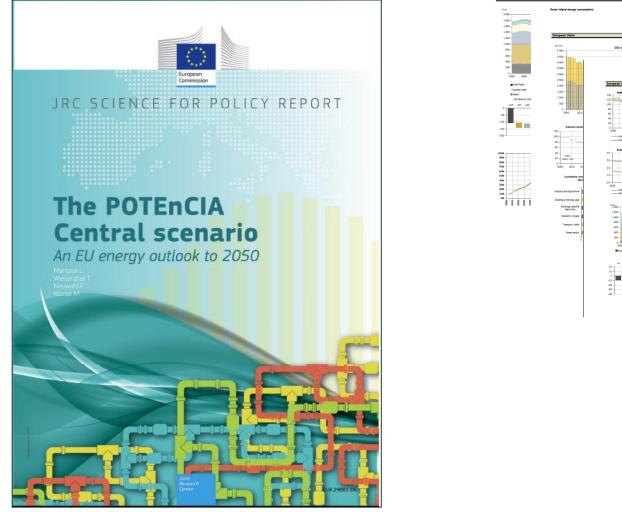


The Central scenario


Context and process

CENTRAL SCENARIO Status quo

https://ec.europa.eu/jrc/en/potencia

https://publications.jrc.ec.europa.eu/repository/bitstream/JRC118353/potencia_central_scenario_online.pdf

European Commission

CENTRAL SCENARIO Status quo

https://rcp.jrc.es/

A	В	с	D	E	F	G	Н			K		M	N	0	P	0	R	S	T
					2004							2011			2014				
sputetion (minion)	407.5	400.2		450.7		454.0	450.4	⇒ 5_year	reports	502.1					ual repo	rtc			
Public release	e of	i co	mn	reh	eng	sive			rgyBalan	ces				_	nergyBal				
			21.6				42.0		entral_201		hal Svear	s ylsy					0 6 1	a ale e selare	
model output	t an	da	CCII	mn	tin	nc ⁷		🗁 Ind	_	.0_0020_1	oul_oyeu	21/12/				2018_EU2	o_bai_ye	ariy.xisx	
mass model output			3 5u		LIU	5.9				0 E1120 ;	nd Sugar	e vlev			ndustry				
for each MS	Central_2018_EU28_ind_5years.xlsx					Central_2018_EU28_ind_yearly.xlsx													
dicators Gross Inland consumption / Capita (in toe/capita) Gross Inland consumption / Capita (in toe/capita)										owerGen									
ross inland consumption / Capita (in toe/capita)								: :	_							2018_EU2			sx
22 Emissions / GDP (in t of #2/1//10) Collaboration	384.2	380.7	374.1	378.8	370.8					8_EU28_	pg_det_5	years.xlsx			Central_	2018_EU2	8_pg_yea	arly.xlsx	
2 Emissions / GDP (in t of 12/40) folders p	Hele	JUU	ιιΓγ	dN	IIUc	X II		👘 Res						- 🗁 R	Residentia	al			
ergy intensities			-						entral_201						Central	2018_EU2	8_res_de	t_yearly.x	lsx
5 years results, year-specific									Central_2018_EU28_res_det_5years.xlsx					Central_2018_EU28_res_yearly.xlsx					
Services and Agriculture (in toe/MC'10 of Value added)	22.06	22.34	21.38	22.10	21.99			🗁 Ter	tiary					-	ertiary	-		1	
Transport (in toe/M&10 creations)								∎ C	entral_201	8_EU28_t	ter_5year	s.xlsx			-	2018_EU2	8 ter det	t vearly.x	sx
IIC (in t of CO2/toe of GIC)	2.48	2.46	2.45	2.46	2.44	2.43	2.4	: :	_			years.xlsx			_	2018_EU2			12/1
ower and steam generation (in t of CO2/MWh net)	0.41	0.40	0.41	0.41	0.39	0.39		🗁 Tra				,			ransport		o_tet_yet	iny and	
Industry	escri	ptior	n incl	udeo	l in .	JRC	2.0		entral_201	8 FU28 t	tra Svear	s.ylsy					the set 0		les.
	1.61	1.62	1.59	1.58	1.58	1.56	1.5					years.xlsx				2018_EU2			ISX
Services and Agriculture Report	1.55	1.55	1.51 2.95	1.49 2.95	1.47 2.95	1.47 2.94	1.4		ral_2018_l							2018_EU2			
Transport								Cent	al_2010_l	.020_sun	initiary_5	COLORA		:∎ Ce	entral_201	.8_EU28_s	summary	_yearly.x	SX
nland consumption (ktoe) 100 apaly	1 ¹ ²³⁰ 114	(169012)	1 767 632																
~ 100 analy	/ LIC (CID				318 251 679 414	329 824 675 965	AS 505	sumptior	269.025			294 554				248 395 565 223		229 1 569 9
	39 217	406 479	407 925	424 624	435 353	445 213	440 326	_			ral 2018	EU28.xlsn	n	387 344			373 084		
	q ke	ן ז⊾עייע ל	enc	IS a					ntFuelPric	_					130 833		134 429	137 553	138 6
ther renewable energies (wind, solar, hydro and geothermal)	37 666	39 886	35 734			39 177 7 837	40 796 8 465	:		-	-				72 234 12 816	74 842 13 302	76 081 11 820	81754 11534	
indicators									G_techno		ntral_201	0.XISX							
uclear heat	243 841	252 666	255 556	257 018	260 286	257 516	255 499		ar_spec_r					226 282	226 140	221 202	231 654	226 239	2190
lectricity		-4	-3 1 334		-5 -372				entral_20		-			-1 1 084	1 1 333	1 1 226			
 Assumption: 	S		1004		-372	1001			tral_2018			df		1004		1220	1000	1020	
er and Steam generation	5							Cen	tral_2018_	EU28_slic	des.xlsx								
				257 018														226 239	2190
							440 774		433 024		415 137								
Thermal power plants																			
Thermal power plants District heating (ktoe)																			

JRC-IDEES Status quo

https://ec.europa.eu/jrc/en/potencia/jrc-idees

Total number of users per sector Other Institutions 400 Individuals Academia Stakeholders 350 Member States European Commission to IDEES 000 access Stakeholders (95)akeholders (10 250 Stakeholders (86) Stakeholders (81) lser 200 takeholders (67) of number takeholders (49 150 Total 100 50 EC (82) EC (83) EC (78) EC (65) EC (52) EC (41) EC (36) EC (18) 0 2018 Q1 2018 Q2 2018 Q3 2018 Q4 2019 01 2019 Q2 2019 Q3 2019 Q4 2020 Q

JRC-IDEES₂₀₁₅ published 07/2018

- >400 registered users
- 27 EU Member States registered
- Interest beyond EU (Energy Community)
- Users with diverse backgrounds
 - Industry, academia, finances
 - CEN/CENELEC; EIT; EIB
- Other modelling teams

CENTRAL SCENARIO Its role

First published scenario developed with the POTEnCIA model

The Central scenario

- showcases the level of detail the model produces
- serves to exemplarily illustrate the POTEnCIA model features and the methodological approach followed
- demonstrates the approach to transparency

It forms the basis for further development of policy scenarios

STRUCTURED EXCHANGE Key elements

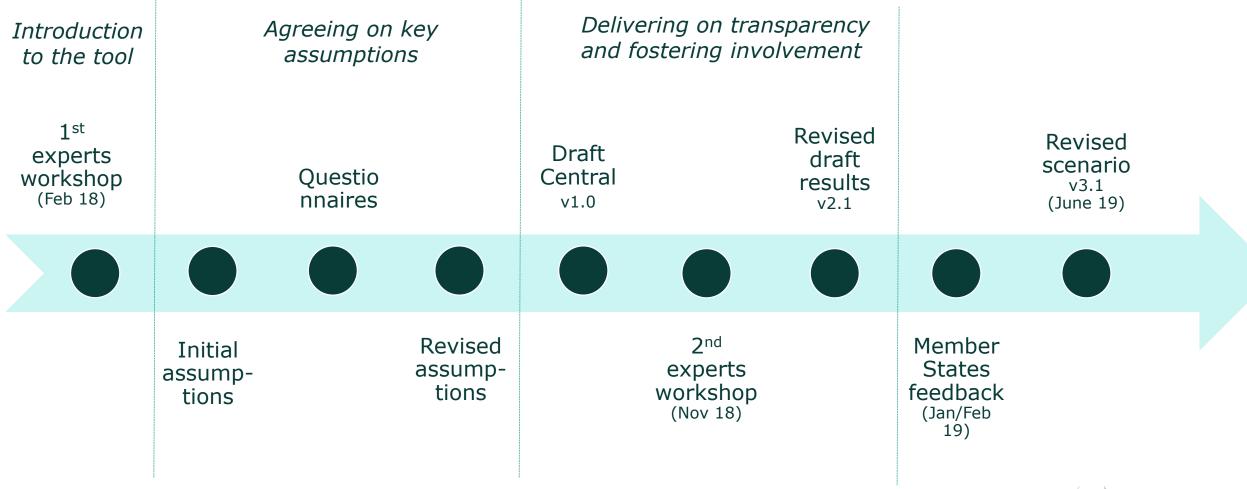
Meetings

- 1st POTEnCIA ws (Feb 18)
 'Entry point' and assumptions
- 2nd JRC-IDEES WS (May 18) JRC-IDEES2015v0.9
- 2nd POTEnCIA ws (Nov 18) draft 'Central' scenario
- Energy Expert Group
- Climate Change
 Committee WG II
 - & bilateral meetings

Internet platform

- structured exchange of information
- access upon request
- exchange assumptions, draft results
- but also comments and relevant material

JRC Research Collaboration Portal https://rcp.jrc.es


Special Groups

- on JRC-IDEES and on POTEnCIA
- a stable framework for exchanges
- ... and support capacity building

... complemented by informal interaction by email, phone etc.

JOINTLY DEVELOPING THE CENTRAL SCENARIO Milestones in the iterative consultation process

FEEDBACK RECEIVED Some observations

Thank you very much for the constructive feedback provided!

It was carefully considered and incorporated to the extent possible within the general approach followed in the Central scenario:

- Use of official EU data on GDP and population: Eurostat; Ageing Population Report; ...
- Ensuring consistency at EU level: matching imports/exports; divergent expectations on technology evolution; ...
- Some comments triggered revisions affecting all countries: power generation; transport activity; ...

