogen Energy Conference 2018 | Rio de Janeiro 21 June 2018 | Jan Michalski, Ulrich Bünger, Reinhold Wurster

28 October 2020

2 Significant near-term H₂ contribution for transport in EU-27

Forecast of H2 demand in EU-27 by 2030 depicted by EU Member State, application areas, and green vs grey H₂.

systemtechnik

Figures are based on NECP study for FCH-JU (without UK) amended by recent demand data obtained from the Fuel Cell and Hydrogen Observatory.

ludwig bölkow systemtechnik

3 Infrastructure implications

3 FCEV shows lowest infrastructure costs for EU coverage

systemtechnik

Cumulative infrastructure investments per ramp-up stage		BEV ^(*) truck	FCEV truck	CEV truck
1. Pilot network	Pilot projects with focus on areas with high traffic volumes (> 100,000 HDT annually)	0.7 B€ (35 HPCs) First stations	0.6 B€ (20 HRSs) First stations	2.7 B€ (1,600 km)
2. Area-coverage network	Complete coverage of Europe as a consistent network	2.5 B€ (120 HPCs)	0.6 B€ (20 HRSs)	36.2 B€ (21,500 km)
		Increased network to enable pan-European trips	Increased network to enable pan-European trips	Complete catenary network already required for pan- European trips
3. High-demand network	Complete coverage of Europe with sufficient capacity	29.5 B€ (1,400 HPCs)	29.4 B€ (920 HRSs)	44.1 B€ (21,500 km)
		Complete network with more stations to meet energy demand	Complete network with more stations to meet hydrogen demand	More converter stations (increasing capacity) to meet energy demand

(*) Investments into system integration for short-/long-term electricity storage not included

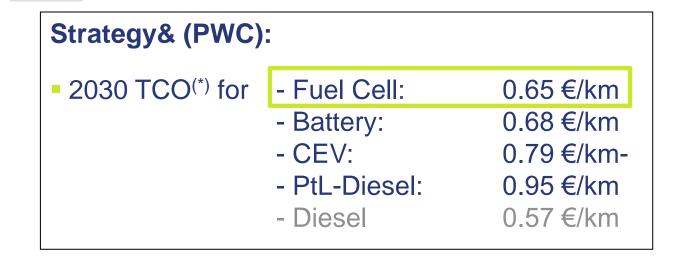
LBST.de

15

3 Only moderate H₂ refueling infrastructure required for Germany

systemtechnik

	2020	2025	2030	2035	2040	2045	2050
No. of FC trucks in Germany	0	15,500	48,700	77,400	135,000	188,100	221,300
Share of FC trucks of total HDV market	0 %	7 %	22 %	35 %	61 %	85 %	100 %
H ₂ demand in M t							
No. of HRSs	0	50	70	90	110	124	137
Annual expenditure for the construction and operation of the HRSs in B \in ^(*)	0	3.06	4.28	5.51	6.73	7.58	8.38


(*) Annuity of investments and expenditures for H₂ production excl. taxes and duties

Source: Wie könnte ein Tankstellenaufbau für Brennstoffzellen-Lkw in Deutschland aussehen? | Martin Wietschel, Till Gnann - FhG-ISI & Philipp Rose - PwC Strategy& (Germany) GmbH | 09/2020]

3 Full cost projections for fuel cell heavy duty trucks

ludwig bölkow systemtechnik

(*) Total Cost of Ownership/TCO:

energy cost, maintenance cost, depreciation of vehicles @ 2.3 €/I PtL-Diesel | 0.29 €/kWh | 6.8 €/kg_{H2} |

@ > 50 €/t_{CO2} alternatives competitive with Diesel-ICE

European infrastructure – minimum/sufficient

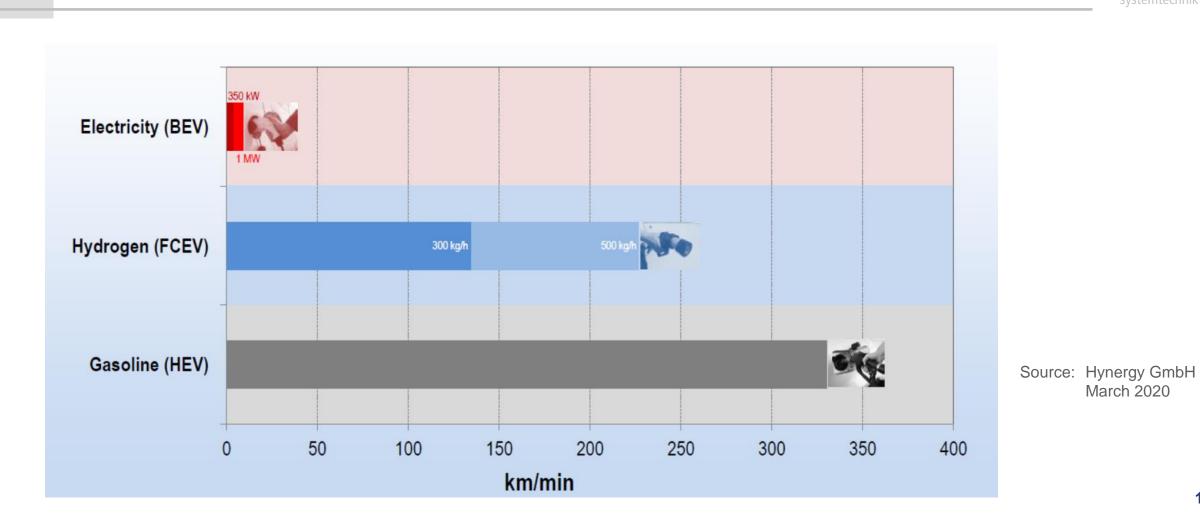
Minimum European infrastructure:

120 high power chargers:	2.5 B€
70 logistics HRSs	2.2 B€
21,500 km overhead catenary lines	36.2 B€
2,400 Diesel refueling stations	0 B€

Sufficient European infrastructure:

1400 high power chargers:	2.5 B€
920 logistics HRSs	2.2 B€
21,500 km overhead catenary lines	44.1 B€
2,400 Diesel refueling stations	0 B€

Source: Making zero-emission trucking a reality, Strategy&, 21 September 2020


3 Advantages of fuel cell trucks vs alternatives

- TCO by 2030 close to be competitive with fossil Diesel competitive if CO₂ tax >50 €/t is imposed (planned EU toll to favor all zero emission alternatives)
- Longer operating range than BEV trucks while comparable payload as Diesel version
- Fast hydrogen refueling within 10-15 minutes for 800 km range
- Only realistic zero emission alternative for 30-44 t truck class (which in Germany represents almost 70% of all fuel use and GHG emissions in the > 7.5 t GVW class)
- Better flexibility in logistics than battery or catenary-electric alternatives
- Lowest infrastructure requirements w.r.t. number of units and investment cost and thus fastest to be implemented

3 Refueling speed in comparison

ludwig bölkow

systemtechnik

LBST.de

19

systemtechnik

Fuel cell trucks coming to the market – a selection

First 10 Hyundai FC trucks from Korea to Switzerland of 50 to be delivered in 2020 and of 1,600 by 2025 4

ludwig bölkow systemtechnik

Source: Hyundai Hydrogen Mobility 2020

21

Toyota class 8 truck in California (in the future to be realized on Hino XL Platform)

ludwig bölkow systemtechnik

36.24 t total operating weight (80,000 pound)

480 km operating range

60 kg hydrogen storage @ 70 MPa (6 x 10 kg)

12 kWh hybridization battery

500 kW peak/ 230 kW permanent power

1796 Nm

7 sec to 100 km/h

Tested @ 16t total weight – acceleration video: https://www.youtube.com/watch?v=egK_fTcTZv4

Source: Toyota-Media website

The **PRHYDE** project (prhyde.eu) is developing a new HDV refueling protocol for high-throughput transfer of 35 & 70 MPa CGH₂ \rightarrow up to 100 kg H₂ in ideally 10 minutes.

Project **duration**: until 12/2021. Subsequently a new ISO standard 19885 shall be developed for global harmonization.