CENTRAL SCENARIO Key policies

- Reflection of existing policies and measures i.e. those in place by 31/12/2017 (thus not including 2030 climate and energy policies that were published in 2018)
- Historical time series already account for effect of earlier policies and measures

Key EU policies reflected in the Central scenario

EU Emissions Trading System

Energy Performance of Buildings

Energy Efficiency Directive (Art 7)

Trans-European Transport Networks

Alternative Fuels Infrastructure Directive

 CO_{2} standards for new cars and vans

Eco-design of energy-related products

While trying to account for national policies provided in the questionnaire to the extent possible

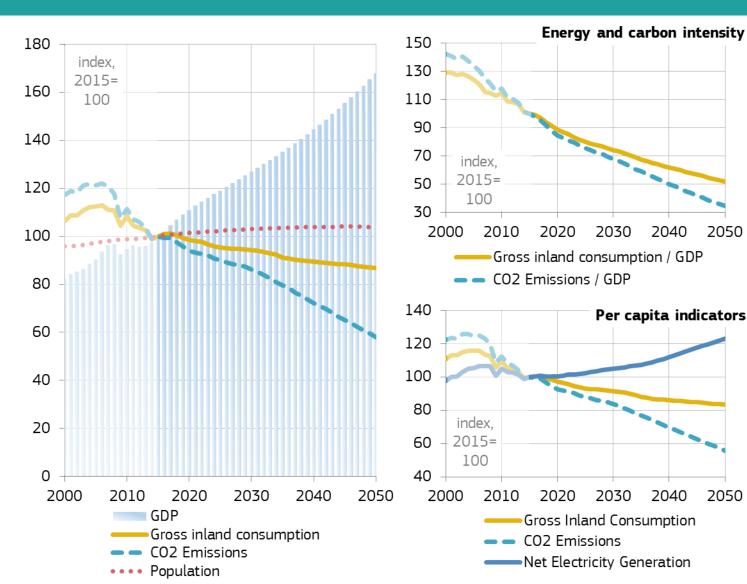
CENTRAL SCENARIO In a nutshell

- Scenario with **existing policies and measures**
 - ... that assumes that these policies will deliver
- using historical data up to the year 2015
 - ... including only partially more recent data
- with international fuel prices aligned with the Reference 2016
 - ... but updated with data until 2017
- GDP growth rates in line with the 2018 Ageing Report
 - ... while accounting for short-term forecasts

What do these assumptions mean for

- buildings
- transport
- industry
- power generation

... and where do they leave us in terms of energy demand and CO_2 emissions from now until 2050?



The Central scenario

Key messages and sectoral insights

The Central scenario EU energy system: An overview

Primary energy demand follows a continuous declining trend reaching -13% from 2015 levels in 2050

 CO_2 emissions reduce by 42% at the same period (53.2% from 1990 levels)

Energy intensity halves whereas the carbon intensity reduction reaches 65%

2050

2050

Both energy use and CO₂ emissions per capita also decline (-17% and -44%)

Contrasting trend for electricity demand 1400 KWh more generated per capita +24% in 2015-2050

The Central scenario Demand side: Main drivers

Structural changes in the economy

shifts across sectors; value added intensity of industrial products; saturation effects with regards to individuals' energy service needs

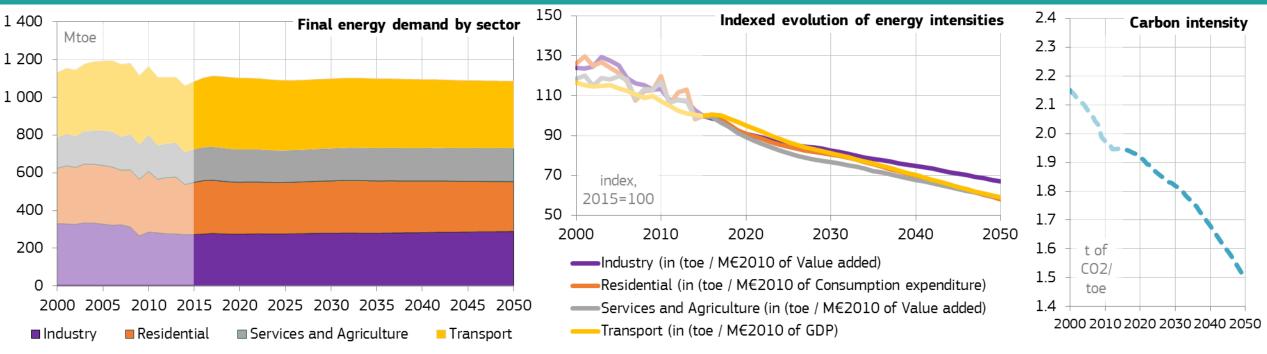
Actions not related to energy-consuming equipment

better-optimised operation (from an energy viewpoint) of industrial installations; improvements in the thermal insulation of building envelopes

Changes in the structure of energy use that can reduce energy requirements

adoption of more efficient processes, different growth patterns for energy service requirements, modal shift

Technology progress

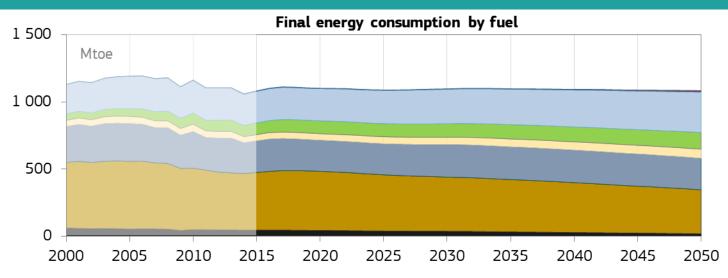

Changes in the fuel mix

Further electrification, shift towards more efficient energy carriers, growing penetration of renewable energies, increasing role for distributed heat

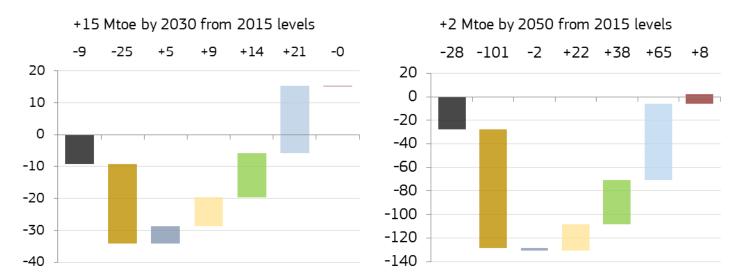
plus adoption of Carbon Capture options in specific industrial CO₂-rich streams

The Central scenario Demand side: Energy needs

Energy demand remains remarkably stable / significant improvements for energy intensities


Similar trends for residential, services and transport

• Demand declines by 1%-2%; energy intensities by -41 to -42% in 2015-2050


Slower pace projected for industry with demand increasing by 6% and energy intensity reducing by 33%

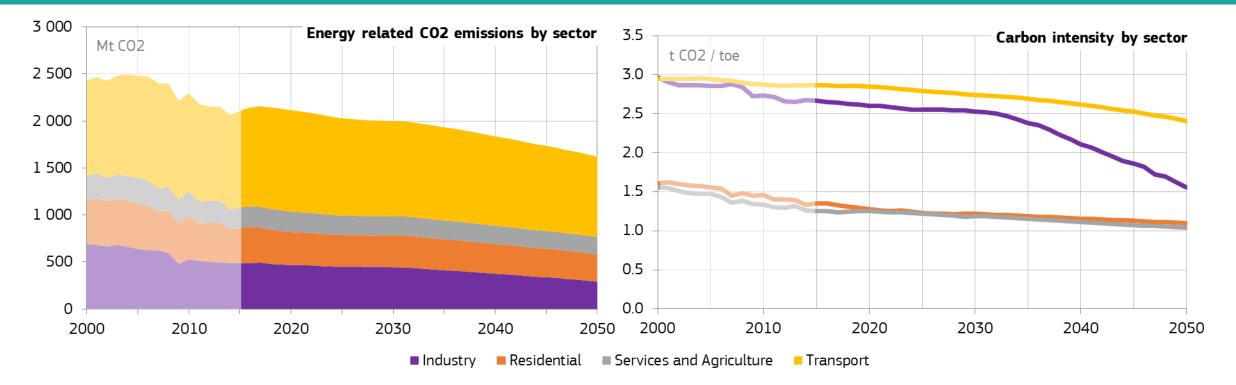
The Central scenario Demand side: Fuel mix

■ Solid fuels ■ Total petroleum products ■ Gases ■ Derived heat ■ Renewable energies ■ Electricity ■ Other

Important changes in the fuel mix, driving down the carbon intensity

Further electrification

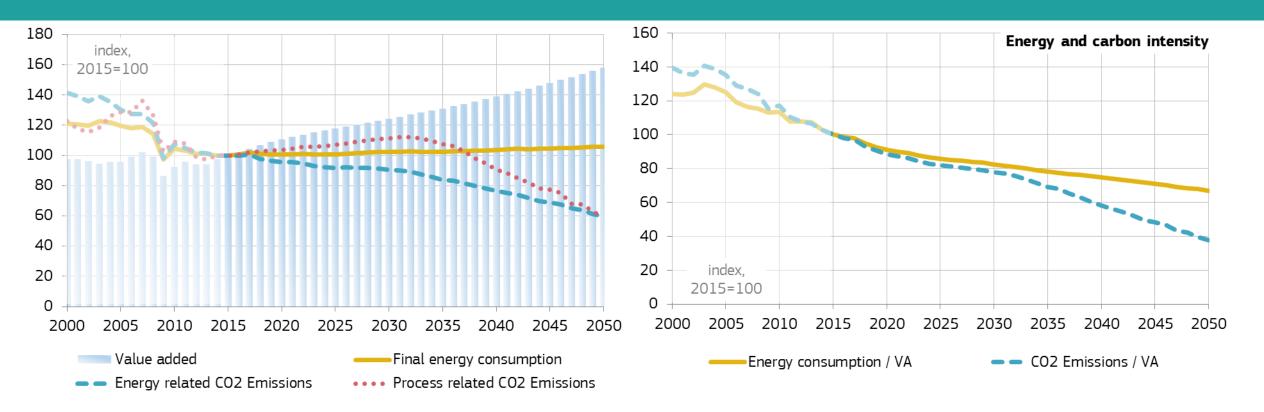
- Transport through uptake of EVs
- Industry
- In buildings, increase in thermal uses outweigh lower specific electricity uses