PRHYDE **partners**: Air Liquide, CEA, Engie, ITM, LBST, MAN, NEL, Nikola, Shell, Toyota, ZBT

FCH2JU co-funded project

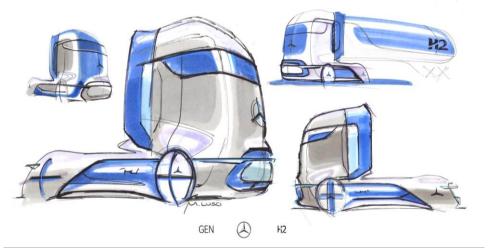
4 CSR example in the US: Anheuser-Busch

Anheuser-Busch

- 800 FC HD trucks ordered from Nikola Motor Company
- Delivery from 2021
- By 2026, AB will source all its vehicle fuels from renewable energy sources

Nikola Two

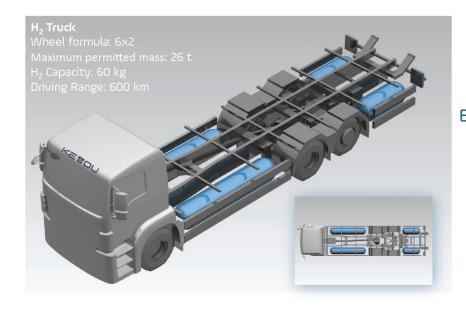
- Operating range: 750-1,200 km
- Battery: 250 kWh
- Fuel Cell: 240 kW
- H₂ storage: 60-80 kg H₂ @ 70 MPa
- Refueling time: < 20 min.</p>
- HRS planning: 28 @ 8...32 t/d
- Pay for use modell (US\$/mile)



Source: Jesse Schneider, Vice President Technology, Nikola, Berlin, 24.05.2018

4 Mercedes GenH2 Concept Truck

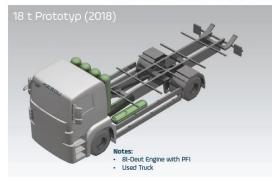
systemtechnik

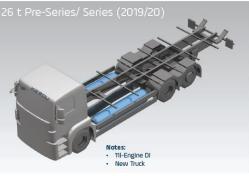

- First trucks at pilot customers from 2023
- Market rollout after 2025

Source: Daimler Truck AG September 2020

4 KEYOU H₂ ICE near zero emission trucks – cost effective now

Example Truck: an optimized 350 bar CGH2-storage (horizontal) ICE TOL




Source: : KEYOU GmbH | Copyright 2017

Example for a Pilot Project with a 18t / 26t Truck

Performance data for a pilot Truck: Prototyp, Pre-series and Series

Prototyp	
Tank capacity	30 kg H ₂
Driving range	300 km

Pre-Series		Series	
Tank capacity	35 kg H ₂	Tank capacity	35 kg H ₂
Driving range	370 km	Driving range	410 km

systemtechnik

China, the 'hidden champion' with fuel cell HDVs by numbers Examples of H₂ fuel cell van and delivery trucks in China 4

systemtechnik

SAIC Maxus FCV 80 Van with 100 kW_e propulsion power

28 October 2020

Horizon 18 t truck with 120 kW_e FC

with 60 kW_e FC

Foton 8.275 t truck Dongfeng-ReFire 7.51 t truck with 30 kW_e REX-FC

Pictures: R. Wurster, Rugao, 26./27.09.2019

Year	Trucks/yr
2020	1,000
2021	2,000
2022	3,500
2023	5,000

Rollout planning by Dongfeng for fuel cell trucks of 9 / 12 / 18 t class with operating ranges of 400 to 500 km

Source: Dongfeng Xiangyang Touring Car Co., Ltd., July 2019

ludwig bölkow systemtechnik

- Long-distance trucks are the key segment to address GHG reductions in road freight
- **Renewable H₂** allows for deep GHG emission reductions at high pace
- Zero emission capability is increasingly decisive for continued access to urban areas
- Only moderate H₂ refueling infrastructure required for EU inter-operability
- Windows of opportunity exist for all zero emission options:
 - BEV for pure short-range logistics in moderate climates
 - CEV for dedicated fleets serving high-frequency point-to-point relations
 - FCEV for its versatility to serve all applications and to facilitate renewable/sector integration and thus is practically inevitable
- Today, patchy picture of push & pull **policy drivers** towards zero emission propulsion

Contact

systemtechnik

Reinhold Wurster Senior Consultant

T: +49 89 608110-33 E: Reinhold.Wurster@LBST.de

Patrick Schmidt Senior Consultant

E: Patrick.Schmidt@LBST.de

LBST · Ludwig-Bölkow-Systemtechnik GmbH

Daimlerstr. 15 · 85521 München/Ottobrunn · Germany

www.lbst.de