Rise in the use of derived heat

Important uptake of renewable fuels

- Solar in buildings
- Biomass in industry
- Biofuels in transport

The Central scenario Demand side: CO₂ emissions

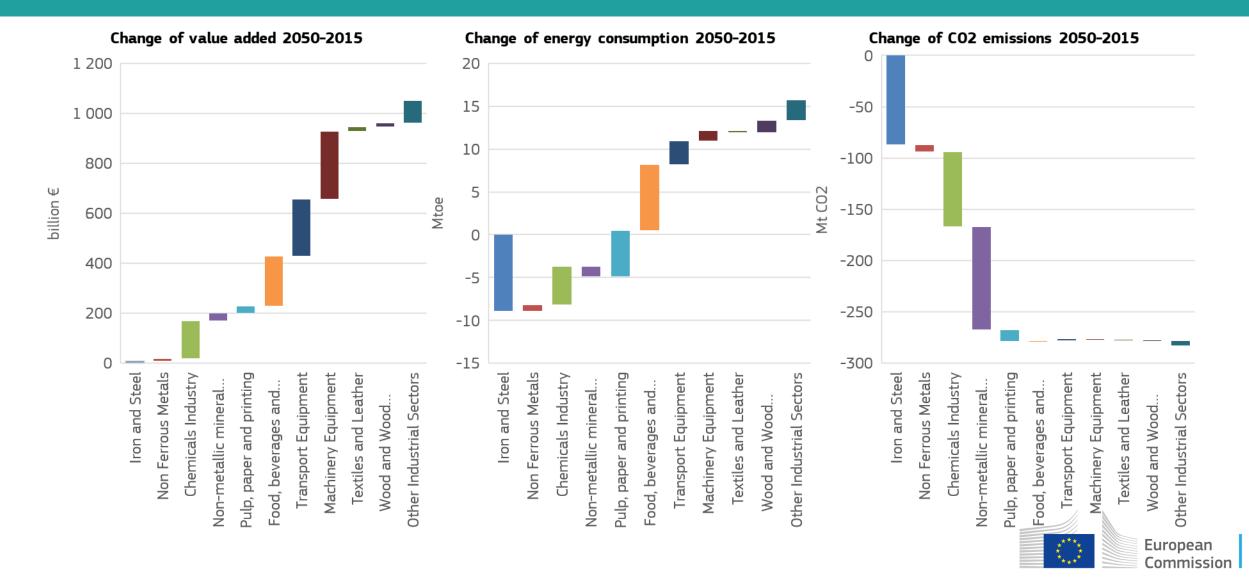


Demand side CO_2 emissions decline by 24%

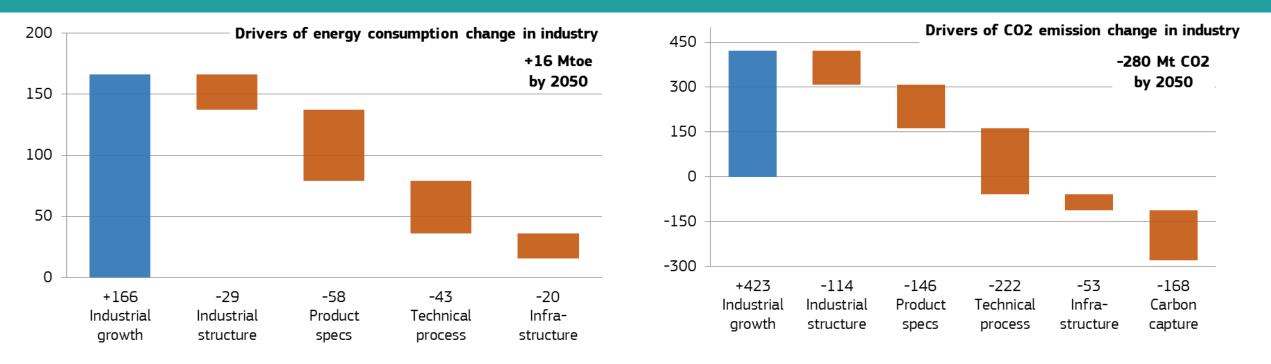
Significant decline of carbon intensity in industrial sectors beyond 2035, also through carbon capture In the transport sector energy consumption gradually delinks from CO₂ emissions Pronounced improvements for domestic sectors

> European Commission

The Central scenario Industry: An overview

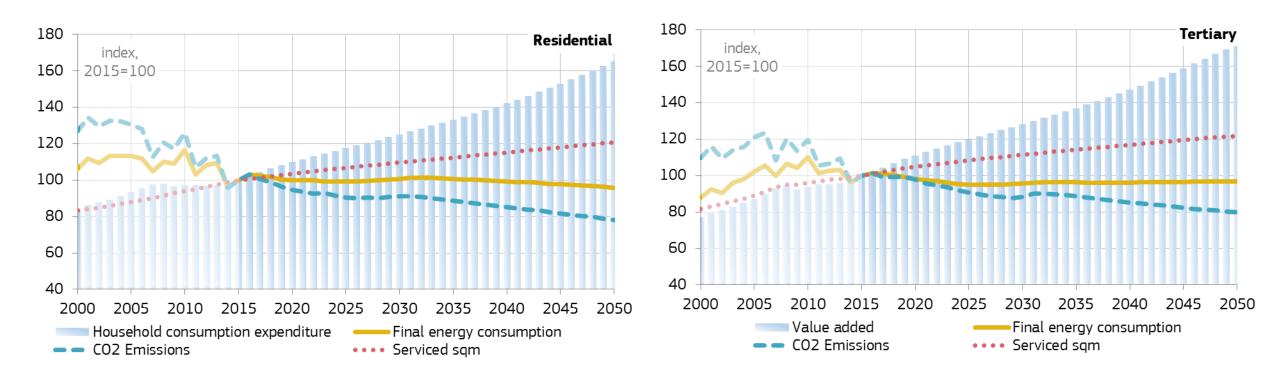


Continued decoupling of energy and CO₂ emissions from economic growth


- VA from manufacturing grows by almost 60%
- Energy consumption increases by 6%
- CO₂ emissions contract by 40% driven by carbon capture from 2035 onwards

The Central scenario Industry: Sectoral trends

The Central scenario Industry: Quantifying the role of different drivers

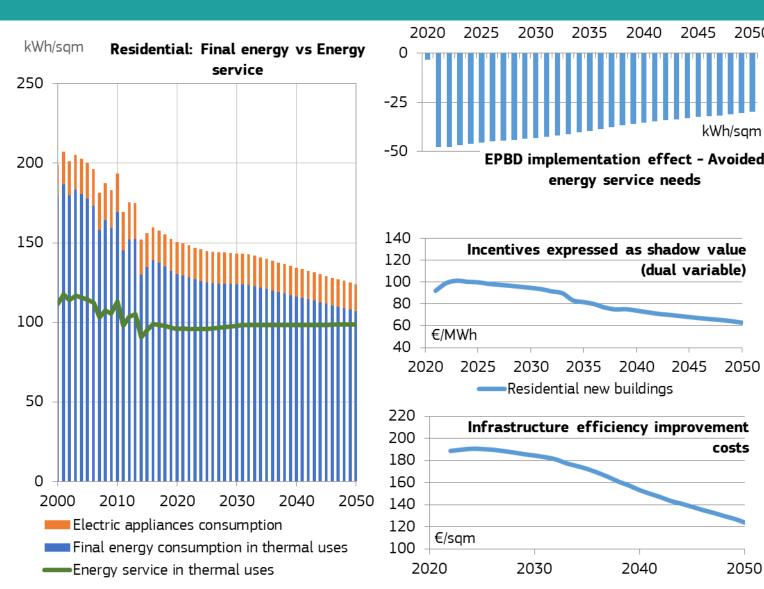


Decoupling of energy use and CO₂ emissions from economic growth is driven by

- Changes in the industrial structure and products characteristics
- Technical process changes
- Non-energy equipment related improvements
- Carbon capture

The Central scenario Buildings: An overview

Similar trends for residential and services sectors


Delinking occurs not only relative to the economic drivers but also as regards the serviced surface area

Energy needs remain rather stable over the projection period

CO₂ emissions decline steadily with temporary upsurge around 2030

The Central scenario Residential: The role of EPBD

Near stabilisation of energy service needs in thermal uses

2045

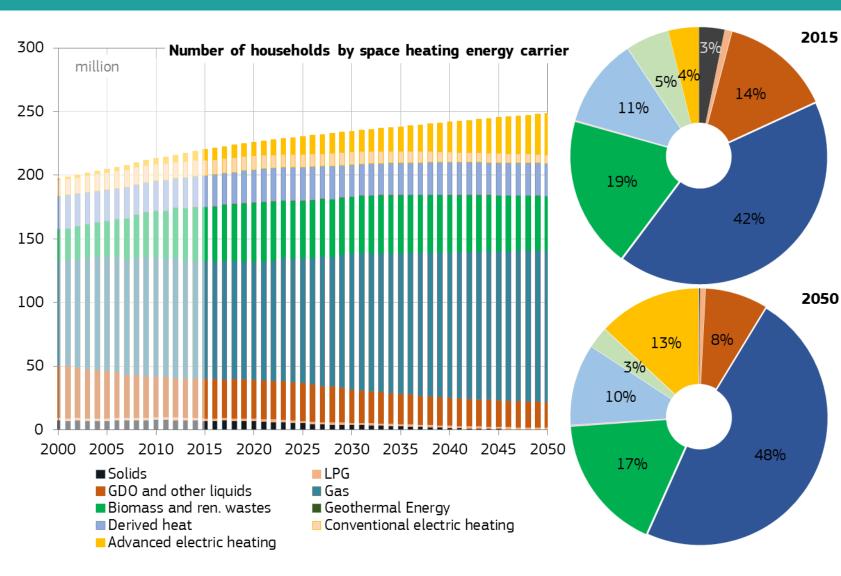
2050

kWh/sam

2050

costs

2050


in early years, investments in building insulations are the dominant options

over time reductions result **also** from the deployment of very efficient equipment and embedded renewables

Related costs in building insulations follow a declining trend

The Central scenario Residential: Building stock

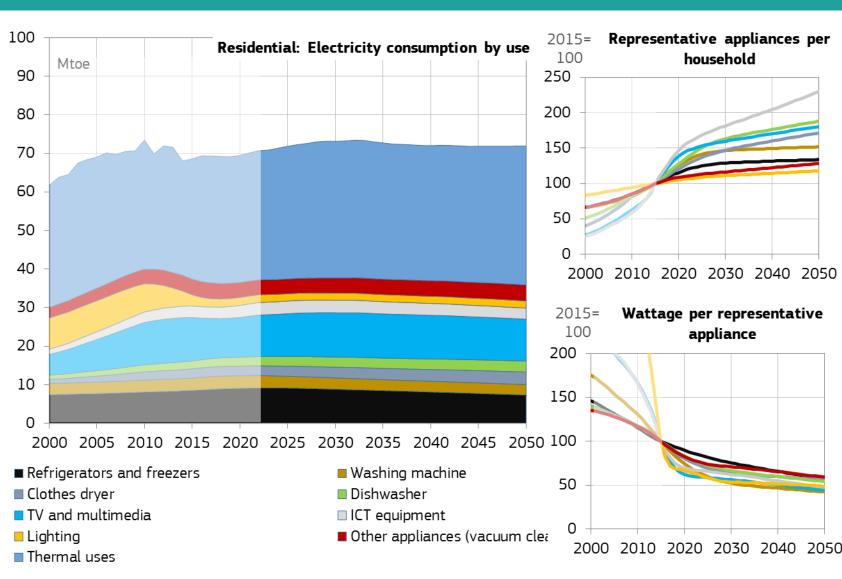
Strong shift towards more efficient household types

Solids become an obsolete option

Liquids are faced with strong downward trends

Efficiency issues make biomass space heating less attractive

The same for conventional electric


Two clear winners:

Natural gas and

Advanced electric (heat pumps)

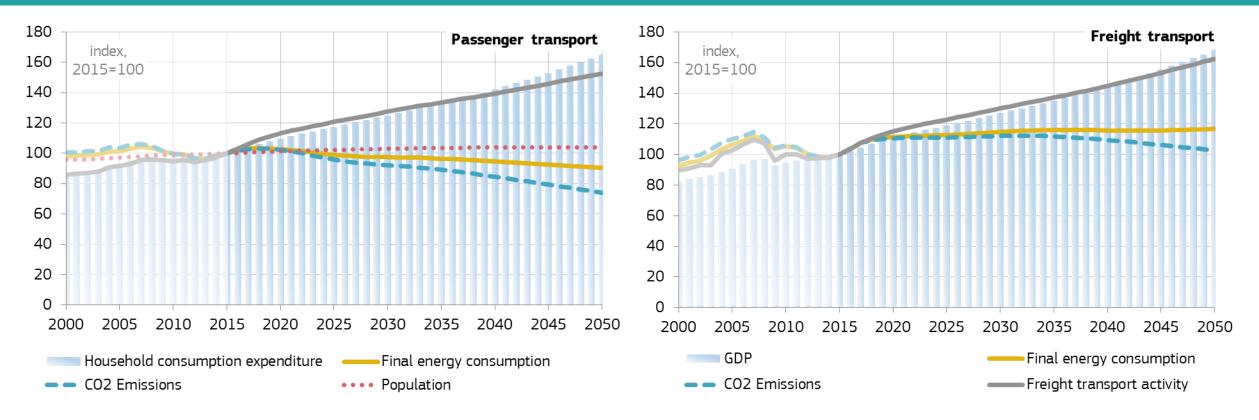
The Central scenario Residential: Electricity demand

Demand of specific electricity uses slightly declines

Evidence of some saturation effects

Technology progress continues though at a slower pace

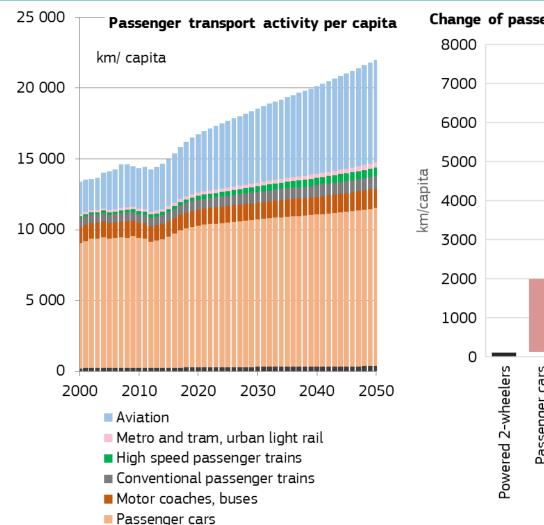
Overall increase driven by heating and cooling uses


Large increase of heat pumps equipped households

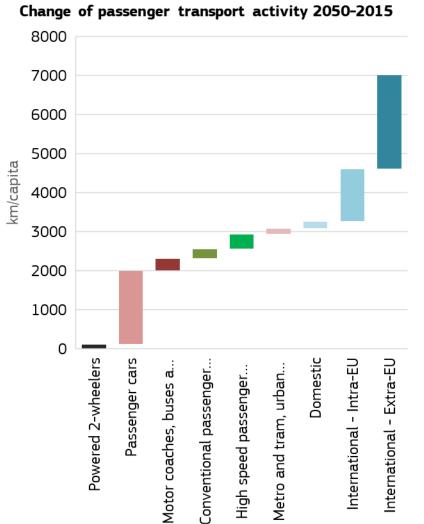
Strong penetration of air conditioning

Counterbalancing factors: conventional electric households, solar water heating

The Central scenario **Transport: An overview**


Limited delinking of activity from economic growth

Passenger transport exhibit significant improvements both for energy and CO_2 emissions


Freight transport demand grows but CO₂ emissions decline beyond 2030

The Central scenario Transport: Passenger transport

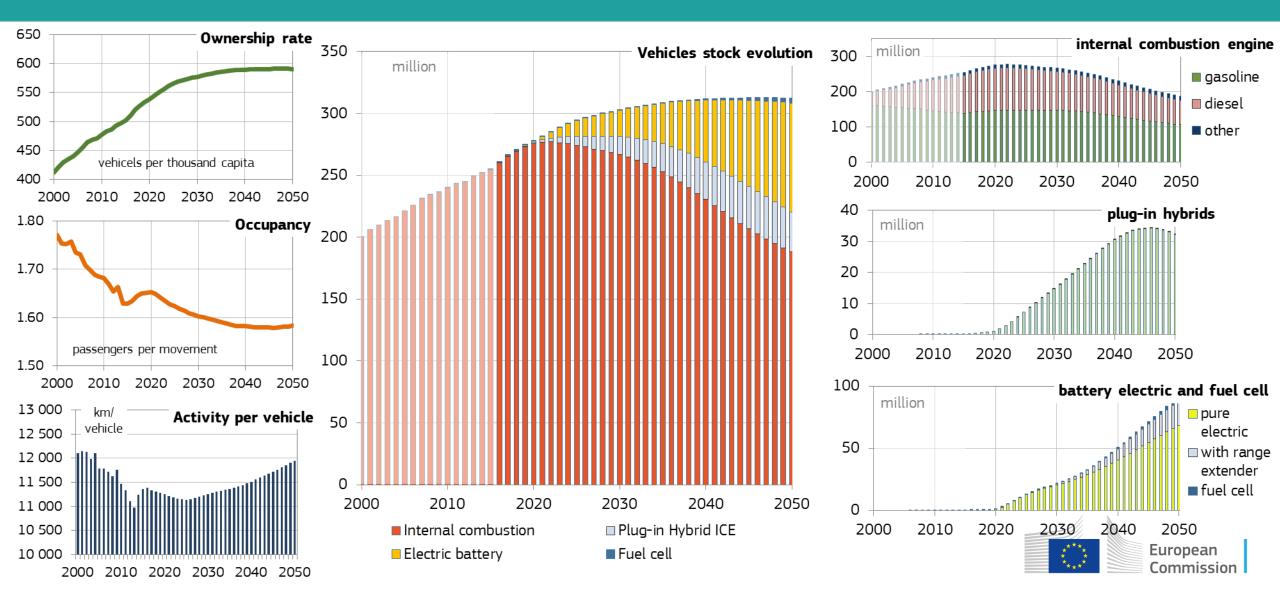
Powered 2-wheelers

Activity per capita increases by 7000 km pa

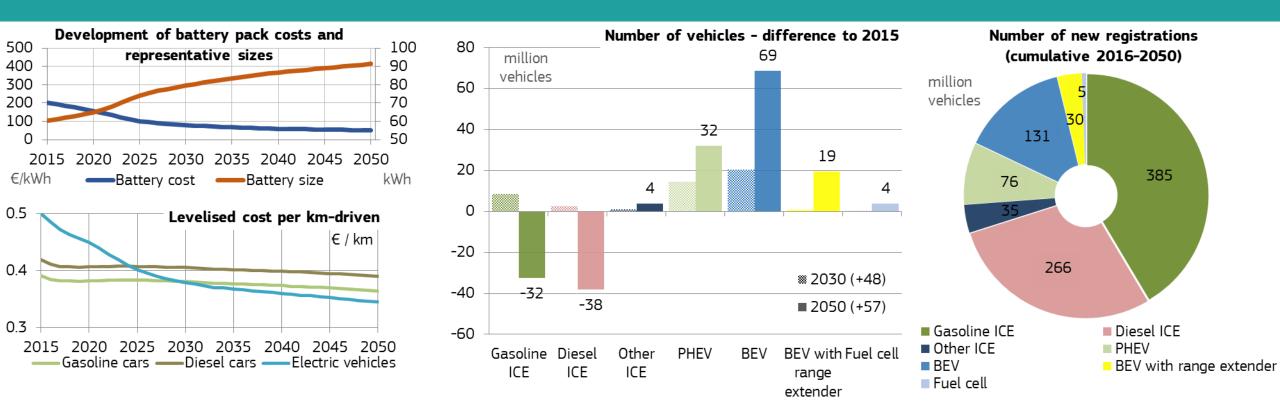
More than 55% coming from aviation:

+1500 km pa intra EU

+2400 km pa extra EU


Private cars activity increases by 1900 km pa

In percentage terms the highest growth is projected for high speed rail


Almost tripling but still accounting for below 3% of total activity

The Central scenario Transport: In focus – Private cars stock

The Central scenario Transport: In focus – Private cars / Stock changes

930 million new vehicle registrations in 2015-2050 of which more than 70% in conventional technologies

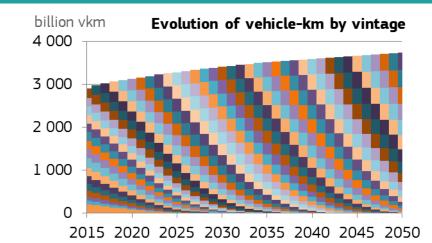
electric vehicles only gradually enter the market

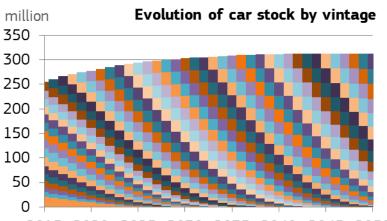
17% of new vehicle registrations in 2030; 40% of the stock in 2050

The Central scenario Transport: In focus – Usage by vintage and type

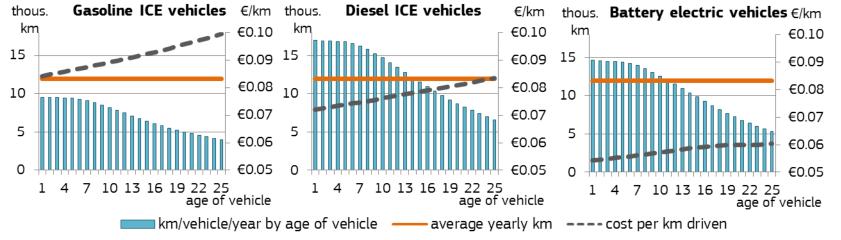
Annual km driven per vehicle depend on its vintage

In 2050 newly registered vehicles drive some 10% above average


Oldest vintages drive up to 37% less


Vehicle types are also used differently

Newly registered electric vehicles drive 22% more due to low costs

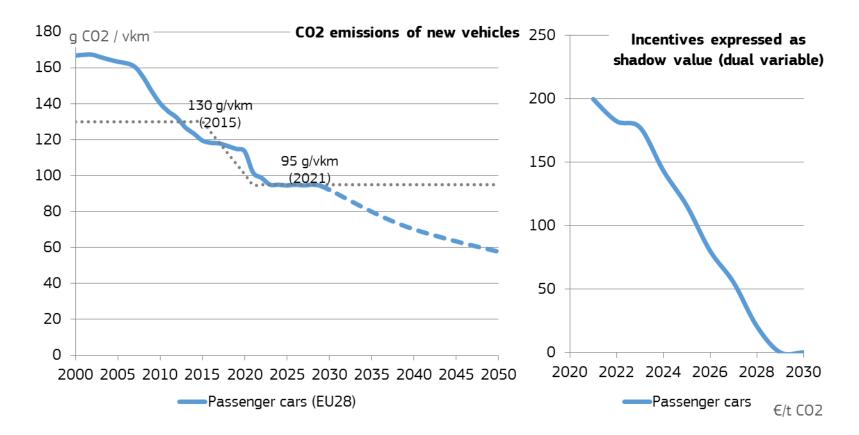

Diesel vehicles continue operating well above average

Gasoline vehicles are operated well below (-20%) due to high costs

2015 2020 2025 2030 2035 2040 2045 2050

The Central scenario

Transport: In focus – CO₂ standards in private cars


CO₂ performance standards for new vehicles met at EU level

Emissions expressed according to the NEDC test cycle

95 grams of CO_2 per kilometre from 2021 onwards

Super-credits are being taken into account and contribute in meeting the target until 2023

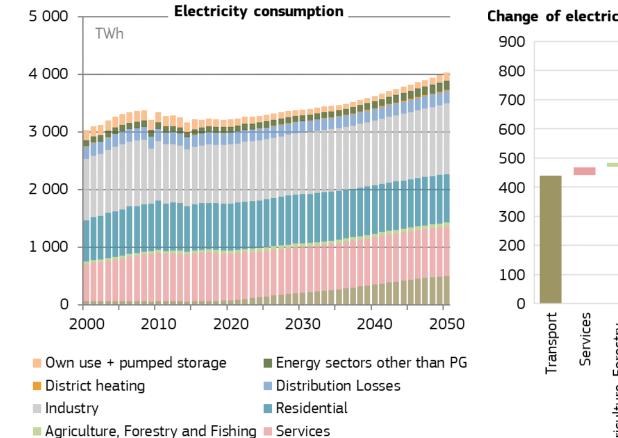
Beyond 2028 technology progress paves the way in meeting the 2021 CO_2 standards without the need of any policy incentive

The Central scenario Power generation: Main drivers

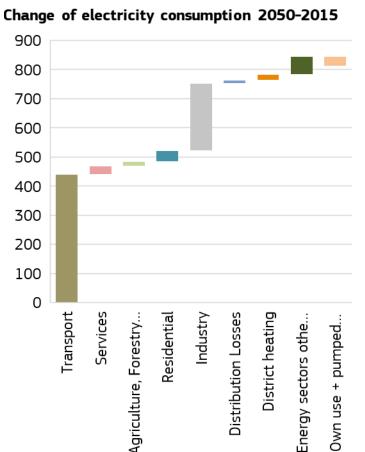
Increased electrification

driven by electro-mobility in transport and the continued electrification of industry

Nuclear phase-out policies + decommissioning schedules


Technology progress

- solar photovoltaic becoming the cheapest power generation technology, followed by (onshore) wind
- carbon capture becoming a viable and cost competitive option in the long run maturing of flexible storage options (battery installations)


The EU ETS

The Central scenario Power generation: Electricity consumption

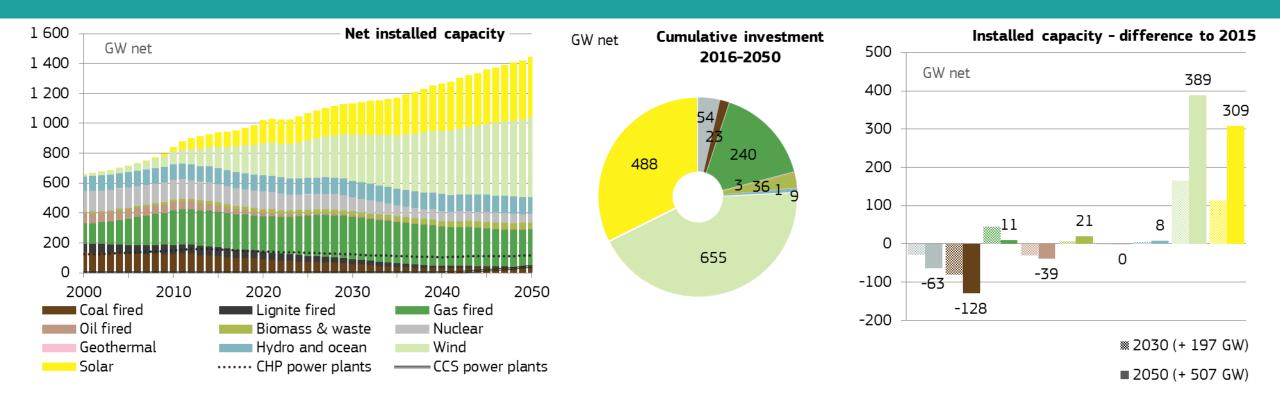
Transport

Electricity consumption increases by 25%

Transport sector accounts for 54% of incremental needs in 2050

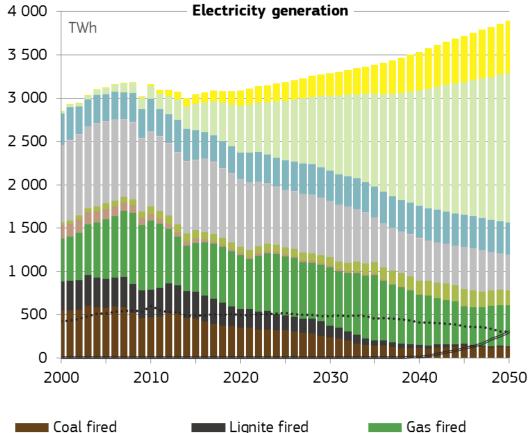
Industry for 28%

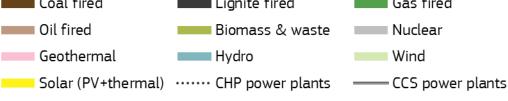
New players in the market include

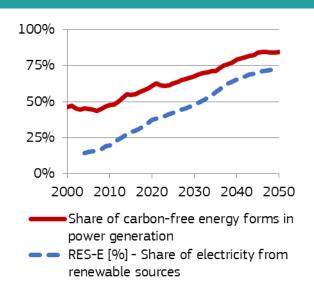

- district heating (8-fold growth)
- hydrogen production beyond 2035

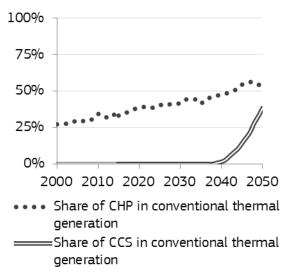
Own use in the power sector declines (-24%)

Partially counterbalanced by pumped storage (+33%)


The Central scenario Power generation: Installed capacities




Net installed capacities in 2050 total 1.49 TW, 51% up from the 2015 level fossil-fuel based power plants drop from 46% in 2015 down to 22% in 2050 of which 12.5% (from 4%) biomass fired; 15% equipped with CCS; 34% CHP wind accounts for 36% (from 14%) and solar for 27% (from 10%) nuclear share constantly declines (from 12% in 2015 to 4% in 2050)



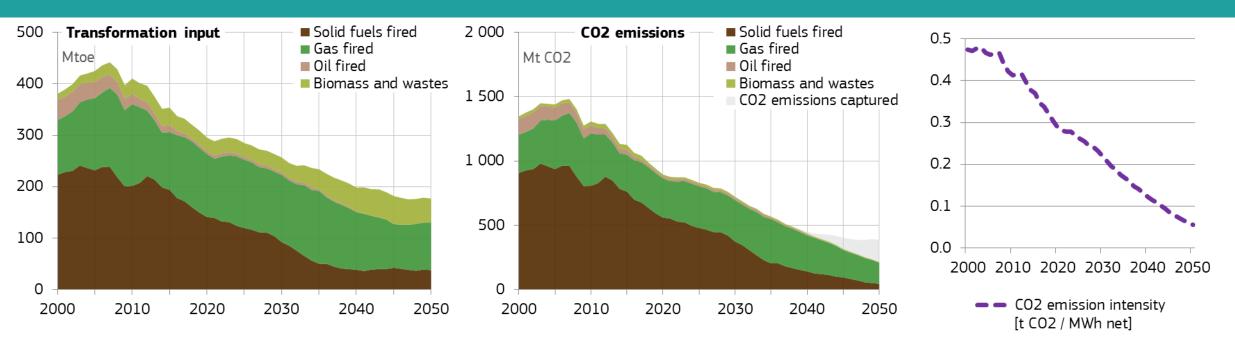
The Central scenario Power generation: Electricity generation

Carbon free electricity generation constantly grows

by 2050, 79% of net electricity is generated without emitting CO_2

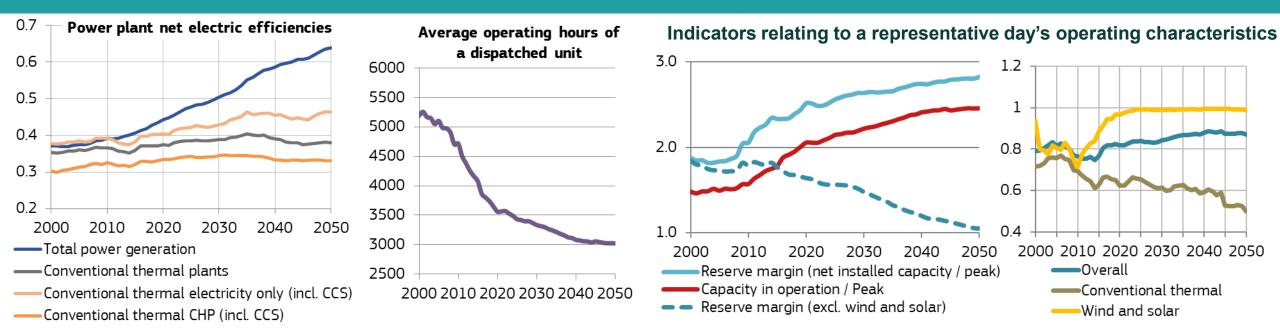
intermittent renewables account for 69% up from 25% in 2015 nuclear limited to 11% from 26%

conventional thermal electricity undergoes significant changes


55% is generated in CHP power plants (from 33% in 2015)

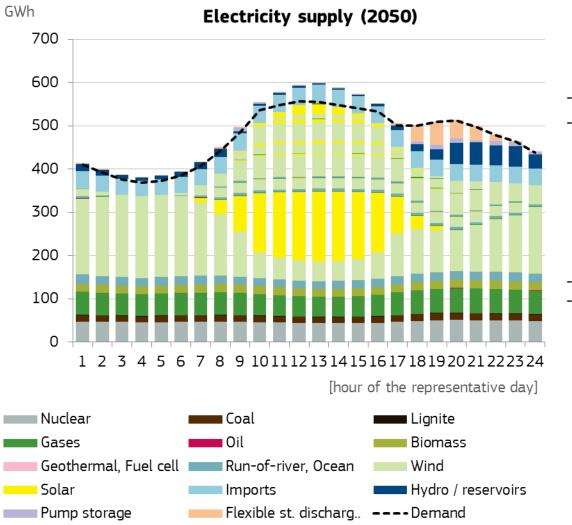
biomass role also increases (22% in 2050 from 6% in 2015)

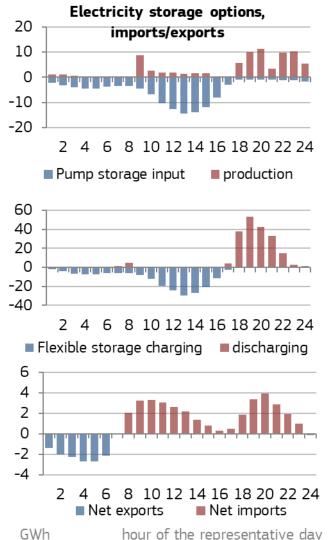
CCS emerges beyond 2040 accounting for 38% of conventional thermal electricity in 2050


The Central scenario **Power generation: Transformation input and CO**₂

Fuel input in conventional thermal power plants halves in 2050 from 2015 levels input in CHP units increases from 37% up to 64% biomass share reaches 26% (from 10%) in 2050 CCS equipped power plants account for 38% of fuel input
CO₂ emissions drop below 20% of 2015 levels the carbon intensity of electricity generation drops by a factor of 7 45% of total CO₂ emissions are captured in 2050

The Central scenario Power generation: System indicators

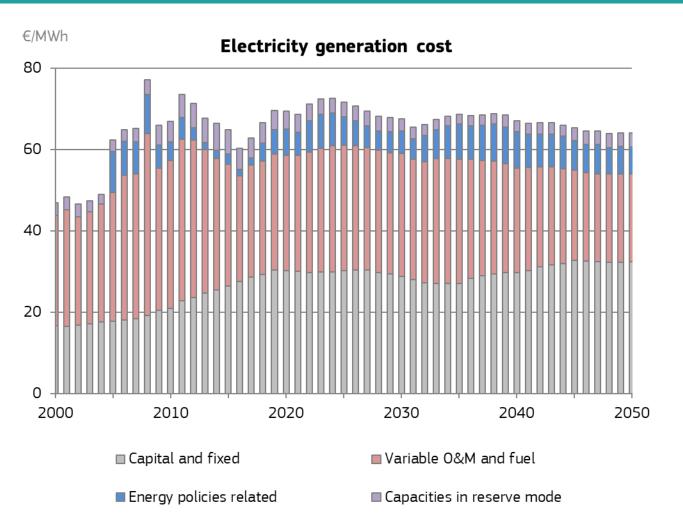

Overall efficiency of electricity generation reaches 63% in 2050 from 41% in 2015 CCS leads to a worsening of thermal power plants efficiency beyond 2035


The average annual operating hours of a dispatched unit drop from 4100 to 3000 hours In the context of the representative day

Overall reserve margin further grows but when excluding wind and solar capacities remains marginally above 1 On average around 10% of the installed capacity remains idle (50% for thermal units)

Commission

The Central scenario Power generation: In focus – 2050 representative day


The shape of the overall generation pattern is dominated by solar PV (reflecting the natural light availability)

The availability of wind energy becomes almost constant along the representative day

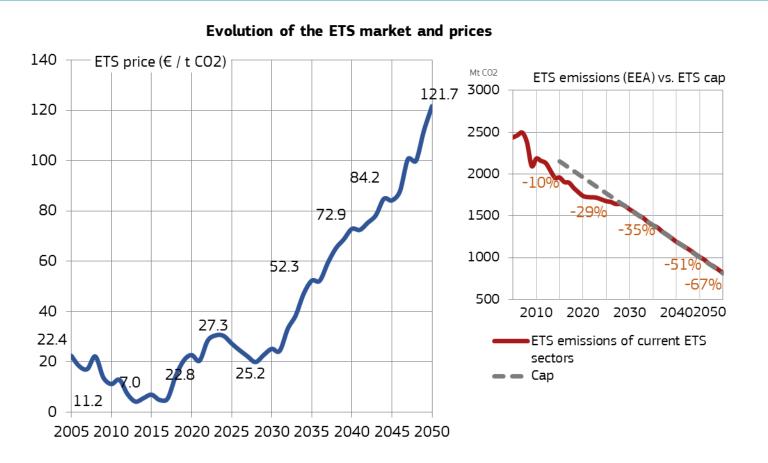
The availability of **battery storage** plays an increasing role in balancing the load throughout the hours of the day

The Central scenario Power generation: Generation costs

The unit costs of electricity generated remain remarkably stable

Peaks in mid-2020s at +12% from 2015 levels

From 2040 onwards electricity generation costs enter a declining pathway (-1.4% in 2050

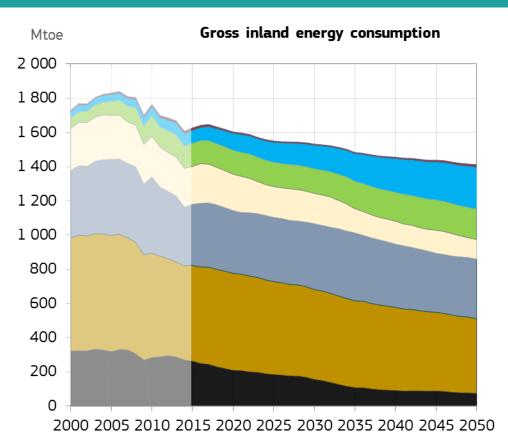

Capital costs account for 39% in 2050 from 32% in 2015

Fuel costs drop beyond 2030 to 25% below 2015 levels in 2050

Direct policy costs (ETS driven) account for between 8% and 13% of the total unit costs

The Central scenario The EU ETS

ETS prices are endogenously calculated to meet the evolving ETS cap Until 2029, CO2 emissions remain below the cap


 \Rightarrow 20-30 \in_{2010} /tCO₂

Afterwards, CO₂ emissions get on a pathway prescribed by the cap $\Rightarrow 73 \in_{2010}/tCO_2$ in 2040 $\Rightarrow > 120 \in_{2010}/tCO_2$ by 2050

Reminder: the revision of the EU ETS (phase IV) is not included in the Central scenario

The Central scenario Primary energy needs

Other

Biomass and renewable wastes

- 🔳 Gases
- Solid fuels

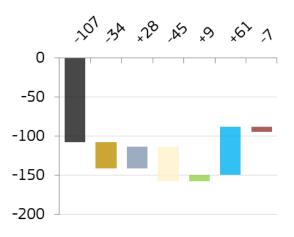
Wind, solar, hydro and geothermal
 Nuclear heat

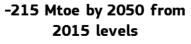
Total petroleum products

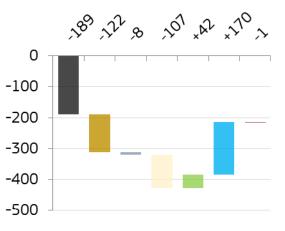
Gross inland energy consumption shrinks by 13% (2015-50)

Substantial changes in the fuel mix

Tripling of renewables (less for biomass)


Strong decline in solids (until stabilisation at low levels when CCS enters)


Natural gas slightly increases market shares (acting as transition fuel)


Decrease in nuclear heat following phase-out policies and limited new investment

Liquid fuels remain the most important fuel (but reduce market shares)

The Central scenario Renewables in the EU energy system

Share of renewables in the EU energy system more than doubles

RES-share exceeds 39% of gross final consumption in 2050, from 17% in 2015 By 2020, RES contribute 20%, 24.5% by 2030

RES-E shares reach 73% by 2050

Largely driven by solar (generation increases by factor \sim 6) and wind (factor 5.5)

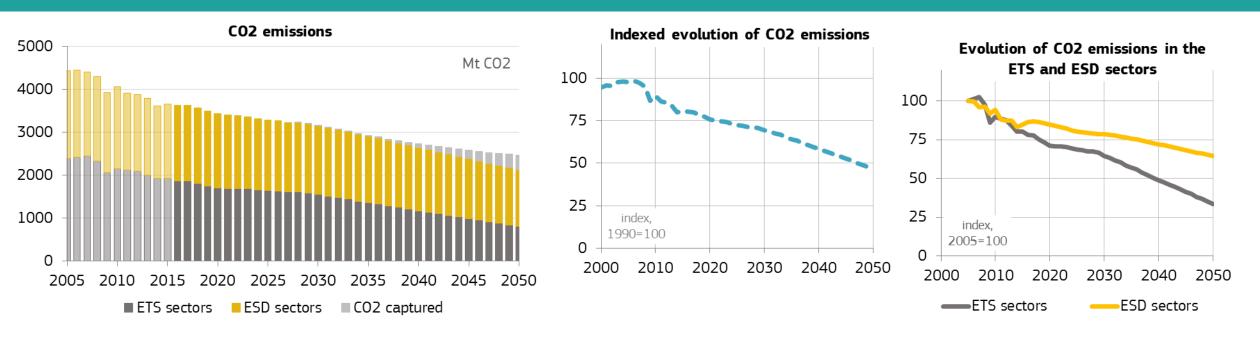
RES-T shares rise from 6.6% to 47% in 2050

Initially mainly stemming from biofuels

Renewable electricity drive increase as of mid-2020s

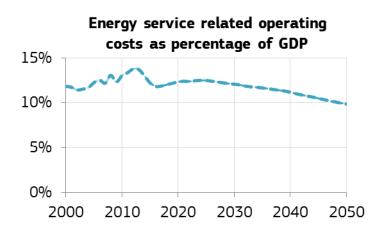
Bio-based kerosene enters towards the end of the projection period

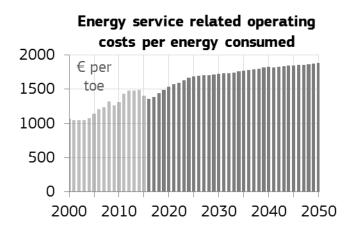
RES-HC shares rise to 33%


Uptake of heat pumps and solar Increase in biomass and derived heat

Share of renewable energies

The Central scenario CO2 emissions


CO₂ emissions decline steadily throughout the projection period Compared to 1990, they are cut by 24% in 2020, 30% in 2030 and 53% in 2050


They decrease most rapidly in sectors falling under the scope of the EU ETS Direct consequence of the year-on-year cut in the cap for stationary allowances by 1.74% By 2050, they are – 67% below 2005 levels

ESD sectors' CO₂ emissions contract by 35% in 2050 (relative to 2005)

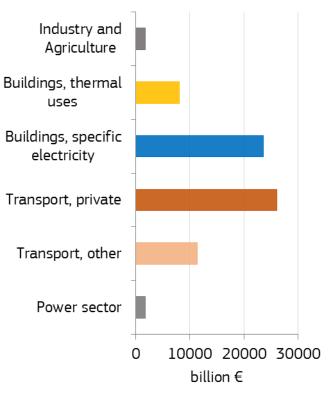
The Central scenario **Costs**

Energy-related O&M costs increase by 34% per unit of energy consumed excluding capital costs of demand side

> offset by efficiency gains leading to less energy consumed per service delivered

relative to GDP, decrease by 2.4 percentage points $(12.2\% \rightarrow 9.8\%)$

Substantial investment expenditures summing to 72.5 trillion €₂₀₁₀ in 2016-2050 representing 11.5% of cumulative GDP


3700 €₂₀₁₀ annually per capita

but: bulk of investment into equipment that primary serves other purposes

(cars - 1400€, electric appliances - 1000 €)

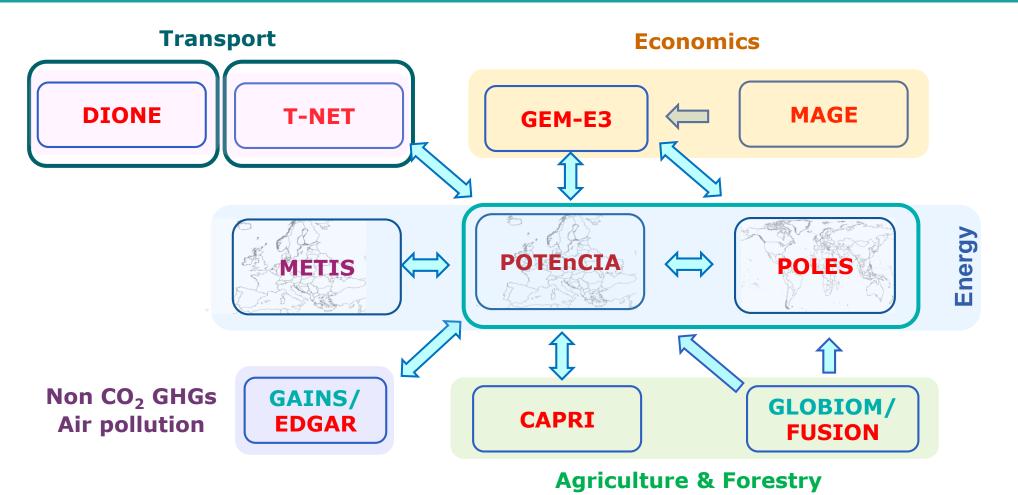
Cumulative investment expenditure (2016-2050)

11.5% of cumulative GDP

The Central scenario Key figures and indicators

Policy indicators and key figures concerning the evolution of the EU energy system

Central results EU	1990	2005	2015	2020	2030	2050
Final energy consumption [Mtoe]	1 083	1 192	1 083	1 102	1 098	1 085
EU target				1 086	956	
Primary energy consumption [Mtoe]	1 569	1 713	1 529	1 499	1 424	1 303
EU target				1 483	1 273	
RES [%] - Share of energy from renewable sources		9.1%	17.0%	20.0%	24.5%	39.5%
EU target				20.0%	32.0%	
RES-E [%] - Share of electricity from renewable sources		15.0%	28.9%	37.4%	48.1%	73.0%
Total CO_2 emissions (with international aviation, without LULUCF) [Mt CO_2]	4 534	4 440	3 658	3 440	3 151	2 121
reduction to 1990		-2%	-19%	-24%	-30%	-53%
Emissions in current ETS sectors (EU) [Mt CO ₂]		2 396	1 925	1 708	1 550	802
reduction to 2005				-29%	-35%	-67%
Emissions in current ESD sectors [Mt CO ₂]		2 044	1 733	1 732	1 602	1 318
reduction to 2005				-15%	-22%	-35%



Using the Central scenario

Enhancing the analytical capacity

ENHANCING THE ANALYTICAL CAPACITY Strengthening links between modelling tools

GLOBAL ENERGY MARKETS JRC-POLES Model

https://ec.europa.eu/jrc/en/poles

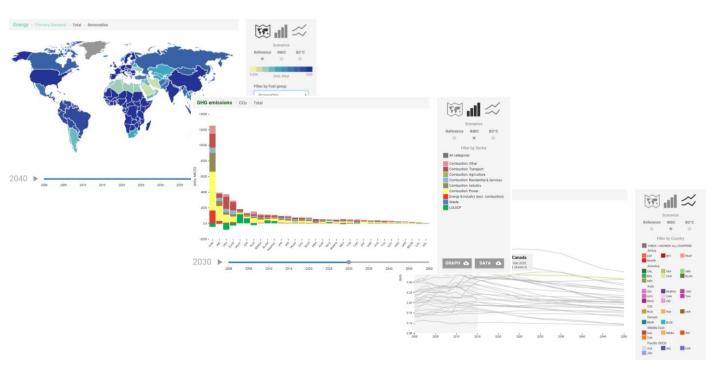
Prospective Outlook on Long-term Energy Systems

Simulating the evolution of the world energy system

- Annual steps until 2050/70
- EU28 + 38 countries / regions (OECD, G20)

Output

- Energy balances
- All energy sources and vectors
- International energy prices & trade



GLOBAL ENERGY MARKETS JRC-POLES Model

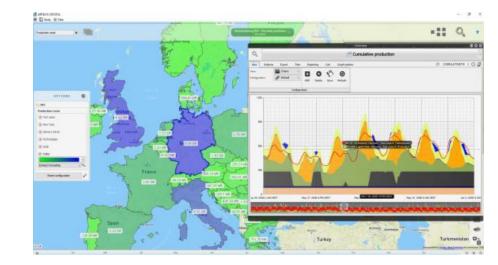
https://ec.europa.eu/jrc/en/geco

Global Energy and Climate Outlook GECO 2019: end of November

Capturing the response of global energy markets

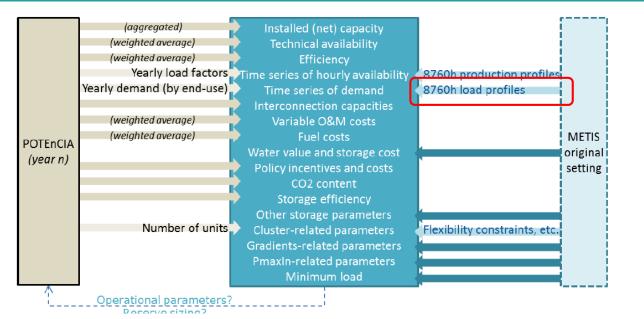
- International fuel prices
- Technology learning (power sector; batteries)

Embed into global greenhouse gas emission pathways



HOURLY DISPATCHING METIS model

https://ec.europa.eu/energy/en/data-analysis/energy-modelling/metis


Simulates the operation of energy systems and markets on an hourly basis over a year

- EU28 + neighbouring countries
- Factoring in uncertainties like weather variations
- Module for reserve (FCR, aFRR, mFRR)
- **Input** (focus on power markets)
- Exogenous capacity mix and demand \rightarrow link to POTEnCIA established
- Output
- Power system behaviour on hourly basis and system indicators
- Pricing, flexibility needs ...

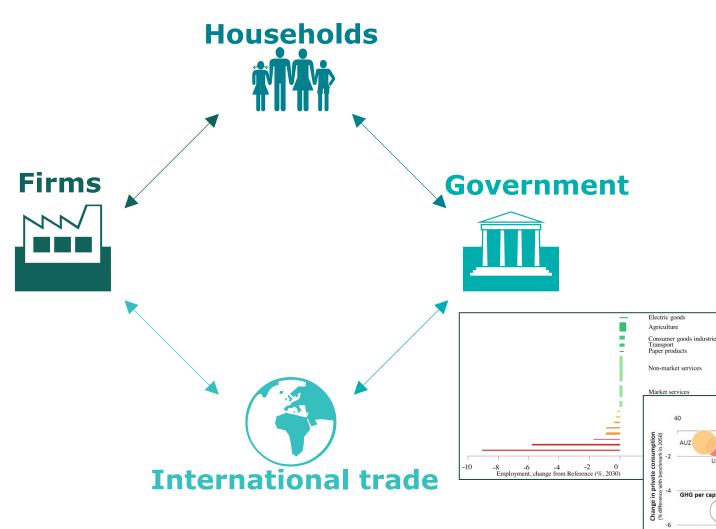
HOURLY DISPATCHING METIS model – link to POTEnCIA

Improvements to enhance linkage (planned)

8760 hour time-series for demand end-uses instead of representative day (*incl. real peak*)

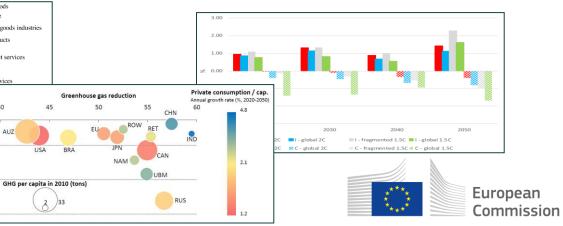
Dynamically evolving over projection period

Dynamic clustering to create representative day


Possibility to capture snapshots within POTEnCIA

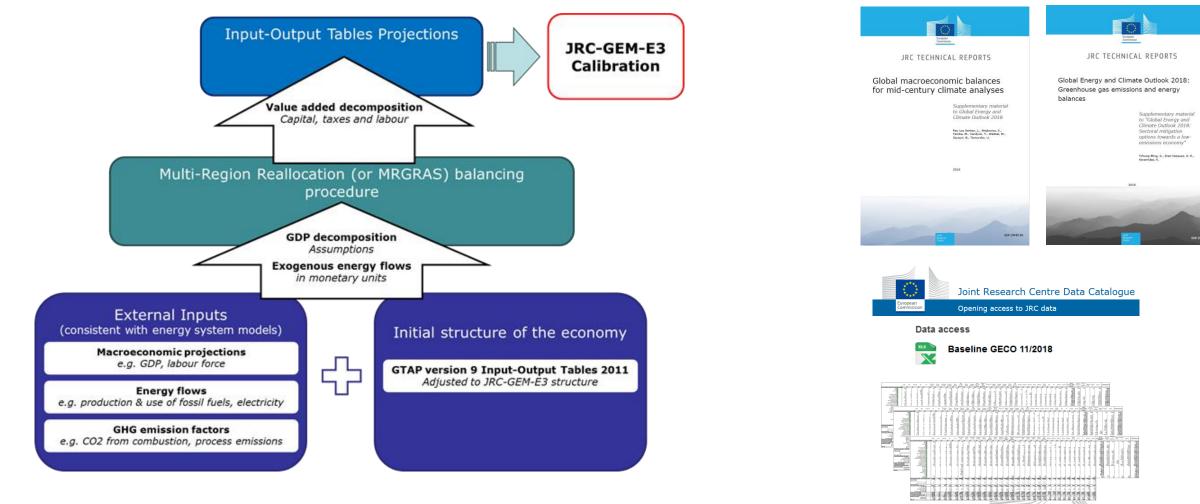
Capturing events with a granularity of 1 hr

- Reserve sizing and impact of reserve market structure
- Imports and exports
- Market design and impact on revenue streams
- Management of hydropower reservoirs
- Evaluation of storage technologies


MACRO-ECONOMY JRC-GEM-E3 Model

https://ec.europa.eu/jrc/en/gem-e3/model

Capturing macroeconomic impacts


- Changes in value added
- Employment impacts
- Supply chain effects
- Trade and competitiveness
- EU and Global

MACRO-ECONOMY

PIRAMID: Enhancing consistency between POTEnCIA and GEM-E3

https://ec.europa.eu/jrc/en/gem-e3/model

NON-CO₂-GREENHOUSE GASES GAINS Model

https://www.iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.html

GAINS Europe, model developed by IIASA with a well-established role in the policy arena

- Air pollution (CLRTAP convention, NECD)
- Greenhouse gases, in particular non-CO₂ GHGs

Model coupling: Building of GAINS scenarios with activity levels consistent with those used and produced by POTEnCIA in a given scenario, for all sectors of the economy, including

- Energy sector (gas distribution, FBC boilers)
- Domestic sector (air conditioning, heat pumps)
- Industrial sectors (chemicals, metals)

 \rightarrow link to POTEnCIA to be established on the basis of the Central scenario

Capturing the non-CO₂ Greenhouse Gases

- CH₄
- FGASES
- N₂O

Enabling the analysis of multi-GHG CO₂ reduction strategies

• through MAC curves

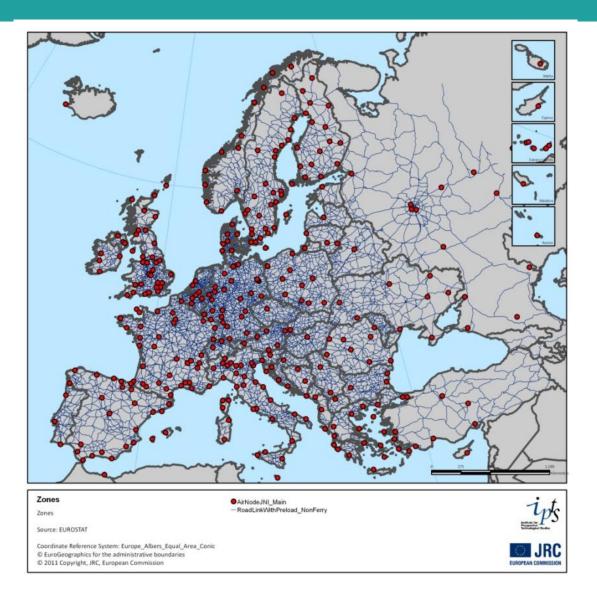
DETAILED VEHICLE EMISSION CALCULATIONS DIONE Model

DIONE Emission Calculation

- GHGs and air pollutants
- Based on EMEP/EEA Guidebook methodology and emission factors for advanced EVs

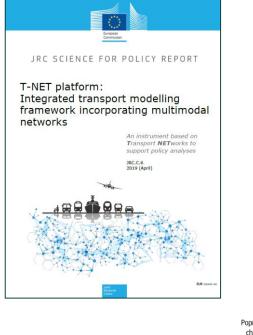
Vehicle CO₂ Emission Reduction Cost Curves

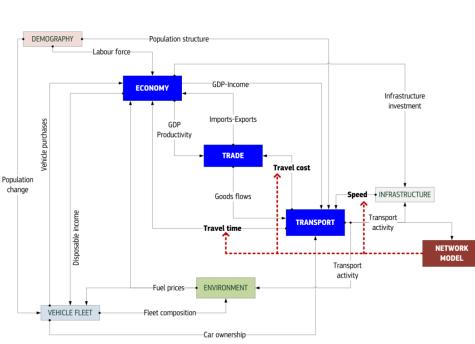
- DIONE modules and cost curves developed in the context of EU CO₂ standards
- Available for LDV and HDV


Link to POTEnCIA being tested

- Ex-post emission calculations
- Validation of endogenous response in POTEnCIA on evolution of vehicles to a CO₂ constraints/incentive

TRANSPORT NETWORKS T-NET Modelling platform




A modelling instrument to assess the economic, environmental and social impacts of EU transport policies

- Equilibrium of transport demand vs. transport infrastructure (times, costs and traffic flows)
- Coverage: Rail, Road, Air, Inland waterways, Maritime (freight and passengers)
- Transport demand: 1500 NUTS3 zones in Europe + 15 RoW zones (currently estimated via ASTRA-EC + in-house modelling tools)

TRANSPORT NETWORKS T-NET Modelling platform

Capturing impacts of network-related policies in transport

- Infrastructure expansion/charging
- Congestion
- Related impact on activity

including induced impacts on modal shifts

LAND-USE CAPRI /GLOBIOM/JRC-FUSION Models

CAPRI, model operated in-house by the JRC

- PE model of the European agricultural sector
- cost-supply curves for energy crops
- Also provides agricultural activity projections for GAINS

JRC-FUSION

 Platform merging two core forestry models, the Carbon Budget (CBM) and the Global Forest Trade (GFTM) Models

GLOBIOM

- IIASA's Global Biosphere Management Model
- cost-supply curves for forest biomass

Capturing bioenergy costs and LULUCF emissions

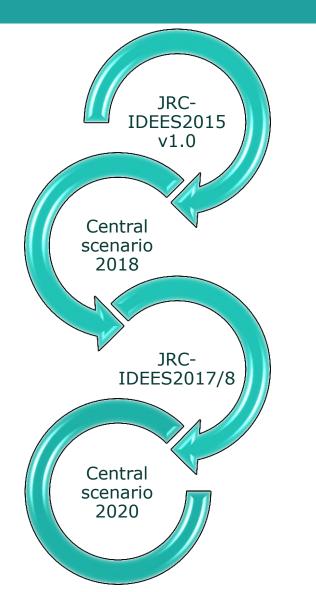
- Cost curves for biomass streams (and potentials)
- Use of energy in agricultural (and forestry) sector
- GHG emissions and emission reduction options

SCENARIO ANALYSIS building on the Central scenario

Exploratory development of NECP scenarios, representing the policies included in the final NECPs submitted by the Member States

- Includes also revised EU policies such as updated ETS pathway, updated CO₂ performance standards (including HGVs)
- Allows modelling of current 2030 climate and energy policy

Possibility to develop **NECP+** scenarios (achievement of 2030 ambitions, increases in ambitions levels, deep decarbonisation in 2050, etc.)


 \rightarrow primarily exploratory work / development performed by the JRC

Next steps

POTENCIA Next steps

Update of JRC-IDEES 2017/8

- New Eurostat balances
- Additional data sources
- Feedback received
- Widening consultation process

Extension to 2070

- Macro-economic and demographic assumptions available
- Breakdown into sectoral activities

Update of policies in place

Thank you for your attention

JRC Science Hub –POTEnCIA: ec.europa.eu/jrc/POTEnCIA

Contact: JRC-C6-POTENCIA@ec.europa.eu JRC-C6-JRC-IDEES@ec.europa.eu

Leonidas Mantzos Tobias Wiesenthal Fred Neuwahl Máté Rózsai Miguel Olariaga

